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1. Introduction 
Let G be a finite, simple connected graph. The degree dG(v) of a vertex v is the number of 
vertices adjacent to v. The edge connecting vertices u and v is denoted by uv. If e = uv is 
an edge of G, then the vertex u and edge e are incident as are v and e. Let dG(e) denote the 
degree of an edge e in G, which is defined by dG(e) = dG(u) +dG(v) – 2 with e=uv. Any 
undefined term here may be found in Kulli [1]. 
 A molecular graph is a graph such that its vertices correspond to the atoms and 
the edges to the bonds. Chemical graph theory is a branch of Mathematical chemistry 
which has an important effect on the development of the chemical sciences. A single 
number that can be used to characterize some property of the graph of a molecular is 
called a topological index for that graph. Numerous topological descriptors have found 
some applications in theoretical chemistry especially in QSPR/QSAR research. 
 The modified first and second Zagreb indices [2] are respectively defined as  
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These indices were studied by Kulli in [3, 4]. 
 Motivated by the definition of the modified first and second Zagreb indices, we 
introduce the modified first and second K-Banhatti indices of a graph as follows: 
 The modified first and second K-Banhatti indices of a graph are defined as  
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where ue means that the vertex u and edge e are incident in G.  
 The harmonic index of a graph G is defined as  
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This index was studied by Favaron et.al. [5] and Zhong [6]. 
 Motivated by the definition of the harmonic index and by previous research on 
topological indices, we now introduce the harmonic K-Banhatti index of a graph as 
follows: 
 The harmonic K-Banhatti index of a graph G is defined as  
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where ue means that the vertex u and edge e are incident in G. 
 Many other topological indices were studied, for example, in [7, 8, 9, 10, 11, 12, 
13, 14, 15, 16, 17, 18]. 
 In this paper, we compute the modified first and second K Banhatti indices and 
harmonic K Banhatti index of some standard graphs, TUC4C8[p, q] nanotubes and 
TUC4[p, q] nanotubes. 
 
2. Computing K Banhatti topological indices of some standard graphs 
Theorem 1. Let Cn be a cycle with n≥3 vertices. Then  
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Proof: Let G = Cn be a cycle with n ≥ 3 vertices. Every vertex of a cycle Cn is incident 
with exactly two edges and the number of edges in Cn is n. 
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Theorem 2. Let Pn be a path with n ≥ 3 vertices. Then  
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Proof: Let G = Pn be a path with n ≥ 3 vertices. We obtain two partitions of the edge set 
of Pn as follows: 
 E3 = {e =uv ∈ E(G) | dG(u) = 1, dG(v) = 2}, |E3| = 2. 
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 E4 = {e =uv ∈ E(G) | dG(u) = dG(v) = 2}, |E4| = n – 3. 
(1) To compute mB1(Pn), we see that  
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(2) To compute mB2(Pn), we see that  
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(3) To compute Hb(Pn), we see that 
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Theorem 3. Let Kn be a complete graph with n≥3 vertices. Then  
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Proof: Let G = Kn be a complete graph with n≥3 vertices. Every vertex of Kn is incident 
with exactly n – 1 edges. 
(1) To compute mB1(Kn), we see that  
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(2) To compute mB2(Kn), we see that  
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(3) To compute Hb(Kn), we see that  
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Theorem 4. Let Kr,s be a complete bipartite graph with 1 ≤ r ≤ s and s ≥ 2. Then  
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Proof: Let G = Kr, s be a complete bipartite graph with r + s vertices and rs edges such 
that |V1| = r ≥ 1, |V2| = s ≥ 2 r ≤ s , V(Kr,s) = V1UV2. Every vertex of V1 is incident with s 
edges and every vertex of V2 is incident with r edges. 

(1) To compute mB1(Kr, s), we see that  
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(2) To compute mB1(Kr,s), we see that  
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(3) To compute Hb(Kr,s), we see that  
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Corollary 1. Let Kr,s be a complete bipartite graph with 1 ≤ r ≤ s and s ≥ 2. Then  
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Theorem 5. Let G be an r-regular graph with n ≥ 3 vertices. Then 
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Proof: Let G be an r-regular graph with n ≥ 3 vertices and 
2

nr
 edges. Every vertex of G 

is incident with r edges. 
(1) To compute mB1(G), we see that  
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(2) To compute mB2(G), we see that  
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(3) To compute Hb(G), we see that  
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3. Computing K Banhatti type indices of TUC4C8[p, q] nanotubes  
We discuss TUC4C8[S] nanotubes which are consisting of cycles C4 and C8. These 
nanotubes usually symbolized as TUC4C8[p, q] for p, q ∈ N in which p is the number of 
octagons C8 in the first row and q is the number of octagons C8 in the first column. The 2-
dimensional lattice of TUC4C8[p, q] is shown in Figure 1. 

 

1 2 3

2

p-1 p........

........

...
...

..

...
...

..

...
...

..

...
...

..

...
...

..

q ........

 
Figure1: The graph of 2-D lattice of TUC4C8[p, q] 
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We determine the modified first K Banhatti index of TUC4C8[p, q] nanotubes. 
 

Theorem 6. Let G = TUC4C8[p, q] be the graph of nanotubes. Then  

( )1
24 199

.
7 105

mB G pq p= +  

Proof: Let G = TUC4C8[p, q]. By algebraic method, we get |V(G)| = 8pq + 4p and |E(G)| 
= 12pq + 4p. From Figure 1, it is easy to see that there are three partitions of the edge set 
of G as follows: 
 E4 = {e =uv ∈ E(G) | dG(u) = dG(v) = 2}, |E4|=2p. 
 E5 = {e =uv ∈ E(G) | dG(u) = 2, dG(v) = 3}, |E5|=4p. 
 E6 = {e =uv ∈ E(G) | dG(u) = dG(v) = 3}, |E6| = 12pq – 2p. 
 
Further the edge degree partition of the nanotube TUC4C8[p, q] is given in Table 1. 
 

dG(u), dG(v)\e = uv∈E(G) (2, 2) (2, 3) (3,3) 

dG(e) 2 3 4 

Number of edges 2p 4p 12pq – 2p 

Table 1: Edge degree partition of TUC4C8[p, q] 
 
To determine mB1(G), we see that  
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We determine the modified second K Banahatti index of TUC4C8[p, q] nanotube. 
 

Theorem 7. Let G = TUC4C8[p, q] be the graph of nanotubes. Then 

( )2
16

2 .
9
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Proof: Let G = TUC4C8[p, q] the nanotubes. By using the results from the proof of 
Theorem 6, we obtain 
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We compute the harmonic K-Banhatti index of TUC4C8[p, q] nanotube. 
 
Theorem 8. Let G = TUC4C8[p, q] be the graph of nanotubes. Then  
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Proof: Let G = TUC4C8[p, q] be the nanotubes. By using Theorem 6, we obtain  
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4. Computing K Banhatti type indices of TUC4[p, q] nanotubes. 
In this section, we focus on the structures of a family of nanostructures and they are 
called TUHRC4[S] nanotubes. These nanotubes usually symbolized as TUC4[p, q] for any 
p, q ∈ N in which p is the number of cycles C4 in the first row and q is the number of 
cycles C4 is the first column as depicted in Figure 2.  

 

1 2

2

3 4

q

...... ...
p-1 p

...... ...
 

 
Figure 2: 2-D graph of G = TUC4[p, q] 

 
 We compute the modified first K-Banhatti index of TUC4[p, q] nanotubes. 
 
Theorem 9. Let G be the TUC4[p, q] nanotubes. Then  

( )1
4 23

.
5 30

mB G pq p= +  

Proof: Let G be the TUC4[p, q] nanotubes as depicted in Figure 2. By algebraic method, 
we obtain |E(G) | = 4pq + 2p. From Figure 2, it is easy to see that there are two partitions 
of the edge set of G as follows: 
 E6 = {e = uv ∈ E(G) | dG(u) = 2, dG(v) = 4}, |E6|=4p. 
 E8 = {e = uv ∈ E(G) | dG(u) = dG(v) = 4}, |E8|=4pq – 2p. 
 Further the edge degree partition of the nanotube TUC4[p, q] is given in Table 2. 
 



V.R.Kulli 

36 

 

dG(u) dG(v)\e = uv∈E(G) (2, 4) (4, 4) 

dG(e) 4 6 

Number of edges 4p 4pq – 2p 

Table 2: Edge degree partition of TUC4[p, q] 
 
To compute mB1(G), we see that  
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We compute the modified second K-Banhatti index of TUC4[p, q] nanotubes. 
 

Theorem 10. Let G = TUC4[p, q] be the nanotubes. Then  
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Proof: Let G = TUC4[p, q] be the nanotubes. By using the results from the proof of 
Theorem 9, we obtain  
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We now compute the harmonic K-Banhatti index of TUC4[p,q] nanotubes. 
 
Theorem 11. Let G = TUC4[p, q] be the nanotubes. Then  
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Proof: Let G = TUC4[p, q] be the nanotubes. By using Theorem 9, we obtain  

( ) ( ) ( )
2

b
G Gue

H G
d u d e

=
+∑ ( ) ( )

1 8 23
2

5 15
= = +

+∑
G Gue

pq p
d u d e

.  

EFERENCES 

1. V.R.Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, 
India (2012). 



New K-Banhatti Topological Indices 

37 

 

2. X.Li and J.Zheng, A unified approch to the external trees for different indices, 
MATCH Commun. Math. Comput. Chem., 54 (2005) 195-208. 

3. V.R.Kulli, Some topological indices of certain nanotubes, Journal of Computer and 
Mathematical Sciences, 8(1) (2017) 1-7. 

4. V.R.Kulli, Computation of general topological indices for titania nanotubes, 
International Journal of Mathematical Archive, 7(12) (2016) 33-38. 

5. O.Favaron, M.Mahéo and J.F.Saclé, Some eighenvalue properties in graphs 
(conjectures of Graffiti II) Discrete Math., 111(1-3) (1993) 197-220. 

6. L.Zhong, The harmonic index for graphs, Appl. Math. Lett., 25(3) (2012) 561-566. 
7. V.R.Kulli, General multiplicative Zagreb indices of TUC4C8[m,n] and TUC4[m,n] 

nanotubes, International Journal of Mathematical Archive, 11(1) (2016) 39-43. 
8. V.R.Kulli, Multiplicative connectivity indices of TUC4C8[m,n] and TUC4[m,n] 

nanotubes, Journal of Computer and Mathematical Sciences, 7(11) (2016) 599-605. 
9. V.R.Kulli, The first and second κa indices and coindices of graphs, International 

Journal of Mathematical Archive, 7(5) (2016) 71-77. 
10. V.R.Kulli, On K edge index and coindex of graphs, International Journal of Fuzzy 

Mathematical Archive, 10(2) (2016) 111-116. 
11. V.R.Kulli, On K edge index of some nanostructures, Journal of Computer and 

Mathematical Sciences, 7(7) (2016) 373-378. 
12. V.R.Kulli, Multiplicative hyper-Zagreb indices and coindices of graphs: Computing 

these indices of some nanostructures, International Research Journal of Pure 
Algebra, 6(7) (2016) 342-347. 

13. V.R.Kulli, On multiplicative connectivity indices of certain nanotubes, Annals of 
Pure and Applied Mathematics, 12(2) (2016) 169-176. 

14. V.R.Kulli, Multiplicative connectivity indices of nanostructures, Journal of Ultra 
Scientist of Physical Sciences, A 29(1) (2017) 1-10. 

15. V.R.Kulli, Computation of some topological indices of certain networks, 
International Journal of Mathematical Archive, 8(2) (2017) 99-106. 

16. V.R.Kulli, F-index and reformulated Zagreb index of certain nanostructures, 
International Research Journal of Pure Algebra, 7(1) (2017) 489-495.  

17. V.R.Kulli, Some new multiplicative geometric-arithmetic indices, Journal of Ultra 
Scientist of Physical Sciences, A, 29(2) (2017). 

18. V.R.Kulli, Two new multiplicative atom bond connectivity indices, Annals of Pure 
and Applied Mathematics, 13(1) (2017) 1-7. 


