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Abstract. In generalys(G) can be made to increase or decrease by thevetrabnodes
from fuzzy graph G. In this paper the effect of temoval of a node of a fuzzy graph on
weak fuzzy dominating set is studied. Further ttabilty of weak fuzzy domination
number of fuzzy graph is investigated.
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1. Introduction

Harary et al [2] explained an interesting applicatiin voting situations using the
concept of domination. Hattingh and Renu [3] introeld on weak domination in graphs.
Rosenfeld[7] introduced the notion of fuzzy grapid &everal fuzzy analogous of graph
theoretic concepts such as paths, cycles, conmexdedand etc. Somasundaram and
Somasundaram [8] discussed domination in fuzzy lgraplagoor Gani and Basheer
Ahamed [5] introduced strong and weak dominatiofuizzy graphs. Ebadi and Ebrahimi
[1] introduced weak domination critical and stagilin graphs. In this paper we
investigate the effect of removal of nodes fronezfugraph G.

2. Preliminaries

A fuzzy graphG=(g, u) is a non-empty set V together with a pair of tions o:V —
[0,1] and u:VxV —-[0,1] such thafu(u,v)< o(u) Aa(v) for all u,veV, whereo(u) A
o(v)is the minimum ofs (u) and o(v).The underlying crisp graptof the fuzzy graph
G=(o, ) is denoted as (¢, u’) whereo ={ ue V/ o(u) >0} and u'= {(u,v)EVxV
[ u(u,v)>0}. A fuzzy graph G=¢,u) is a complete fuzzy graph ifu(u,v) = a(u) A
o(v)for all u,v € ¢ - Two nodes u and v are said to be neighbouygifv) > 0.The
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strong neighbourhoodf u is Ns(u) = {v € V : (u,v) is a strong arc}. Ju] = Ns(u) U {u}
is theclosed strong neighbourhooof u. A path p in a fuzzy graph is a sequence of
distinct nodes gjuy, W,,...u, such thap(u.1,u)>0; 1< i < n here & 0 is called thdength
of the pattp. The consecutive pairs () are called tharcs of the path. A patly is
called acycleif u,=u, and r=3. An arc (u,v) is said to bestrong arcif u(u,v) = u* (u,v)
and the node v is said to betaong neighbouof u. If  u(u,v) = 0 for every €V then u
is calledisolated nodeA fuzzy graph G is calleaheel fuzzy graph, if all the nodes of
cycle strongly adjacent to a single node. A coreokfizzy graph G=( u) is afuzzy tree
if it has a fuzzy spanning subgraph Fs\y) which is a tree where for all arcs (u,v) not
in F, u(u,v)< voo(u,v).

A fuzzy graph G=( u) is fuzzy bipartiteif it has a spanning fuzzy subgraph H=
(z, m) which is bipartite where for all edges (u,v) moH, weight of (u,v) in G is strictly
less than the strength of pair (u,v) in H.i@,v) < 7%(u,v). A fuzzy bipartite graph G
with fuzzy bipartition (M,V>) is said to be a complete fuzzy bipartite if éach node of
V4, every node of ¥is a strong neighbor. Let Gs,) be a fuzzy graph and u be a node
in G then there exist a node v such that (u,v)sgeng arc then we say thatlominates
v. Let G=@, 1) be a fuzzy graph. A set D of V is said tofbezydominating sebf G if
every ve V-D there exist € D such that u dominates v. A fuzzy dominating seif
is called aminimal fuzzy dominating seff G if no proper subset of D is a fuzzy
dominating set. Théuzzy domination numbey(G) of the fuzzy graph G is the smallest
number of nodes in any fuzzy dominating set of Guzzy dominating set D of a fuzzy
graph G such thdD| =y;(G) is called minimum fuzzy dominating set.

3. Critical node of fuzzy dominating set
Definition 3.1. Let G=(,u) be a fuzzy graph. A node v of G is said to bezjuz
dominating critical node if its removal either irases (or) decreases the fuzzy
domination number.

We partition the nodes of G into three diigj sets according to how their removal

affects yy (G). Let V=V UV u Vs for
VP= {VeV: y; (G-v) =y (G)}
Vi ={VveV: y; (G-v) > y£ (G)}
Vi = {Vvev: yr (G-v)< y£(G)}

Definition 3.2. Let G=@,u) be a fuzzy graph. Two nodes u and v of G streng
adjacentif (u,v) is strong arc. Otherwise they are saithéoveak.

Thestrong degre®f a node v is the number of nodes that are stradjgcent to v.
It is denoted by gv).

Let G=¢,u) be a fuzzy graph. For any uevV, u weakly dominates (i) If u is
strong adjacent to v and (ii}@) = ds(u).
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A set [V is aweak fuzzy dominating sef G if every node in V-D is weakly
dominated by at least one node in D. A weak fuzamidating set D of G is called a
minimal weak fuzzy dominating set if no proper sthsf D is a weak fuzzy dominating
set of G.

The smallest number of nodes in any weakzyfudominating set is called theeak
fuzzy domination numbeand is denoted byy,, (G). A weak fuzzy dominating set D of

G such thatD| = (s (G) is called minimum weak fuzzy dominating set.

4. Critical nodes of weak fuzzy dominating set
Definition 4.1. Let G=(, 1) be a fuzzy graph. A node v of G is said to bekveazy
dominating critical node if its removal either irase (or) decrease the weak fuzzy
domination number.
We partition the nodes of G into three disjagets according to how their removal
affectsy,,s (G). LetV ¥,0 - UV, UV, ¢
ForVyo: = {VEV: yyr (G-V) = 1,,0(G)}
V\;f ={VEV: yws(G-V) > vur (G)}
V= {VEV 1 yur (G-V) < yur (G)}.

Definition 4.2. y,,r - Stability of fuzzy graph G writtep,, s is the minimum number of
nodes whose removal changgs; (G).

Yws- Stability of a fuzzy graph G writter,,;* is the minimum number of nodes
whose removal increases, s (G).

Yws - Stability of a fuzzy graph G writtep,, ~ is the minimum number of nodes
whose removal decreasgsg s (G).

5. Critical node of weak fuzzy dominating set in fuzzy graphs

Results:

1. If lis the set of all isolated nodes of G them ¥, ..

2. If D is a weak fuzzy dominating set , removing age in V-D cannot increase the
weak fuzzy domination number thfiy}:| < y,,¢ (G).

Theorem 5.1. If a node u of V(G) is irVij(G) then there is no weak fuzzy dominating
set of G-u withy,, s (G) nodes.

Proof: Let ue VMJ;f(G). Theny,r(G-v) > y,r (G). Suppose there exists a weak fuzzy
dominating set of G-u witly,,r (G) nodes. Thery,,; (G-v) < y, (G), a contradiction.
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Proposition 5.2. If a node u is i/, ¢(G) , then N(u) € Uyep—uy Ns[V], for some y,, -
set D containing u.

Proof: Suppose there is w belong tg(ly) such that V€ U,ep—gy Ns[V]. So by removing

u we see that v belong to weak fuzzy dominating Sitce there is no node in weak
fuzzy dominating set such that dominate v,)59 (G-u) = y,(G), a contradiction.

Proposition 5.3. For any fuzzy graph G, if,; = {v} then A’(v) = @. [Here A(v)= {u:
u¢ D and N(u)nD = {v}].

Proof: Supposey, s (G-v) < y,s(G) for some node &G, and let D be a minimum
weak fuzzy dominating set for G-v. Clearly S v} is a minimum weak fuzzy
dominating set for G with Av) = @.

Proposition 5.4. If the removal of a node u fro@ increasesy,, s (G), then (i) u is not
isolated node and end node and (ii) there is nakviezzy dominating set for Gz
having v, (G) nodes which also dominategy for somey,,; - set D containing u.
Proof:
@ Supposey,,(G-v) > v, (G) and &D. Then clearly u is not an isolated, and
also u is not end —node, sine for any fuzzy grapif G is end-node then
Ywr (G-V) < vur (G), a contradiction.
(i) Suppose there exists a weak fuzzy dominating s&-NJu] with y,,r (G)
nodes. Thery,,r (G-v) < v, (G), a contradiction.

Proposition 5.5. If there exists at least,u, € A’(v), then Ywr(G-V) > yyur (G), for
somey,,s - set D containing v.

Proof: Suppose there exists at leagiusl€ A'(v) such that yand y are not strong
adjacent so by removing v, there are no nodes akwigzzy dominating set such that at
least dominates;land y ( and maybe more ). Hengg, /(G-v) > y,,r (G).

Proposition 5.6. Let G=(g, 1) be a fuzzy graph where G (V,E) is a wheel graph ofp
5 vertices thery,; "(w,) = 1.

Proof: Let G be a fuzzy graph whose underlying crisp grispa wheel graph of n 5
vertices, them, has a vertex v of strong degree p-1 and hegngéw,) = 1. Sincew, -1

is a cycle of length p-1. Hencg s (w,-V) = yr(Cyl) > 1= y5p(w,). Thus y +(a)p)
=1.

Proposition 5.7. For any fuzzy graph G (8Kn,) then|V,) | =2|V,+|.
Proof: For each & V,;f(G), we consider the following two cases.
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Case (i) If visin minimum weak fuzzy dominating set, thidg{v) contains at least two
non strong adjacent nodesand y, since y,U; € D, if y,,r (G- U,) = y,r(G) we
have done. If not, again or wk, ( and may be both ) is strong adjacent with asrotiode
such that, that node is not in minimum weak fuzaynthating set, so by removing that
node we see that, (G) is not change , otherwise we continue this gsscthen we see
that|[V,0| =2|V,f|-

Case (ii) Suppose v is not in minimum weak fuzzy dominatiaty,shen Nv] contains
at least one (and maybe more) node, such thatighabt in minimum weak fuzzy
dominating set that is and v. If not, we use cgsddnce|V,:| >2|V,;|.

Theorem 5.8. For any fuzzy graph G (#Kn), yws (G-Vv) # vus(G) for all eV if
and only if V..

Proof: Obviously, if V. then y,r (G-v) # y,,(G) for all veV.Assume that
Ywr (G-V) # y,r(G) for all veV. ThenV,j. andV,;; partition V. But if \& V,j¢, then
proposition 8.5V‘2f is not empty, a contradiction. Hence X/5.

6. Stability of weak fuzzy dominating set in fuzzy paths

. + _ 3if n=0,2(mod3)
Theorem6.1. For any pathp, with n=9, yy,-(pn)+ vyr(on) ={ 4if n =1 (mod3)
Proof: We consider the following three cases.

Case (i) Let r=0 (mod3). Let Let yv,,...\i, be the nodes ¢f,,, thenp-{v 4} consists ofps
andpos THUS Vioy (V) = Yy (0% Yoy (o) = 2+ + 1 =[] + 2 =[5 +
2> [g] +1 = 7,5 (pu). Henceyy (o) = 1( if =0 (mod3) . To see thaty(pn) = 2 first
note thaty,r (pn2) = Ywr (on) —=1. HeNcey, ((pn) < 2. Sincey,,r (Pn1) = Ywy (pr) the
only way to lower the weak fuzzy domination nhumbép, by removing either one or

two nodes is to disconnegt.

Case (ii) Let n=2 (mod3). Nowy,,r (pn-1) < Yws (pn) @and hencey,,(pn) = 1. If we
remove y from p, we obtainps and pna. Thus v, ¢ (on{Va}) = Ywr (P3)* Yws (Pna) =
n—4

2+ T] = "T‘l] +1 :[g] + 1= .1 (pr)-Since n-&1 (mod3) by case (i} (ona) = L.

Hencey,, +(on) = 2.
Case (iii) Let r=1 (mod3). If we remove wfrom p, we obtainps; and p,4 Thus
-4 2
Ywr (pn'{v4}) = Ywr (p3)+ Ywr (pn-4) = 2+ nT] +1= I%] +1= Ig] +1> [g] =
Yws (o). Hencey‘;f(pn) =1 if iE1 (mod 3). To see thaf,,((p,) = 3 first note that
Ywr (Pn3) =Vws (Pn) — 1. Henceyy,f(pn) < 3. Sinceyys (Pn2) = Yws (On1) = Vs (On)
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the only way to lower the weak fuzzy domination t@mofp, by removing either one or
two nodes is to disconnegt.

7. Stability of weak fuzzy dominating set in fuzzy cycles

Theorem 7.1. For n=9,

)/;f (Cn)+ )/M_/f (Cn) = {6515;1;01’2((1:::)0(?35;)

Proof: It suffices to show that for=0,1 and 2(mod3), we have respectivp‘r}f(cn) =1,
Ywr(Cr) =5 andyy+(Cr) = 2,7, ((Cr) = 3 andyy((Cr)=2, yys(Cn) = 4. We indicate
how to prove thaiy,j;f(Cn) = 2 when gl (mod3). The remaining cases follow easily
from the proof of proposition 7.2. Le&=l (mod3) and we denot, by v, Vvs,...,\h, then

removal of the set of nodes {vvi} leaves ps and pns Hence y,,r (Ci-{Vo,Va}) =
n+1

Y (03) + Yy (nd) = 2 +[<5| 1= + 1 =[5| +1>[5] = vy (Co). Thusy;s(C)
=2.

8. Conclusion

In this paper, we apply critical concept to weakziyidominating set. Also we introduced
fuzzy wheel graph and apply this concept to fuzdye®l graph and obtained some
results.
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