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Abstract. A graph G is vertex domination critical if for any vertex v of G,  the domination 
number of G – v is less than the domination number of G. We call these graphs γ-critical 
if domination number of G is γ. In this paper, we determine the domination and the total 
domination number of Cir(n,A) for two particular generating sets A of Zn, and then study 
γ-critical in these graphs. 
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1. Introduction 
A vertex in a graph G dominates itself and its neighbors. A set of vertices S in a graph G 
is a dominating set, if each vertex of G is dominated by some vertex of S. The 
domination number γ(G) of G is the minimum cardinality  of a dominating set of G. A 
dominating set S is called a total  dominating  set if each vertex v of G is dominated by 
some vertex u ≠ v of S. The total domination number of G, denoted by γt(G), is the 
minimum cardinality of a total dominating set of G.          
       We denote the open neighborhood of a vertex  v of  G  by NG(v), or just  N(v), and 
its closed neighborhood by  N[v]. For a vertex set S⊆V(G), N(S) = ∪v∈SN(v) and N[S] = 
∪v∈SN[v].  So, a set of vertices S in G is a dominating  set,  if  N[S]  =  V(G).  Also, S  is 
a total dominating set,  if  N(S) = V(G).  For  notation  and graph theory terminology in 
general we follow [3]. Rashmanlou and Pal et al. [5-17] studied different kinds of fuzzy 
graphs.zWe call a dominating set of cardinality γ(G), a γ(G) – set and a total dominating 
set of cardinality γt(G), a γt(G) – set. A graph G is called vertex domination critical if γ(G 
– v) < γ(G ),  for every vertex v in G. For references on the vertex domination critical 
graphs see [1,2,3].    
        Jafari Rad [4],  determines the domination number and the total domination number 
of graph Cir(n,{1, 3}), for any integer n, and then  study γ – criticality in  
Cir(n, {1, 3}). 
Z     Let n ≥ 7  be a positive integer. The circulant  graph Cir(n , A) where A ={1, n – 1, 3, 
n – 3, 5, n – 5, …, 2k –1, n – (2k – 1), 2k +1, n – (2k +1)} is the graph with vertex set{v0, 
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v1, …, vn - 1},  and edge set{{vi , vi+j } : i∈{0, 1, …, n – 1}, j∈ {1, n – 1, 3,n – 3, …,2k + 1, 

n – (2k + 1)}}, k  is  an  integer  such that0 ≤ k<[ 
 !"

#
]. 

Z    Let n ≥ 9 be a positive integer. The circulant graph Cir(n , B) where B = {1, n – 1, 2, 
n – 2, 4, n– 4, …, 2k, n – 2k , 2k +2, n – (2k +2)} is the graph with vertex set {v0, v1, …, 
vn - 1}, and edge set{{ vi , vi+j } : i∈{0, 1, …, n – 1} ,  j ∈{1, n – 1, 2, n – 2, …,2k + 2, n – 

(2k + 2)}}, k  is an integer such that0 ≤ k<[ 
&!'

#
]. 

All arithmetic on  the indices is assumed to be modulo n.kz 
      In this paper, we first determine the domination number and the total domination 
number in the circulant graphs Cir(n , A) and Cir(n ,B) for any integer n, and then study γ 
– criticality and γt (G) – criticality in these class of graphs.   
       For two vertices x and y in a graph G we denote the distance between x and y  by 
dG(x ,y), or just d(x, y). 
 
2. Domination and total domination 
Let G be a circulant graph with n vertices. Let cycle C = C(G) be the subgraph of G with 
vertex set{v0, v1, …, vn - 1 }and edge set {{ vi , vi+1} : i∈{0, 1, …, n – 1}}. For a subset 
S⊆V(G) with at least three vertices, we say that x, y∈S are consecutive if there is no 
vertex z ∈S such that z  lies between x and y in C. For two consecutive vertices x, y in a 
subset of  vertices S, we define |x  -y| = dC(x , y). So,  |x  - y| equals to the number of edges 
in a  shortest path between x and y in the cycle C.  z 
 
Theorem  2.1. For any integer n ≥ 7, 
 
 
 
 
 
Proof: Let S be a γ(G)-set of G = Cir(n , A). Any vertex of G dominates 2k+3 vertices of 
G including itself, so |S| ≥ ⌈

&

)*+"
⌉. 

       We claim that if n≡2t (mod 2k+3), for an integer t such that 2 ≤ t ≤ k+1, then |S| ≥ 
⌈

&

)*+"
⌉+ 1. 

       To see this, assume to the contrary that n≡2t (mod 2k+3), and |S| = ⌈
&

)*+"
⌉. There are 

two consecutive vertices vl,vl′∈S such that |l – l′ | <2k+3. Let vl″ ≠vl be a consecutive 
vertex of vl′. Without loss of generality assume that |vl″– vl | = 2k+3+2t. Then there are 
2k+2+2t possibilities for vl′ to lies between vl and vl″. In each possibly there exists a 
vertex between vl  and vl″ which is not dominated by {vl,vl′, vl″}, a contradiction. Hence, 
for n≡2t (mod 2k+3), |S|  ≥⌈

&

)*+"
⌉+ 1.    

      Now it is sufficient to get a dominating set S of required cardinality. We consider the 
following cases: 
 

1. For n ≡ 4(mod 2k+3), S = {v(2k+3)i : 0 ≤ i<⌈
&

)*+"
⌉ }∪ {vn-2}. 

 

⌈
&

)*+"
⌉+1n ≡ 4,6,8, …, 2k+2(mod 2k+3) 

γ(Cir(n , A)) = 
⌈

&

)*+"
⌉ otherwise 
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2. For n ≡ 6,8,10, 12,14, …, 2k+2 (mod 2k+3), S = {v(2k+3)i: 0 ≤ i< ⌈
&

)*+"
⌉ }∪ {vn-1}. 

3. For n ≡4, 6, 8,10, ..., 2k+2 (mod 2k+3), S = {v(2k+3)i: 0 ≤ i< ⌈
&

)*+"
⌉ }. 

In each of the above cases, S is a dominating set for Cir(n , A) of cardinality ⌈
&

)*+"
⌉+ 1 

when n ≡ 4,6,8, …, 2k+2 (mod 2k+3), and of cardinality ⌈
&

)*+"
⌉ when  n ≡4, 6, 8,10, ..., 

2k+2(mod 2k+3). Hence, the result follows. ■ 
 
Theorem  2.2. For any integer n ≥ 9, 
  
 
 
 
 
Proof: Let S be a γ(G)-set of G = Cir(n , B). Any vertex of G dominates 2k+5 vertices of 
G including itself, so |S| ≥ ⌈

&

)*+'
⌉.  

      We claim that if n≡2t (mod 2k+5), t is an integer such that 3 ≤ t ≤ k+1, then |S|  ≥ 
⌈

&

)*+'
⌉+ 1. To see this, assume to the contrary that n≡2t (mod 2k+5), and |S| = ⌈

&

)*+'
⌉. 

There are two consecutive vertices vl, vl′ ∈ S such that |l – l′ | <2k+5. Let vl″ ≠vl is a 
consecutive vertex of vl′. Without loss of generality we assume that  |vl″– vl | = 2k+5+2t. 
Then there are 2k+4+2t possibilities for vl′ to lies between vl and vl″. In each possibly 
there exists a vertex between vl and vl″ which is not dominated by{vl,vl′, vl″}, a 
contradiction. Hence, for n≡2t (mod 2k+5), |S|  ≥⌈

&

)*+'
⌉+ 1. 

 Now it is sufficient to get a dominating set S of required cardinality. We consider 
the following cases: 
1. For n ≡6,8,10, 12,14, …, 2k+4 (mod 2k+5), S = {v(2k+5)i: 0 ≤ i< ⌈

&

)*+'
⌉ }∪{ vn-3}.  

2. For n ≡ 6, 8,10, ..., 2k+4 (mod 2k+5), S = { v(2k+5)i: 0 ≤ i< ⌈
&

)*+'
⌉ }. 

In each of the above cases S is a dominating set for Cir(n, B) of cardinality ⌈
&

)*+'
⌉+ 1 

when n ≡ 6,8, …, 2k+4 (mod 2k+5), and of cardinality ⌈
&

)*+'
⌉ when n ≡ 6, 8,10, ..., 2k+4 

(mod 2k+5). 
Hence, the result follows. ■ 
 
Theorem  2.3. For any integer n ≥ 7, 
 

 
 
 

Proof. Let S be a γt-set of G = Cir(n , A). Note that |A| = 2k+2 and G is 2k+2-regular. 
From the definition of the total domination number, it follows that ⌈

&

)*+)
⌉≤  γt(G), γt(G) = 

|S|. 
      For n ≡ 2j (mod 4k+4), j is an integer such that 0 ≤ j < 2k+2, we have  

γ(Cir(n , B)) = 
 

⌈
&

)*+'
⌉+1, n ≡ 6,8,10, …, 2k+4 (mod 2k+5) 

 
⌈

&

)*+'
⌉ otherwise 

γt(Cir(n , A)) = 
 

⌈ )&

#*+#
⌉+1n ≡ 2,4,6, …, 2k+2 (mod 4k+4) 

 
⌈

)&

#*+#
⌉ otherwise 
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⌈
&

)*+)
⌉= ⌈

)&

#*+#
⌉, so ⌈

)&

#*+#
⌉≤  γt(G). 

      For n ≡ 2j (mod 4k+4), j is an integer such that 0 ≤ j < 2k+1, n can be written as 
n=(4k+4)l+2j = 2((2k+2)l +j), which l is integer and n is an even number. We partite 
V(G)  into two disjoint sets I1 = {v1, v3, v5, v7, …, vn-3, vn-1} and I2= {v0, v2, v4, v6, …, vn-4, 
vn-2}. Note that |I1| = |I2| = (2k+2)l + j. For any x∈I1, N(x)⊆I2, for any y∈I2, N(y)⊆ I1. It 
follows that G is a balanced bipartite graph with bipartition sets I1 and I2. We can write S 
= S1⋃S2, such that S1⊆I2 ,  S2⊆I1, I i  is dominated by Si , 1 ≤ i ≤ 2 and |S1| = |S2|. 

If 0<j ≤ k+1, then  |S1| = |S2|≥⌈
()*+))0+1

)*+)
⌉= l+1 and γt(G)= |S| = |S1| + |S2|≥ 

2⌈
()*+))0+1

)*+)
⌉=2l+2. On the other hand 2l+2 =⌈

(#*+#)()0)+#1

#*+#
⌉+1, and so  

γt(G) ≥⌈
(#*+#)()0)+#1

#*+#
⌉+1. 

A     If k+2≤ j ≤ 2k+1, then |S1| = |S2| ≥ ⌈
()*+))0+1

)*+)
⌉=l+1 and γt(G)= |S| = |S1| + |S2| ≥ 

2⌈
()*+))0+1

)*+)
⌉=2l+2. On the other hand 2l+2 =⌈

(#*+#)()0)+#1

#*+#
⌉, and so  

γt(G) ≥⌈
(#*+#)()0)+)1

)*+)
⌉. 

If j=0, then |S1| = |S2| ≥⌈
()*+))0

)*+)
⌉= l  and γt(G)= |S| = |S1| + |S2| ≥2⌈

()*+))0

)*+)
⌉=2l. 

On the other hand 2l =⌈
(#*+#))0

#*+#
⌉, and so γt(G) ≥⌈

(#*+#))0

#*+#
⌉. 

Now it is sufficient to define a total dominating set S of required cardinality. We 
consider the following cases:  
 

1. For n≡0 (mod 4k+4), S = {v(4k+4)i+2k+1, v(4k+4)i+4k+2: 0 ≤i<[
&

#*+#
]}. 

2. For n≡1,3,5,7, …, 2k+1 (mod 4k+4), S ={v(4k+4)i+2k+1, v(4k+4)i+4k+2: 0 ≤ i <[
&

#*+#
]} ∪{v0}. 

3.aForsthe casesxn≡2,4,6,a…,a2k+2 (moda4k+4)aandan≡2k+3,2k+4,2k+5, 2k+6, …, 
4k+2,4k+3 (mod 4k+4), S = {v(4k+4)i+2k+1, v(4k+4)i+2k+2: 0 ≤ I < [

&

#*+#
]} ∪{vn-2k , vn-(2k+1)}. 

        In each of the above cases S is a total dominating set of Cir(n , A), cardinality of S  is 
⌈

&

)*+)
⌉+ 1 when n ≡ 2,4, …, 2k+2 (mod 4k+4), and cardinality of S is ⌈

&

)*+)
⌉ when  n ≡ 2, 

4,6, ..., 2k+2 (mod 4k+4). Hence, the result follows.■ 
 
Lemma  2.1. Let S be a subset of vertices of G=Cir(n,B) with k ≥ 3 and G[S] has no 
isolated vertices. If |S| is even, then S dominates at most (2k+3)|S| vertices of G.  
Proof: Let S be a subset of vertices of G with |S|= t, where t is even. Any two adjacent 
vertices of S dominate 4k+6 vertices of G including themselves. S dominates at most 

(4k+6)(
|:|

)
) = (2k+3) |S| vertices of G.■ 

 
Lemma  2.2. Let S be a subset of vertices of G=Cir(n,B) with k ≥ 3 and G[S] has no 
isolated vertices. If  |S| is odd, then S dominates at most (2k+3) |S| - (k+1) vertices of G. 
Proof: Let S a be subset of vertices of G with |S|= t, where t is odd. Without loss of 

generality we may assume that G[S] has d = (
|:|!"

)
) + 1 components G1, G2, …,Gd  where 

|V(G1)|= 3 and |V(Gi)|= 2 for i= 2, 3, 4, …, d. Let V(G1)={x, y, z}, then {x, y, z} 
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dominates at most 5k+8 vertices of G. S dominates at  most  (4k+6) (
|:|!"

)
) + 5< + 8 = 

(2k+3)t-(k+1) vertices of G.■ 
 
Theorem  2.4. For any integer n ≥ 21 and k ≥ 3, 
 
 
 
 
A 
Proof: Let S be a γt-set of G = Cir(n,B). It follows from Lemma 2.1 and Lemma 2.2 that 
|S| ≥ ⌈

&

)*+"
⌉. 

We claim that if n ≡3,4,5, …, 2k+3 (mod 4k+6) and S is a total dominating for G, then 
|S| ≥ ⌈

&

)*+"
⌉+1. 

To see this, assume to the contrary that |S|=⌈
&

)*+"
⌉. We have n=(4k+6)l+j , where l is a 

positive integer, j∈ {3,4,5, …, 2k+3} then |S|=⌈
(#*+>)0+1

)*+"
⌉= 2l+1 is an odd number. So, the 

induced subgraph G[S] has an odd component H with at least three vertices. We proceed 
to prove the following facts. 
(i) Any component of G [S] has at most three vertices. 
Assume to the contrary that G1 is a component of G[S] and G1 has at least 4 vertices. 
Without loss of generality assume that G1 has 4 vertices. Then S dominates at most 

6k+10+(4k+6)(
|:|!"!#

)
) + 5< + 8 =(4k+6)l-k vertices of G, a contradiction. 

(ii)  H is the only odd component of G[S]. 
Assume to the contrary that H′≠H is a component of G[S] with |V(H′)| odd. It follows 
from fact (i) that |V(H′)|=3. Since |S| is odd, there is another component  H″ with three 

vertices. Now S dominates at most (4k+6) (
|:|!"!"!"

)
) + 3(5< + 8) = (4< + 6)A − < 

vertices of G, a contradiction. 
For n ≡ k+3,k+4,k+5, …, 2k+3 (mod 4k+6) and we have V(H)={vf, vq, vp } and S 

dominates (4k+6)(
|:|!"

)
) + 5< + 8 =(4k+6)l+k+2 vertices of G, a contradiction.  

For n ≡ 3, 4, 5, …, k+2 (mod 4k+6). We have n=(4k+6) l+j , where l is a positive 

integer, j∈{3,4,5, …, k+2}. It follows from facts that G[S] has l= (
|:|!"

)
) + 1 components 

G1, G2, …,Gl  where |V(Gi)|=2 for i= 2, 3, 4, …, l and |V(G1)|=3. Any two adjacent vertices 
of S dominates at most 4k+6 consecutive vertices of V(G). 
V(G) can be partitioned into l subset I1={v0, v1, v2, …, v4k+5}, I 2={v4k+6, v4k+7, v4k+8, …, 
v8k+11}, I 3={v8k+12, v8k+13, …,v12k+17}, …, I l-1={v(4k+6)(l-2), v(4k+6)(l-2)+1, …, v(4k+6)(l-1)-1}, 
I l={v(4k+6)(l-1)+1, v(4k+6)(l-1)+2, …,vn-1}. 
Note that, | Ii|=4k+6 for i= 1, 2, 3, …, l-1 and 4k+9≤ |I l|≤ 5k+8. 
             Without loss of generality we may assume that I1 is dominated by{v2k+2, v2k+3}of 
S and I2 is dominated by{v6k+8,v6k+9}, then each of I i is by two adjacent vertices of S. 
Then, vertices I l (4k+9≤ |I l|≤ 5k+8) is dominated by three consecutive vertices of S. In 

γt(Cir(n , B)) = 
 

⌈
&

)*+"
⌉+1, n ≡3,4,5,6, …, 2k+3 (mod 4k+6) 

 
⌈

&

)*+"
⌉ otherwise 
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each possibility there exists at least one vertex in Il which is not dominated by this three 
vertices, a contradiction. This completes the claim. 
Now it is sufficient to define a total dominating set S of required cardinality. 
We consider the following case: 

1. For n ≡ 0 (mod 4k+6), S = {v(4k+6)m+2k+2, v(4k+6)m+2k+3: 0 ≤ m<[
&

#*+>
] }. 

2. For n ≡1,2 (mod 4k+6), S = {v(4k+6)m+2k+2, v(4k+6)m+2k+3: 0 ≤ m<[
&

#*+>
] }∪ {vn-3}. 

3. For n ≡3,4,5,…, 4k+5 (mod 4k+6), S={v(4k+6)m+2k+1, v(4k+6)m+2k+2: 0 ≤ m<[
&

#*+>
] }∪ {vn-

(2k+2),vn-(2k+1)}.■ 
 
Lemma  2.3. Let S be a subset of vertices of G=Cir(n,B) with k=2 and G[S] has no 
isolated vertices. If |S| is even, then S dominates at most 7|S| vertices of G. 
Proof: Let S be subset of vertices of G with |S|= t, where t is even. Any two adjacent 

vertices of S dominate 14 vertices of G including them selves. S dominates at most 14(
|:|

)
) 

= 7|S| vertices of G.■ 
 
Lemma  2.4. Let S be a subset of vertices of G=Cir(n ,B), k = 2 and G[S] has no isolated 
vertices. If |S| is odd, then S dominates at most 7|S|-2 vertices of G.  
Proof: Let S be subset of vertices of G with |S|= t, where t is odd. Without loss of 

generality we may assume that G[S] has d = (
|:|!"

)
) + 1 components G1, G2, …,Gd, where 

|V(G1)|=3 and |V(Gi)|=2 for i= 2, 3, 4, …, d. let V(G1)={x, y, z}, then {x, y, z} dominates 

at most 19 vertices of G. S dominates at most 14(
|:|!"

)
) + 19 = 7(|S|-3)+19 = 7|S|-2 

vertices of G.■ 
 
Theorem  2.5. For any integer n ≥ 17 and k = 2, 
 
 
 
 
 
Proof: Let S be a γt-set of G = Cir(n ,B). It follows from Lemma 2.3 and Lemma 2.4 that 
|S|≥⌈

&

E
⌉. 

       We claim that if n ≡ 3,4,5,6,7 (mod 14) and S is a total dominating for G, then |S| ≥ 
⌈

&

E
⌉+1. 

       To see this, assume to the contrary that |S|=⌈
&

E
⌉. We have n=14l+j , where l is a 

positive integer, j∈{3,4,5, 6,7}.  Then |S|=⌈
G#0+1

E
⌉= 2l+1 is an odd number. So, the 

induced subgraph G[S] has a component H with at least three vertices. We proceed to 
prove following facts. 
 

i. Any component of G [S] has at most three vertices. 

γt(Cir(n , B)) = 
 

⌈
&

E
⌉+1 n ≡ 3,4,5,6,7 (mod 14) 

 
⌈

&

E
⌉ otherwise 
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Assume to the contrary that G1 is a component of G[S] and G1 has at least 4verticies. 
Without loss of generality assume that G1 has 4 verticies. Then S 

dominates at most 19+(14)(
|:|!"!#

)
) + 24=14l+1 verticies of G, a contradiction. 

 
ii. H is the only odd component of G[S]. 

Assume to the contrary that H′≠H is a component of G[S] with |V(H′)| odd. It follows 
from fact i that |V(H′)|=3. Since |S| is odd, there is another component H″ with three 
vertices. Now S dominates at most  

14(
|:|!"!"!"

)
) + 3(19) = 14A + 1 verticies of J, a contradiction. 

For n ≡ 6,7 (mod 14) and we have V(H)={vf, vq, vp } and S dominates 14(
|:|!"

)
) +

19 =14l+5 vertices of G, a contradiction.  
For n ≡ 3, 4, 5 (mod 14). We have n=14l+j , where l is a positive integer, j∈ {3,4,5}. It 

follows from facts that G[S] has l= (
|:|!"

)
) + 1 components  

G1, G2, …,Gl where |V(Gi)|=2 for i= 2, 3, 4, …, l and |V(G1)|=3. Any two adjacent of S at 
most 14 consecutive vertices of V(G). 
V(G) can be partition into l subsets I1={v1, v2,…,v14}, I 2={v15,v16,…,  v28}, I 3={v29, v30, 
…,v42}, …, I l-1={v(14)(l-2)+1,v(14)(l-2)+2, …,v(14)(l-1)}, I l={v(14)(l-1)+1, v(14)(l-1)+2, …, vn}. 
Note that, |I i|= 14 for i= 1, 2, 3, …, l-1 and 17 ≤ |I l| ≤ 19.  
        Without loss of generality we may assume that I1 is dominated by {v7, v8} of S and I2 

is dominated by{v21,v22}, then each of I i is by two adjacent vertices of S. Vertices I i (17≤ 
|I i|≤ 19) is dominated by three consecutive vertices. In each possibility there exists at least 
one vertex in Il which is not dominated by this three vertices, a contradiction. 
This completes the claim. 
       Now it is sufficient to define a total dominating set S of required cardinality. 
We consider the following case: 

1. For n ≡ 0 (mod 14), S = {v(14)m+7, v(14)m+8: 0 ≤ m<⌈
&

G#
⌉ }. 

2. For n ≡1,2 (mod 14), S = {v(14)m+7, v(14)m+8: 0 ≤ m<[
&

G#
] } ∪{vn-2}. 

3. For n ≡3,4,5,…,13 (mod 14), S = {v(14)m+7, v(14)m+8: 0 ≤ m<[
&

G#
] }∪{vn-6, vn-5}.■ 

 
Note 1. For any two adjacent vertices va and vb of G = Cir(n,B), k=1 and n ≥ 13. We have 
the following: 
i. If |va- vb| =1, then va and vb dominate 10 verticies of G including themselves. 
ii. If |va- vb| =2, then va and vb dominate 9 verticies of G including themselves. 
iii. If |va- vb| =4, then va and vb dominate11verticies of G including themselves. 
Therefore, any two adjacent vertices of G dominate at most 11 vertices of G including 
themselves. 
 
Note 2. Let G1 be a component of γt-set such that G1 has three vertices va, vb, vc, we have 
the following: 

i. If |va- vb|=|vb- vc|=1 then G1 dominates11verticies of G including themselves. 
ii. If |va- vb|=|vb- vc|=2 then G1 dominates11 vertices of G including themselves. 
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iii. If |va- vb|=1, |vb- vc|=2 then G1 dominates14 vertices of G including 
themselves. 

iv.  If |va- vb|=4, |vb- vc| =2 then G1 dominates13 vertices of G including themselves. 
v. If |va- vb|=|vb- vc|=4 then G1 dominates 15 verticies of G including themselves. 
Therefore, any three vertices of G belong to a component dominate at most 15 vertices of 
G including themselves. 
 
Lemma  2.5. Let S be a subset of vertices of G=Cir(n,B) with k = 1 and G[S] has no 

isolated vertices. If |S |is even, then S dominates at most 11(
|:|

)
) vertices of G.  

Proof: Let S be a subset of vertices of G with |S|= t, where t is even. Any two adjacent 
vertices of S dominate 11 vertices of G including themselves. So S dominates at most 

11(
|:|

)
) vertices of G.■ 

 
Lemma  2.6. Let S be a subset of vertices of G=Cir(n , B), k = 1 and G[S] has no isolated 

vertices. If |S| is odd, then S dominates at most (
|:|!"

)
)11 +15 vertices of G.  

Proof: Let S be a subset of vertices of G with |S|= t, where t is odd. Without loss of 

generality we may assume that G[S] has d = (
|:|!"

)
) + 1 components G1, G2, …,Gd, where 

|V(G1)|=3 and |V(Gi)| = 2 for i= 2, 3, 4, …, d. Let V(G1)={x, y, z}, then {x, y, z} 

dominates at most 15 vertices of G. So S dominates at most (
|:|!"

)
)11 +15 vertices of G.■ 

 
Theorem  2.6. For any integer n ≥ 13 and k = 1, 
 
 
 
 
Proof: Let S be a γt-set of G = Cir(n,B). It follows from Lemma 2.5 and Lemma 2.6 that 

|S| ≥ ⌈
)&

GG
⌉. In the next we prove two claims as following. 

    

ClaimClaimClaimClaim    1111....    If n ≡3,5 (mod 11) and S is a total dominating set for G, then |S|≥⌈
)&

GG
⌉+1. 

Let n ≡3,5 (mod 11) and let S be a total dominating set for G. Assume to the contrary 

that |S|=⌈
)&

GG
⌉. We have n=11l+j  , where l is a positive integer, j∈{3,5}. Then |S|=⌈

))0+)1

GG
⌉= 

2l+1 is an odd number. So, the induced subgraph G[S] has an odd component H with at 
least three vertices. We proceed to following facts. 
 
(i) Any component of G[S] has at most three vertices. 
Assume to the contrary that G1 is a component of G[S] and G1 has at least 4 vertices. 
Without loss of generality assume that G1 has 4 vertices. Then S dominates at most 

15+(11)(
|:|!"!#

)
) + 20=11l+2 vertices of G, a contradiction. 

(ii) H is the only odd component of G[S]. 

γt(Cir(n , B)) = 
 

⌈
)&

GG
⌉+1n ≡3, 5,10 (mod 11) 

 ⌈
)&

GG
⌉ otherwise 
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Assume to the contrary that H′≠H is a component of G[S] with |V(H′)| odd. Then 
|V(H′)|=3. Since |S| is odd, there is another component H″ with three vertices. Now S 

dominates at most 11(
|:|!"!"!"

)
) + 3(15) = 11A + 1 verticies of J, a contradiction. 

For n≡5 (mod 11) and we have V(H)={vf, vq, vp} and S dominates11(
|:|!"

)
) + 15 = 11l+4 

vertices of G, a contradiction.  
When n ≡ 3 (mod 11). We have n=11l+3, where l is a positive integer. 
According to note 1, {v5,v9} dominate 11 vertices. N({v5, v9})={ v1,v2,…, v13}-{ v2, v12} and 
v12 is dominated by v16, N({v16, v20})={ v12,v13,…, v24}-{ v13, v23} and v23 is dominated by 
v27, N({ v27, v31})={ v23,v24,…, v35}-{ v24, v34}, we continue this process and N({v(l-2)11+5, v(l-

2)11+9})={ v11l-21+1,v11l-20,…, v11l-9}-{ v11l-20,v11l-10}, So {v11l-8,v11l-7,v11l-6,…,vn-1,vn} ∪{v2, v11l-

10}is dominated by three vertices. In each possibility there exits at least one vertex in  
Last subset which is not dominated by this 3 vertices, a contradiction. 
This completes the Claim 1. 
 

Claim 2. If n ≡ 10 (mod 11) and let S be a total dominating set for G, then |S| ≥⌈
)&

GG
⌉+1. 

Assume to the contrary that |S|=⌈
)&

GG
⌉. We have n=11l+10 where l is a positive integer. 

Then |S|=⌈
))0+)O

GG
⌉=2l+2 is an even number. We have any  

component of G has at least two vertices. Now we are proving any component of G has 
exactly two vertices. 
       Assume to the contrary that G1 is a component of G and it has at least 3 vertices. 
Let G1 has 3 vertices. So |S| is an even number, there exist G1′≠G1 is a component of G[S] 
with |V(G1′)| is odd, then at least |V(G1′)| is 3. If |V(G1′)|=3, then S dominates at most  

11(
|:|!"!"

)
) + 2(15) = 11A + 8 vertices of J, a contradiction. 

So the induced subgraph G[S] has components with two vertices. It follows from Note 1 
and process of case 2, S={v5, v9, v16, v20, v27, v31, …, v(l-1)11+5, v(l-1)l+9, v11l+5, vn-1}. We have 
N({v5, v9})={ v1,v2,…, v13}-{ v2, v12},N({ v16, v20})={ v12,v13,…, v24}-{ v13, v23} , N({v27, 
v31})={ v23,…, v35}-{ v24, v34}, …,N({ v(l-1)11+5, v(l-1)11+9})={ v(l-1)11+1,…, v11l-17}-{ v(l-2)11+2,v11l-

16}, N({ v11l+5,v11l+9})={ v11l+1,…, v3}-{ v11l+2,v2} and v2 is not dominated by S, a 
contradiction. 
This completes the Claim 2. 
 
Now it is sufficient to define a total dominating set S of required cardinality. We consider 
the following case: 

1. For n ≡ 0 (mod 11), S = {v(11)m+5, v(11)m+9: 0 ≤ m<[
&

GG
] }. 

2. For n ≡1,2,4 (mod 11), S = {v(11)m+5, v(11)m+9: 0 ≤ m<[
&

GG
] }∪{ vn-2}. 

3. For n ≡3,5,6,7,8 (mod 11), S = {v(11)m+5, v(11)m+9: 0 ≤ m<[
&

GG
] }∪{vn-2,vn-3}. 

4. For n ≡9 (mod 11), S = {v(11)m+5, v(11)m+9: 0 ≤ m<[
&

GG
] }∪{ vn-2,vn-4}. 

5. For n ≡10 (mod 11), S = {v(11)m+5, v(11)m+9: 0 ≤ m<[
&

GG
] }∪{ vn-2,vn-3,vn-5}.■ 
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Theorem  2.7. For n ≥ 7, Cir(n , A) is γ-critical if and only if n ≡ 4 (mod 2k+3). 
Proof. First we show that if n ≡ 4 (mod 2k+3) that G is γ-critical. Let x be a vertex of G 
= Cir((2k+3)l+4 , A), for some positive integer l. Since G is transitive, we assume that x 
= vn-2. It is easy to see that S = {v(2k+3)i: 0≤ i≤ ⌈

&

)*+"
⌉} is a dominating set for G – x. It 

follows that γ(G - x) ≤ ⌈
&

)*+"
⌉ < ⌈

&

)*+"
⌉+1 = γ(G). Hence, G is γ-critical. 

Suppose now that n ≡ 4 (mod 2k+3), we show that G is not γ-critical. Let T be a subset of 
vertices with | T | <γ(G). Without loss of generality we let | T | = γ(G)-1. We show that 
any | T | vertices of G dominate at most n - 2 vertices of G.  
 
We consider the following cases:  

1. For n ≡ 4,6,8, …, 2k+2 (mod 2k+3), by Theorem 2.1 γ(G) = ⌈
&

)*+"
⌉. 

If n ≡ 0 (mod 2k+3), then n = (2k+3)l for some intrger l. It follows that γ(G) = l. Now T 
dominates at most(2k+3)(l-1) ≤ n -2 vertices of G. Similarly, for n≡2,3,5,7,9,11, 
…,2k+1(mod 2k+3), T dominates at most (2k+3)(l-1) ≤ n -2 vertices of G.  
We assume that n ≡ 1 (mod 2k+3). There is an integer l such that 

n =(2k+3)l+1 , | T | = ⌈
&

)*+"
⌉ - 1 = l.  

        If there are two consecutive vertices x, y in T such that | x – y| <2k+3, then NG(x)⋂ 
NG(y) ≠ ∅. Hence, {x, y} dominates at most 4k+5 vertices of G and T \{x,y} dominates at 
most (2k+3)(l -2) vertices of G. So, T dominates at most n -2 vertices of G.  
        It remains to assume that for any two consecutive vertices a,b in T, | a –b | ≥2k+3. In 
this case, there are two consecutive vertices x,y in T such that  | x – y|>2k+3. Then there 
exit two vertices  u,v lie between x and y in G, and T does not dominate {u,v}. So, T 
dominates at most n -2 vertices of G, which is a contradiction. 
 
2222....    For n ≡ 2t (mod 2k+3), t is an integer with 3 ≤ t ≤ k+1 by Theorem 2.1, γ(G) = 
⌈

&

)*+"
⌉+1. There are two consecutive vertices vl, vl′∈S such that |l – l′ | <2k+3. Let vl″ ≠vl 

be a consecutive vertex of vl′. Without loss of generality we assume that | vl″– vl | = 
2k+3+2t. Then there are 2k+2+2t possibilities for vl′ to lies between vl and vl″. In each 
possibly there exists at least two vertex between vl and vl″ which is not dominated by 
{ vl,vl′, vl″}.  
       So, T dominates at most n -2 vertices of G, which is a contradiction.■ 
 
Theorem  2.8. For n ≥ 9, Cir(n, B) is γ-critical if and only if n ≡ 6 (mod 2k+5). 
Proof: First we show that if n ≡ 6 (mod 2k+5) that G is γ-critical. Let x be a vertex of G 
= Cir((2k+5)l+6 , A)for some positive integer l. Since G is transitive, we assume that x = 
vn-3. It is easy to see that S = {v(2k+5)i: 0≤ i≤ ⌈

&

)*+'
⌉} is a dominating set for G – x. It 

follows that γ(G - x) ≤ ⌈
&

)*+'
⌉ <⌈

&

)*+'
⌉+1 = γ(G). Hence, G is γ-critical. 

      Suppose now, that n ≡ 6 (mod 2k+5). We show that G is not γ-critical. Let T be a 
subset of vertices with | T | <γ(G). Without loss of generality we let |T | = γ(G)-1. We 
show that any | T | vertices of G dominate at most n - 2 vertices of G.  
       We consider the following cases: 

1. For n ≡ 8, …, 2k+2, 2k+4 (mod 2k+5), by Theorem 2.2, γ(G) = ⌈
&

)*+'
⌉.  
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If n ≡ 0 (mod 2k+5), then n = (2k+5)l for some integer l. It follows that γ(G) = l. Now, T 
dominates at most (2k+5)(i-1) ≤ n -2 vertices of G. Similarly for n ≡2,3,4,5,7,9,11, 
…,2k+3 (mod 2k+5), T dominates at most (2k+5)(i-1) ≤ n -2 vertices of G. We assume 
that n ≡ 1 (mod 2k+5). There is an integer l such that n = (2k+5)l+1. Without loss of 
generality we let  | T | = ⌈

&

)*+'
⌉-1 = l.  

If there are two consecutive vertices x, y in T such that| x – y| <2k+5, then NG(x)⋂ NG(y) 
≠ ∅. Hence, {x,y} dominates at most4k+9 vertices of G and T \{x,y} dominates at most 
(2k+5)(l -2) vertices of G. So, T dominates at most n -2 vertices of G. 
It remains to assume that for any two consecutive vertices a,b in T, | a –b | ≥ 2k+5. In this 
case there are two consecutive vertices x,y in T such that | x – y|>2k+5. Then there exit 
two vertices  u, v lie between x and y in C, and T does not dominate {u,v}. So, T 
dominates at most n -2 vertices of G, which is a contradiction. 
 
2222.... For n ≡ 2t (mod 2k+5), t is an integer with 4 ≤ t ≤ k+2, by Theorem 2.2, γ(G) = 
⌈

&

)*+'
⌉+1. There are two consecutive vertices vl, vl′∈S such that |l – l′ | <2k+5. Let vl″ ≠vl 

be a consecutive vertex of vl′. Without loss of generality we assume that |vl″– vl | = 
2k+5+2t. Then there are 2k+4+2t possibilities for vl′ to lies between vl and vl″. In each 
possibly there exists at least two vertex between vl and vl″ which is not dominated by 
{ vl,vl′, vl″}.   
       So, T dominates at most n -2 vertices of G, which is a contradiction. ■ 
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