International Journal of
Fuzzy Mathematical Archive

Vertex Domination Critical in Circulant Graphs

A.A.Talebi ${ }^{l}$, M.Zameni ${ }^{2}$ and Hossein Rashmanlou ${ }^{3}$
${ }^{1,2}$ Department of Mathematics, University of Mazandaran, Babolsar, Iran
${ }^{3}$ Sama Technical and Vocational Training College, Islamic Azad University
Sari Branch, Sari, Iran
Email: ${ }^{1}$ a.talebi@umz.ac.ir, ${ }^{2}$ mahsa.zameni@yahoo.com
${ }^{3}$ Corresponding author. rashmanlou.1987@gmail.com

Received 10 March 2017; accepted 15 June 2017

Abstract

A graph G is vertex domination critical if for any vertex v of G , the domination number of $\mathrm{G}-\mathrm{v}$ is less than the domination number of G . We call these graphs γ-critical if domination number of G is γ. In this paper, we determine the domination and the total domination number of $\operatorname{Cir}(\mathrm{n}, \mathrm{A})$ for two particular generating sets A of Z_{n}, and then study γ-critical in these graphs.

Keywords: Domination, total domination, circulant graph.

AMS Mathematics Subject Classification (2010): 05C72

1. Introduction

A vertex in a graph G dominates itself and its neighbors. A set of vertices S in a graph G is a dominating set, if each vertex of G is dominated by some vertex of S . The domination number $\gamma(\mathrm{G})$ of G is the minimum cardinality of a dominating set of G . A dominating set S is called a total dominating set if each vertex v of G is dominated by some vertex $u \neq v$ of S. The total domination number of G, denoted by $\gamma_{\mathrm{t}}(\mathrm{G})$, is the minimum cardinality of a total dominating set of G .

We denote the open neighborhood of a vertex v of G by $\mathrm{N}_{\mathrm{G}}(\mathrm{v})$, or just $\mathrm{N}(\mathrm{v})$, and its closed neighborhood by $N[v]$. For a vertex set $S \subseteq V(G), N(S)=U_{v \in S} N(v)$ and $N[S]=$ $U_{v \in S} N[v]$. So, a set of vertices S in G is a dominating set, if $N[S]=V(G)$. Also, S is a total dominating set, if $\mathrm{N}(\mathrm{S})=\mathrm{V}(\mathrm{G})$. For notation and graph theory terminology in general we follow [3]. Rashmanlou and Pal et al. [5-17] studied different kinds of fuzzy graphs. We call a dominating set of cardinality $\gamma(\mathrm{G})$, a $\gamma(\mathrm{G})-$ set and a total dominating set of cardinality $\gamma_{\mathrm{t}}(\mathrm{G})$, a $\gamma_{\mathrm{t}}(\mathrm{G})$ - set. A graph G is called vertex domination critical if $\gamma(\mathrm{G}$ - v) $<\gamma(\mathrm{G})$, for every vertex v in G . For references on the vertex domination critical graphs see [1,2,3].

Jafari Rad [4], determines the domination number and the total domination number of graph $\operatorname{Cir}(n,\{1,3\})$, for any integer n, and then study $\gamma-$ criticality in $\operatorname{Cir}(n,\{1,3\})$.

Let $n \geq 7$ be a positive integer. The circulant $\operatorname{graph} \operatorname{Cir}(n, A)$ where $A=\{1, n-1,3$, $n-3,5, n-5, \ldots, 2 k-1, n-(2 k-1), 2 k+1, n-(2 k+1)\}$ is the graph with vertex $\operatorname{set}\left\{v_{0}\right.$,
$\left.v_{l}, \ldots, v_{n-1}\right\}$, and edge $\operatorname{set}\left\{\left\{v_{i}, v_{i+j}\right\}: i \in\{0,1, \ldots, n-1\}, j \in\{1, n-1,3, n-3, \ldots, 2 k+1\right.$, $n-(2 k+1)\}\}, k$ is an integer such that $0 \leq k<\left[\frac{n-3}{4}\right]$.

Let $n \geq 9$ be a positive integer. The circulant $\operatorname{graph} \operatorname{Cir}(n, B)$ where $B=\{1, n-1,2$, $n-2,4, n-4, \ldots, 2 k, n-2 k, 2 k+2, n-(2 k+2)\}$ is the graph with vertex $\operatorname{set}\left\{v_{0}, v_{l}, \ldots\right.$, $\left.v_{n-1}\right\}$, and edge $\operatorname{set}\left\{\left\{v_{i}, v_{i+j}\right\}: i \in\{0,1, \ldots, n-1\}, j \in\{1, n-1,2, n-2, \ldots, 2 k+2, n-\right.$ $(2 k+2)\}\}, k$ is an integer such that $0 \leq k<\left[\frac{n-5}{4}\right]$.
All arithmetic on the indices is assumed to be modulo n.
In this paper, we first determine the domination number and the total domination number in the circulant graphs $\operatorname{Cir}(n, A)$ and $\operatorname{Cir}(n, B)$ for any integer n, and then study γ - criticality and $\gamma_{t}(\mathrm{G})$ - criticality in these class of graphs.

For two vertices x and y in a graph G we denote the distance between x and y by $d_{G}(x, y)$, or just $d(x, y)$.

2. Domination and total domination

Let G be a circulant graph with n vertices. Let cycle $C=C(G)$ be the subgraph of G with vertex $\operatorname{set}\left\{v_{0}, v_{l}, \ldots, v_{n-1}\right\}$ and edge set $\left\{\left\{v_{i}, v_{i+1}\right\}: i \in\{0,1, \ldots, n-1\}\right\}$. For a subset $S \subseteq V(G)$ with at least three vertices, we say that $x, y \in S$ are consecutive if there is no vertex $z \in S$ such that z lies between x and y in C. For two consecutive vertices x, y in a subset of vertices S, we define $|x-y|=d_{C}(x, y)$. So, $|x-y|$ equals to the number of edges in a shortest path between x and y in the cycle C.

Theorem 2.1. For any integer $n \geq 7$,

$$
\gamma(\operatorname{Cir}(n, A))=\left\{\begin{array}{l}
\left\lceil\frac{n}{2 k+3}\right\rceil+1 n \equiv 4,6,8, \ldots, 2 k+2(\bmod 2 k+3) \\
\left\lceil\frac{n}{2 k+3}\right\rceil \text { otherwise }
\end{array}\right.
$$

Proof: Let S be a $\gamma(G)$-set of $G=\operatorname{Cir}(n, A)$. Any vertex of G dominates $2 k+3$ vertices of G including itself, so $|S| \geq\left\lceil\frac{n}{2 k+3}\right\rceil$.

We claim that if $n \equiv 2 t(\bmod 2 k+3)$, for an integer t such that $2 \leq t \leq k+1$, then $|S| \geq$ $\left\lceil\frac{n}{2 k+3}\right\rceil+1$.

To see this, assume to the contrary that $n \equiv 2 t(\bmod 2 k+3)$, and $|S|=\left\lceil\frac{n}{2 k+3}\right\rceil$. There are two consecutive vertices $v_{l}, v_{l}{ }^{\prime} \in S$ such that $\left|l-l^{\prime}\right|<2 k+3$. Let $v_{l}{ }^{\prime \prime} \neq v_{l}$ be a consecutive vertex of $v_{l}{ }^{\prime}$. Without loss of generality assume that $\left|v_{l}{ }^{\prime \prime}-v_{l}\right|=2 k+3+2 t$. Then there are $2 k+2+2 t$ possibilities for $v_{l}{ }^{\prime}$ to lies between v_{l} and $v_{l}{ }^{\prime \prime}$. In each possibly there exists a vertex between v_{l} and $v_{l}{ }^{\prime \prime}$ which is not dominated by $\left\{v_{l}, v_{l}{ }^{\prime}, v_{l}{ }^{\prime \prime}\right\}$, a contradiction. Hence, for $n \equiv 2 t(\bmod 2 k+3),|S| \geq\left\lceil\frac{n}{2 k+3}\right\rceil+1$.

Now it is sufficient to get a dominating set S of required cardinality. We consider the following cases:

1. For $n \equiv 4(\bmod 2 k+3), S=\left\{v_{(2 k+3) i}: 0 \leq i<\left\lceil\frac{n}{2 k+3}\right\rceil\right\} \cup\left\{v_{n-2}\right\}$.

Vertex Domination Critical in Circulant Graphs

2. For $n \equiv 6,8,10,12,14, \ldots, 2 k+2(\bmod 2 k+3), S=\left\{v_{(2 k+3) i}: 0 \leq i<\left\lceil\frac{n}{2 k+3}\right\rceil\right\} \cup\left\{v_{n-1}\right\}$.
3. For $n \equiv 4,6,8,10, \ldots, 2 k+2(\bmod 2 k+3), S=\left\{v_{(2 k+3) i}: 0 \leq i<\left\lceil\frac{n}{2 k+3}\right\rceil\right\}$.

In each of the above cases, S is a dominating set for $\operatorname{Cir}(n, A)$ of cardinality $\left\lceil\frac{n}{2 k+3}\right\rceil+1$ when $n \equiv 4,6,8, \ldots, 2 k+2(\bmod 2 k+3)$, and of cardinality $\left\lceil\frac{n}{2 k+3}\right\rceil$ when $n \equiv 4,6,8,10, \ldots$, $2 k+2(\bmod 2 k+3)$. Hence, the result follows.

Theorem 2.2. For any integer $n \geq 9$,

$$
\gamma(\operatorname{Cir}(n, B))=\left\{\begin{array}{l}
\left\lceil\frac{n}{2 k+5}\right\rceil+1, n \equiv 6,8,10, \ldots, 2 \mathrm{k}+4(\bmod 2 k+5) \\
\left\lceil\frac{n}{2 k+5}\right\rceil \text { otherwise }
\end{array}\right.
$$

Proof: Let S be a $\gamma(G)$-set of $G=\operatorname{Cir}(n, B)$. Any vertex of G dominates $2 k+5$ vertices of G including itself, so $|S| \geq\left\lceil\frac{n}{2 k+5}\right\rceil$.

We claim that if $n \equiv 2 t(\bmod 2 k+5), t$ is an integer such that $3 \leq t \leq k+1$, then $|S| \geq$ $\left\lceil\frac{n}{2 k+5}\right\rceil+1$. To see this, assume to the contrary that $n \equiv 2 t(\bmod 2 k+5)$, and $|S|=\left\lceil\frac{n}{2 k+5}\right\rceil$. There are two consecutive vertices $v_{l}, v_{l}^{\prime} \in S$ such that $\left|l-l^{\prime}\right|<2 k+5$. Let $v_{l}^{\prime \prime} \neq v_{l}$ is a consecutive vertex of $v_{l}{ }^{\prime}$. Without loss of generality we assume that $\left|v_{l}{ }^{\prime \prime}-v_{l}\right|=2 k+5+2 t$. Then there are $2 k+4+2 t$ possibilities for $v_{l}{ }^{\prime}$ to lies between v_{l} and $v_{l}{ }^{\prime \prime}$. In each possibly there exists a vertex between v_{l} and $v_{l}{ }^{\prime \prime}$ which is not dominated by $\left\{v_{l}, v_{l}{ }^{\prime}, v_{l}{ }^{\prime \prime}\right\}$, a contradiction. Hence, for $n \equiv 2 t(\bmod 2 k+5),|S| \geq\left\lceil\frac{n}{2 k+5}\right\rceil+1$.

Now it is sufficient to get a dominating set S of required cardinality. We consider the following cases:

1. For $n \equiv 6,8,10,12,14, \ldots, 2 k+4(\bmod 2 k+5), S=\left\{v_{(2 k+5) i}: 0 \leq i<\left\lceil\frac{n}{2 k+5}\right\rceil\right\} \cup\left\{v_{n-3}\right\}$.
2. For $n \equiv 6,8,10, \ldots, 2 k+4(\bmod 2 k+5), S=\left\{v_{(2 k+5) i}: 0 \leq i<\left\lceil\frac{n}{2 k+5}\right\rceil\right\}$.

In each of the above cases S is a dominating set for $\operatorname{Cir}(n, B)$ of cardinality $\left\lceil\frac{n}{2 k+5}\right\rceil+1$ when $n \equiv 6,8, \ldots, 2 \mathrm{k}+4(\bmod 2 k+5)$, and of cardinality $\left\lceil\frac{n}{2 k+5}\right\rceil$ when $n \equiv 6,8,10, \ldots, 2 k+4$ $(\bmod 2 k+5)$.
Hence, the result follows.

Theorem 2.3. For any integer $n \geq 7$,

$$
\gamma_{\mathrm{t}}(\operatorname{Cir}(n, A))=\left\{\begin{array}{l}
\left\lceil\frac{2 n}{4 k+4}\right\rceil+1 \mathrm{n} \equiv 2,4,6, \ldots, 2 \mathrm{k}+2(\bmod 4 k+4) \\
\left\lceil\frac{2 n}{4 k+4}\right\rceil \text { otherwise }
\end{array}\right.
$$

Proof. Let S be a γ_{t}-set of $G=\operatorname{Cir}(n, A)$. Note that $|A|=2 k+2$ and G is $2 k+2$-regular. From the definition of the total domination number, it follows that $\left\lceil\frac{n}{2 k+2}\right\rceil \leq \gamma_{\mathrm{t}}(G), \gamma_{\mathrm{t}}(G)=$ $|S|$.

For $n \equiv 2 j(\bmod 4 k+4), j$ is an integer such that $0 \leq j<2 k+2$, we have
$\left\lceil\frac{n}{2 k+2}\right\rceil=\left\lceil\frac{2 n}{4 k+4}\right\rceil$, so $\left\lceil\frac{2 n}{4 k+4}\right\rceil \leq \gamma_{\mathrm{t}}(G)$.
For $n \equiv 2 j(\bmod 4 k+4), j$ is an integer such that $0 \leq j<2 k+1, n$ can be written as $n=(4 k+4) l+2 j=2((2 k+2) l+j)$, which l is integer and n is an even number. We partite $V(G)$ into two disjoint sets $I_{1}=\left\{v_{1}, v_{3}, v_{5}, v_{7}, \ldots, v_{n-3}, v_{n-1}\right\}$ and $I_{2}=\left\{v_{0}, v_{2}, v_{4}, v_{6}, \ldots, v_{n-4}\right.$, $\left.v_{n-2}\right\}$. Note that $\left|I_{l}\right|=\left|I_{2}\right|=(2 k+2) l+\mathrm{j}$. For any $x \in I_{1}, N(x) \subseteq I_{2}$, for any $y \in I_{2}, N(y) \subseteq I_{1}$. It follows that G is a balanced bipartite graph with bipartition sets I_{1} and I_{2}. We can write S $=S_{1} \cup S_{2}$, such that $S_{1} \subseteq I_{2}, S_{2} \subseteq I_{1}, I_{i}$ is dominated by $S_{i}, l \leq i \leq 2$ and $\left|\mathrm{S}_{1}\right|=\left|\mathrm{S}_{2}\right|$.

$$
\text { If } 0<j \leq k+1 \text {, then }\left|S_{1}\right|=\left|S_{2}\right| \geq\left|\frac{(2 k+2) l+j}{2 k+2}\right|=l+1 \text { and } \gamma_{t}(G)=|S|=\left|S_{l}\right|+\left|S_{2}\right| \geq
$$

$2\left\lceil\frac{(2 k+2) l+j}{2 k+2}\right\rceil=2 l+2$. On the other hand $2 l+2=\left\lceil\frac{(4 k+4)(2 l)+4 j}{4 k+4}\right\rceil+1$, and so
$\gamma_{\mathrm{t}}(G) \geq\left\lceil\frac{(4 k+4)(2 l)+4 j}{4 k+4}\right\rceil+1$.
If $k+2 \leq j \leq 2 k+1$, then $\left|S_{l}\right|=\left|S_{2}\right| \geq\left\lceil\frac{(2 k+2) l+j}{2 k+2}\right\rceil=l+1$ and $\gamma_{\mathrm{t}}(G)=|S|=\left|S_{l}\right|+\left|S_{2}\right| \geq$ $2\left\lceil\frac{(2 k+2) l+j}{2 k+2}\right\rceil=2 l+2$. On the other hand $2 l+2=\left\lceil\frac{(4 k+4)(2 l)+4 j}{4 k+4}\right\rceil$, and so $\gamma_{\mathrm{t}}(G) \geq\left\lceil\frac{(4 k+4)(2 l)+2 j}{2 k+2}\right\rceil$.

If $j=0$, then $\left|S_{l}\right|=\left|S_{2}\right| \geq\left\lceil\frac{(2 k+2) l}{2 k+2}\right\rceil=l$ and $\gamma_{\mathrm{t}}(G)=|S|=\left|S_{l}\right|+\left|S_{2}\right| \geq 2\left\lceil\frac{(2 k+2) l}{2 k+2}\right\rceil=2 l$. On the other hand $2 l=\left\lceil\frac{(4 k+4) 2 l}{4 k+4}\right\rceil$, and so $\gamma_{\mathrm{t}}(G) \geq\left\lceil\frac{(4 k+4) 2 l}{4 k+4}\right\rceil$.

Now it is sufficient to define a total dominating set S of required cardinality. We consider the following cases:

1. For $n \equiv 0(\bmod 4 k+4), S=\left\{v_{(4 k+4) i+2 k+1}, v_{(4 k+4) i+4 k+2}: 0 \leq i<\left[\frac{n}{4 k+4}\right]\right\}$.
2. For $n \equiv 1,3,5,7, \ldots, 2 k+1(\bmod 4 k+4), S=\left\{v_{(4 k+4) i+2 k+1}, v_{(4 k+4) i+4 k+2}: 0 \leq i<\left[\frac{n}{4 k+4}\right]\right\} \cup\left\{v_{0}\right\}$.
3. For the cases $n \equiv 2,4,6, \ldots, 2 k+2(\bmod 4 k+4)$ and $n \equiv 2 k+3,2 k+4,2 k+5,2 k+6, \ldots$, $4 k+2,4 k+3(\bmod 4 k+4), S=\left\{v_{(4 k+4) i+2 k+1, v(4 k+4) i+2 k+2:} 0 \leq I<\left[\frac{n}{4 k+4}\right]\right\} \cup\left\{v_{n-2 k}, v_{n-(2 k+1)}\right\}$.

In each of the above cases S is a total dominating set of $\operatorname{Cir}(n, A)$, cardinality of S is $\left\lceil\frac{n}{2 k+2}\right\rceil+1$ when $n \equiv 2,4, \ldots, 2 \mathrm{k}+2(\bmod 4 k+4)$, and cardinality of S is $\left\lceil\frac{n}{2 k+2}\right\rceil$ when $n \equiv 2$, $4,6, \ldots, 2 k+2(\bmod 4 k+4)$. Hence, the result follows.

Lemma 2.1. Let S be a subset of vertices of $G=\operatorname{Cir}(n, B)$ with $k \geq 3$ and $G[S]$ has no isolated vertices. If $|S|$ is even, then S dominates at most $(2 k+3)|S|$ vertices of G.
Proof: Let S be a subset of vertices of G with $|S|=t$, where t is even. Any two adjacent vertices of S dominate $4 k+6$ vertices of G including themselves. S dominates at most $(4 \mathrm{k}+6)\left(\frac{|S|}{2}\right)=(2 \mathrm{k}+3)|S|$ vertices of G.

Lemma 2.2. Let S be a subset of vertices of $G=\operatorname{Cir}(n, B)$ with $k \geq 3$ and $G[S]$ has no isolated vertices. If $|S|$ is odd, then S dominates at most $(2 k+3)|S|-(k+1)$ vertices of G.
Proof: Let S a be subset of vertices of G with $|S|=t$, where t is odd. Without loss of generality we may assume that $G[S]$ has $d=\left(\frac{|S|-3}{2}\right)+1$ components $G_{1}, G_{2}, \ldots, G_{\mathrm{d}}$ where $\left|\mathrm{V}\left(G_{1}\right)\right|=3$ and $\left|\mathrm{V}\left(G_{i}\right)\right|=2$ for $i=2,3,4, \ldots, d$. Let $\mathrm{V}\left(G_{1}\right)=\{x, y, z\}$, then $\{x, y, z\}$

Vertex Domination Critical in Circulant Graphs

dominates at most $5 k+8$ vertices of G. S dominates at most $(4 \mathrm{k}+6)\left(\frac{|S|-3}{2}\right)+5 k+8=$ $(2 \mathrm{k}+3) \mathrm{t}-(k+1)$ vertices of G.

Theorem 2.4. For any integer $n \geq 21$ and $k \geq 3$,

$$
\gamma_{\mathrm{t}}(\operatorname{Cir}(n, B))=\left\{\begin{array}{l}
\left\lceil\frac{n}{2 k+3}\right\rceil+1, n \equiv 3,4,5,6, \ldots, 2 \mathrm{k}+3(\bmod 4 k+6) \\
\left\lceil\frac{n}{2 k+3}\right\rceil \text { otherwise }
\end{array}\right.
$$

Proof: Let S be a γ_{t}-set of $G=\operatorname{Cir}(n, B)$. It follows from Lemma 2.1 and Lemma 2.2 that $|S| \geq\left\lceil\frac{n}{2 k+3}\right\rceil$.
We claim that if $n \equiv 3,4,5, \ldots, 2 \mathrm{k}+3(\bmod 4 k+\sigma)$ and S is a total dominating for G, then $|S| \geq\left\lceil\frac{n}{2 k+3}\right\rceil+1$.
To see this, assume to the contrary that $|S|=\left\lceil\frac{n}{2 k+3}\right\rceil$. We have $n=(4 k+6) l+j$, where l is a positive integer, $\mathrm{j} \in\{3,4,5, \ldots, 2 \mathrm{k}+3\}$ then $|\mathrm{S}|=\left[\frac{(4 k+6) l+j}{2 k+3}\right]=2 l+1$ is an odd number. So, the induced subgraph G[S] has an odd component H with at least three vertices. We proceed to prove the following facts.
(i) Any component of $G[S]$ has at most three vertices.

Assume to the contrary that G_{1} is a component of $\mathrm{G}[S]$ and G_{1} has at least 4 vertices. Without loss of generality assume that G_{1} has 4 vertices. Then S dominates at most $6 k+10+(4 k+\sigma)\left(\frac{|S|-3-4}{2}\right)+5 k+8=(4 k+\sigma) l-k$ vertices of G, a contradiction.
(ii) H is the only odd component of $\mathrm{G}[S]$.

Assume to the contrary that $H^{\prime} \neq H$ is a component of $\mathrm{G}[S]$ with $\left|V\left(H^{\prime}\right)\right|$ odd. It follows from fact (i) that $\left|V\left(H^{\prime}\right)\right|=3$. Since $|S|$ is odd, there is another component $H^{\prime \prime}$ with three vertices. Now S dominates at most $(4 k+\sigma)\left(\frac{|S|-3-3-3}{2}\right)+3(5 k+8)=(4 k+6) l-k$ vertices of G, a contradiction.

For $n \equiv \mathrm{k}+3, \mathrm{k}+4, \mathrm{k}+5, \ldots, 2 \mathrm{k}+3(\bmod 4 k+\sigma)$ and we have $V(H)=\left\{v_{f}, v_{q}, v_{p}\right\}$ and S dominates $(4 \mathrm{k}+6)\left(\frac{|S|-3}{2}\right)+5 k+8=(4 \mathrm{k}+6) l+k+2$ vertices of G, a contradiction.
For $n \equiv 3,4,5, \ldots, k+2(\bmod 4 k+6)$. We have $n=(4 k+6) l+j$, where l is a positive integer, $j \in\{3,4,5, \ldots, \mathrm{k}+2\}$. It follows from facts that $G[S]$ has $l=\left(\frac{|S|-3}{2}\right)+1$ components $G_{1}, G_{2}, \ldots, G_{l}$ where $\left|V\left(G_{i}\right)\right|=2$ for $i=2,3,4, \ldots, l$ and $\left|V\left(G_{1}\right)\right|=3$. Any two adjacent vertices of S dominates at most $4 \mathrm{k}+6$ consecutive vertices of $V(G)$.
$V(G)$ can be partitioned into l subset $\mathrm{I}_{l}=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{4 k+5}\right\}, \mathrm{I}_{2}=\left\{v_{4 k+6}, v_{4 k+7}, v_{4 k+8}, \ldots\right.$, $\left.v_{8 k+1 l}\right\}, \quad \mathrm{I}_{3}=\left\{v_{8 k+12}, \quad v_{8 k+13}, \ldots, v_{12 k+17}\right\}, \ldots, \quad \mathrm{I}_{l-1}=\left\{v_{(4 k+6)(l-2)}, v_{(4 k+6)(l-2)+1}, \ldots, v_{(4 k+6)(l-l)-1}\right\}$, $\mathrm{I}_{l}=\left\{v_{(4 k+6)(l-1)+1}, v_{(4 k+6)(l-1)+2}, \ldots, v_{n-1}\right\}$.
Note that, $\left|\mathrm{I}_{i}\right|=4 k+6$ for $i=1,2,3, \ldots, l-1$ and $4 \mathrm{k}+9 \leq\left|I_{l}\right| \leq 5 \mathrm{k}+8$.
Without loss of generality we may assume that I_{l} is dominated by $\left\{v_{2 \mathrm{k}+2}, v_{2 \mathrm{k}+3}\right\}$ of S and I_{2} is dominated by $\left\{v_{6 k+8}, v_{6 k+9}\right\}$, then each of I_{i} is by two adjacent vertices of S. Then, vertices $I_{l}\left(4 \mathrm{k}+9 \leq\left|I_{l}\right| \leq 5 \mathrm{k}+8\right)$ is dominated by three consecutive vertices of S. In

A.A.Talebi, M.Zameni and Hossein Rashmanlou

each possibility there exists at least one vertex in I_{l} which is not dominated by this three vertices, a contradiction. This completes the claim.
Now it is sufficient to define a total dominating set S of required cardinality.
We consider the following case:

1. For $n \equiv 0(\bmod 4 k+\sigma), S=\left\{v_{(4 k+6) m+2 k+2}, v_{(4 k+6) m+2 k+3}: 0 \leq m<\left[\frac{n}{4 k+6}\right]\right\}$.
2. For $n \equiv 1,2(\bmod 4 k+6), S=\left\{v_{(4 k+6) m+2 k+2}, v_{(4 k+6) m+2 k+3}: 0 \leq m<\left[\frac{n}{4 k+6}\right]\right\} \cup\left\{v_{n-3}\right\}$.
3. For $n \equiv 3,4,5, \ldots, 4 k+5(\bmod 4 k+\sigma), S=\left\{v_{(4 k+6) m+2 k+1}, v_{(4 k+6) m+2 k+2}: 0 \leq m<\left[\frac{n}{4 k+6}\right]\right\} \cup\left\{v_{n-}\right.$ $\left.{ }_{(2 k+2)}, v_{n-(2 k+1)}\right\}$.

Lemma 2.3. Let S be a subset of vertices of $G=\operatorname{Cir}(n, B)$ with $k=2$ and $G[S]$ has no isolated vertices. If $|S|$ is even, then S dominates at most $7|S|$ vertices of G.
Proof: Let S be subset of vertices of G with $|S|=t$, where t is even. Any two adjacent vertices of S dominate 14 vertices of G including them selves. S dominates at most $14\left(\frac{|S|}{2}\right)$ $=7|S|$ vertices of G.

Lemma 2.4. Let S be a subset of vertices of $G=\operatorname{Cir}(n, B), k=2$ and $G[S]$ has no isolated vertices. If $|S|$ is odd, then S dominates at most $7|S|-2$ vertices of G.
Proof: Let S be subset of vertices of G with $|S|=t$, where t is odd. Without loss of generality we may assume that $G[S]$ has $d=\left(\frac{|S|-3}{2}\right)+1$ components $G_{1}, G_{2}, \ldots, G_{\mathrm{d}}$, where $\left|\mathrm{V}\left(G_{1}\right)\right|=3$ and $\left|\mathrm{V}\left(G_{i}\right)\right|=2$ for $i=2,3,4, \ldots, d$. let $\mathrm{V}\left(G_{1}\right)=\{x, y, z\}$, then $\{x, y, z\}$ dominates at most 19 vertices of G. S dominates at most $14\left(\frac{|S|-3}{2}\right)+19=7(|S|-3)+19=7|S|-2$ vertices of G.

Theorem 2.5. For any integer $n \geq 17$ and $k=2$,

$$
\gamma_{\mathrm{t}}(\operatorname{Cir}(n, B))=\left\{\begin{array}{l}
\left\lceil\frac{n}{7}\right\rceil+1 n \equiv 3,4,5,6,7(\bmod 14) \\
\left\lceil\frac{n}{7}\right\rceil \text { otherwise }
\end{array}\right.
$$

Proof: Let S be a γ_{t}-set of $G=\operatorname{Cir}(n, B)$. It follows from Lemma 2.3 and Lemma 2.4 that $|S| \geq\left\lceil\frac{n}{7}\right\rceil$.

We claim that if $n \equiv 3,4,5,6,7(\bmod 14)$ and S is a total dominating for G, then $|\mathrm{S}| \geq$ $\left\lceil\frac{n}{7}\right\rceil+1$.

To see this, assume to the contrary that $|S|=\left\lceil\frac{n}{7}\right\rceil$. We have $n=14 l+j$, where l is a positive integer, $j \in\{3,4,5,6,7\}$. Then $|S|=\left\lceil\frac{14 l+j}{7}\right\rceil=2 l+1$ is an odd number. So, the induced subgraph G[S] has a component H with at least three vertices. We proceed to prove following facts.
i. Any component of $\mathrm{G}[S]$ has at most three vertices.

Vertex Domination Critical in Circulant Graphs

Assume to the contrary that G_{1} is a component of $\mathrm{G}[S]$ and G_{1} has at least 4verticies. Without loss of generality assume that G_{1} has 4 verticies. Then S dominates at most $19+(14)\left(\frac{|S|-3-4}{2}\right)+24=14 l+1$ verticies of G, a contradiction.
ii. $\quad H$ is the only odd component of G[S].

Assume to the contrary that $H^{\prime} \neq H$ is a component of $\mathrm{G}[S]$ with $\left|V\left(H^{\prime}\right)\right|$ odd. It follows from fact i that $\left|V\left(H^{\prime}\right)\right|=3$. Since $|S|$ is odd, there is another component $H^{\prime \prime}$ with three vertices. Now S dominates at most
$14\left(\frac{|S|-3-3-3}{2}\right)+3(19)=14 l+1$ verticies of G, a contradiction.
For $n \equiv 6,7(\bmod 14)$ and we have $V(H)=\left\{v_{f}, v_{q}, v_{p}\right\}$ and S dominates $14\left(\frac{|S|-3}{2}\right)+$ $19=14 l+5$ vertices of G, a contradiction.
For $n \equiv 3,4,5(\bmod 14)$. We have $n=14 l+j$, where l is a positive integer, $j \in\{3,4,5\}$. It follows from facts that $G[S]$ has $l=\left(\frac{|S|-3}{2}\right)+1$ components
$G_{1}, G_{2}, \ldots, G_{l}$ where $\left|V\left(G_{i}\right)\right|=2$ for $i=2,3,4, \ldots, l$ and $\left|V\left(G_{1}\right)\right|=3$. Any two adjacent of S at most 14 consecutive vertices of $V(G)$.
$V(G)$ can be partition into l subsets $\mathrm{I}_{l}=\left\{v_{l}, v_{2}, \ldots, v_{14}\right\}, \mathrm{I}_{2}=\left\{v_{15}, v_{16}, \ldots, v_{28}\right\}, \mathrm{I}_{3}=\left\{v_{29}, v_{30}\right.$, $\left.\ldots, v_{42}\right\}, \ldots, \mathrm{I}_{l-1}=\left\{v_{(14)(l-2)+1}, v_{(14)(l-2)+2}, \ldots, v_{(14)(l-1)}\right\}, \mathrm{I}_{l}=\left\{v_{(14)(l-1)+1}, v_{(14)(l-l)+2}, \ldots, v_{n}\right\}$.
Note that, $\left|I_{i}\right|=14$ for $i=1,2,3, \ldots, l-1$ and $17 \leq\left|I_{l}\right| \leq 19$.
Without loss of generality we may assume that I_{1} is dominated by $\left\{v_{7}, v_{8}\right\}$ of S and I_{2} is dominated by $\left\{v_{21}, v_{22}\right\}$, then each of I_{i} is by two adjacent vertices of S. Vertices $I_{i}(17 \leq$ $\left.\left|I_{i}\right| \leq 19\right)$ is dominated by three consecutive vertices. In each possibility there exists at least one vertex in I_{l} which is not dominated by this three vertices, a contradiction. This completes the claim.

Now it is sufficient to define a total dominating set S of required cardinality.
We consider the following case:

1. For $n \equiv 0(\bmod 14), S=\left\{v_{(14) m+7}, v_{(14) m+8}: 0 \leq m<\left\lceil\frac{n}{14}\right\rceil\right\}$.
2. For $n \equiv 1,2(\bmod 14), S=\left\{v_{(14) m+7}, v_{(14) m+8}: 0 \leq m<\left[\frac{n}{14}\right]\right\} \cup\left\{v_{n-2}\right\}$.
3. For $n \equiv 3,4,5, \ldots, 13(\bmod 14), S=\left\{v_{(14) m+7}, v_{(14) m+8}: 0 \leq m<\left[\frac{n}{14}\right]\right\} \cup\left\{v_{n-6}, v_{n-5}\right\}$.

Note 1. For any two adjacent vertices v_{a} and v_{b} of $G=\operatorname{Cir}(n, B), \mathrm{k}=1$ and $n \geq 13$. We have the following:
i. If $\left|v_{a}-v_{b}\right|=1$, then v_{a} and v_{b} dominate 10 verticies of G including themselves.
ii. If $\left|v_{a}-v_{b}\right|=2$, then v_{a} and v_{b} dominate 9 verticies of G including themselves.
iii. If $\left|v_{a}-v_{b}\right|=4$, then v_{a} and v_{b} dominate11verticies of G including themselves.

Therefore, any two adjacent vertices of G dominate at most 11 vertices of G including themselves.

Note 2. Let G_{1} be a component of γ_{t}-set such that G_{1} has three vertices v_{a}, v_{b}, v_{c}, we have the following:
i. If $\left|v_{a}-v_{b}\right|=\left|v_{b}-v_{c}\right|=1$ then G_{1} dominates11verticies of G including themselves.
ii. If $\left|v_{a}-v_{b}\right|=\left|v_{b}-v_{c}\right|=2$ then G_{1} dominates 11 vertices of G including themselves.

A.A.Talebi, M.Zameni and Hossein Rashmanlou

iii. If $\left|v_{a}-v_{b}\right|=1,\left|v_{b^{-}} v_{c}\right|=2$ then G_{1} dominates 14 vertices of G including themselves.
$\boldsymbol{i v}$. If $\left|v_{a^{-}} v_{b}\right|=4,\left|v_{b^{-}} v_{c}\right|=2$ then G_{1} dominates 13 vertices of G including themselves. v. If $\left|v_{a}-v_{b}\right|=\left|v_{b}-v_{c}\right|=4$ then G_{1} dominates 15 verticies of G including themselves. Therefore, any three vertices of G belong to a component dominate at most 15 vertices of G including themselves.

Lemma 2.5. Let S be a subset of vertices of $G=\operatorname{Cir}(n, B)$ with $k=1$ and $G[S]$ has no isolated vertices. If $|S|$ is even, then S dominates at most $11\left(\frac{|S|}{2}\right)$ vertices of G.
Proof: Let S be a subset of vertices of G with $|S|=t$, where t is even. Any two adjacent vertices of S dominate 11 vertices of G including themselves. So S dominates at most $11\left(\frac{|S|}{2}\right)$ vertices of G.

Lemma 2.6. Let S be a subset of vertices of $G=\operatorname{Cir}(n, B), k=1$ and $G[S]$ has no isolated vertices. If $|S|$ is odd, then S dominates at most $\left(\frac{|S|-3}{2}\right) 11+15$ vertices of G.
Proof: Let S be a subset of vertices of G with $|S|=t$, where t is odd. Without loss of generality we may assume that $G[S]$ has $d=\left(\frac{|S|-3}{2}\right)+1$ components $G_{1}, G_{2}, \ldots, G_{\mathrm{d}}$, where $\left|\mathrm{V}\left(G_{1}\right)\right|=3$ and $\left|\mathrm{V}\left(G_{i}\right)\right|=2$ for $i=2,3,4, \ldots, d$. Let $\mathrm{V}\left(G_{1}\right)=\{x, y, z\}$, then $\{x, y, z\}$ dominates at most 15 vertices of G. So S dominates at most $\left(\frac{|S|-3}{2}\right) 11+15$ vertices of G.

Theorem 2.6. For any integer $n \geq 13$ and $k=1$,

$$
\gamma_{\mathrm{t}}(\operatorname{Cir}(n, B))=\left\{\begin{array}{l}
\left\lceil\frac{2 n}{11}\right\rceil+1 n \equiv 3,5,10(\bmod 11) \\
\left\lceil\frac{2 n}{11}\right\rceil \text { otherwise }
\end{array}\right.
$$

Proof: Let S be a γ_{t}-set of $G=\operatorname{Cir}(n, B)$. It follows from Lemma 2.5 and Lemma 2.6 that $|S| \geq\left\lceil\frac{2 n}{11}\right\rceil$. In the next we prove two claims as following.

Claim 1. If $n \equiv 3,5(\bmod 11)$ and S is a total dominating set for G, then $|S| \geq\left\lceil\frac{2 n}{11}\right\rceil+1$.
Let $n \equiv 3,5(\bmod 11)$ and let S be a total dominating set for G. Assume to the contrary that $|S|=\left\lceil\frac{2 n}{11}\right\rceil$. We have $n=l 1 l+j$, where l is a positive integer, $j \in\{3,5\}$. Then $|\mathrm{S}|=\left\lceil\frac{22 l+2 j}{11}\right\rceil=$ $2 l+1$ is an odd number. So, the induced subgraph G[S] has an odd component H with at least three vertices. We proceed to following facts.
(i) Any component of $\mathrm{G}[S]$ has at most three vertices.

Assume to the contrary that G_{1} is a component of $\mathrm{G}[S]$ and G_{1} has at least 4 vertices. Without loss of generality assume that G_{1} has 4 vertices. Then S dominates at most $15+(11)\left(\frac{|S|-3-4}{2}\right)+20=11 l+2$ vertices of G, a contradiction.
(ii) H is the only odd component of G[S].

Vertex Domination Critical in Circulant Graphs

Assume to the contrary that $H^{\prime} \neq H$ is a component of $\mathrm{G}[S]$ with $\left|V\left(H^{\prime}\right)\right|$ odd. Then $\left|V\left(H^{\prime}\right)\right|=3$. Since $|S|$ is odd, there is another component $H^{\prime \prime}$ with three vertices. Now S dominates at most $11\left(\frac{|S|-3-3-3}{2}\right)+3(15)=11 l+1$ verticies of G, a contradiction.
For $n \equiv 5(\bmod 11)$ and we have $V(H)=\left\{v_{f}, v_{q}, v_{p}\right\}$ and S dominates $11\left(\frac{|S|-3}{2}\right)+15=11 l+4$ vertices of G, a contradiction.
When $n \equiv 3(\bmod 11)$. We have $n=11 l+3$, where l is a positive integer.
According to note $1,\left\{v_{5}, v_{9}\right\}$ dominate 11 vertices. $N\left(\left\{v_{5}, v_{9}\right\}\right)=\left\{v_{1}, v_{2}, \ldots, v_{13}\right\}-\left\{v_{2}, v_{12}\right\}$ and v_{12} is dominated by $v_{16}, \mathrm{~N}\left(\left\{v_{16}, v_{20}\right\}\right)=\left\{v_{12}, v_{13}, \ldots, v_{24}\right\}-\left\{v_{13}, v_{23}\right\}$ and v_{23} is dominated by $v_{27}, \mathrm{~N}\left(\left\{v_{27}, v_{31}\right\}\right)=\left\{v_{23}, v_{24}, \ldots, v_{35}\right\}-\left\{v_{24}, v_{34}\right\}$, we continue this process and $\mathrm{N}\left(\left\{v_{(l-2) 11+5}, v_{(l-}\right.\right.$ $\left.\left.{ }_{2) 11+9}\right\}\right)=\left\{v_{1 l l-2 l+1}, v_{1 l l-20}, \ldots, v_{1 l l-9}\right\}-\left\{v_{1 l l-20}, v_{1 l l-10}\right\}$, So $\left\{v_{1 l l-8}, v_{1 l l-7}, v_{1 l l-6}, \ldots, v_{n-1}, v_{n}\right\} \cup\left\{v_{2}, v_{1 l l-}\right.$ $\left.{ }_{10}\right\}$ is dominated by three vertices. In each possibility there exits at least one vertex in Last subset which is not dominated by this 3 vertices, a contradiction.
This completes the Claim 1.
Claim 2. If $n \equiv 10(\bmod 11)$ and let S be a total dominating set for G, then $|S| \geq\left\lceil\frac{2 n}{11}\right\rceil+1$.
Assume to the contrary that $|\mathrm{S}|=\left\lceil\frac{2 n}{11}\right\rceil$. We have $n=11 l+10$ where l is a positive integer. Then $|S|=\left\lceil\frac{22 l+20}{11}\right\rceil=21+2$ is an even number. We have any component of G has at least two vertices. Now we are proving any component of G has exactly two vertices.

Assume to the contrary that G_{1} is a component of G and it has at least 3 vertices. Let G_{1} has 3 vertices. So $|S|$ is an even number, there exist $G_{l^{\prime}} \neq G_{l}$ is a component of $\mathrm{G}[S]$ with $\left|V\left(G_{1}{ }^{\prime}\right)\right|$ is odd, then at least $\left|V\left(G_{l}{ }^{\prime}\right)\right|$ is 3 . If $\left|V\left(G_{l}{ }^{\prime}\right)\right|=3$, then S dominates at most $11\left(\frac{|S|-3-3}{2}\right)+2(15)=11 l+8$ vertices of G, a contradiction. So the induced subgraph $G[S]$ has components with two vertices. It follows from Note 1 and process of case $2, S=\left\{v_{5}, v_{9}, v_{16}, v_{20}, v_{27}, v_{31}, \ldots, v_{(l-1) 1 l+5}, v_{(l-1) l+9}, v_{1 l l+5}, v_{n-1}\right\}$. We have $\mathrm{N}\left(\left\{v_{5}, v_{9}\right\}\right)=\left\{v_{1}, v_{2}, \ldots, v_{13}\right\}-\left\{v_{2}, v_{12}\right\}, \mathrm{N}\left(\left\{v_{16}, v_{20}\right\}\right)=\left\{v_{12}, v_{13}, \ldots, v_{24}\right\}-\left\{v_{13}, v_{23}\right\}, \mathrm{N}\left(\left\{v_{27}\right.\right.$, $\left.\left.v_{31}\right\}\right)=\left\{v_{23}, \ldots, v_{35}\right\}-\left\{v_{24}, v_{34}\right\}, \ldots, \mathrm{N}\left(\left\{v_{(l-1) 11+5}, v_{(l-1) 11+9}\right\}\right)=\left\{v_{(l-1) 11+1}, \ldots, v_{11 l-17}\right\}-\left\{v_{(l-2) 11+2}, v_{1 l l-}\right.$ $\left.{ }_{16}\right\}, \mathrm{N}\left(\left\{v_{1 l l+5}, v_{1 l l+9}\right\}\right)=\left\{v_{1 l l+l}, \ldots, v_{3}\right\}-\left\{v_{1 l l+2}, v_{2}\right\}$ and v_{2} is not dominated by S, a contradiction.
This completes the Claim 2.

Now it is sufficient to define a total dominating set S of required cardinality. We consider the following case:

1. For $n \equiv 0(\bmod 11), S=\left\{v_{(11) m+5}, v_{(11) m+9}: 0 \leq m<\left[\frac{n}{11}\right]\right\}$.
2. For $n \equiv 1,2,4(\bmod 11), S=\left\{v_{(11) m+5}, v_{(11) m+9}: 0 \leq m<\left[\frac{n}{11}\right]\right\} \cup\left\{v_{n-2}\right\}$.
3. For $n \equiv 3,5,6,7,8(\bmod 11), S=\left\{v_{(11) m+5}, v_{(11) m+9}: 0 \leq m<\left[\frac{n}{11}\right]\right\} \cup\left\{v_{n-2}, v_{n-3}\right\}$.
4. For $n \equiv 9(\bmod 11), S=\left\{v_{(11) m+5}, v_{(11) m+9}: 0 \leq m<\left[\frac{n}{11}\right]\right\} \cup\left\{v_{n-2}, v_{n-4}\right\}$.
5. For $n \equiv 10(\bmod 11), S=\left\{v_{(11) m+5}, v_{(11) m+9}: 0 \leq m<\left[\frac{n}{11}\right]\right\} \cup\left\{v_{n-2}, v_{n-3}, v_{n-5}\right\}$.

A.A.Talebi, M.Zameni and Hossein Rashmanlou

Theorem 2.7. For $n \geq 7, \operatorname{Cir}(n, A)$ is γ-critical if and only if $n \equiv 4(\bmod 2 k+3)$.
Proof. First we show that if $n \equiv 4(\bmod 2 k+3)$ that G is γ-critical. Let x be a vertex of G $=\operatorname{Cir}((2 k+3) l+4, A)$, for some positive integer l. Since G is transitive, we assume that x $=v_{n-2}$. It is easy to see that $S=\left\{v_{(2 k+3) i}: 0 \leq i \leq\left\lceil\frac{n}{2 k+3}\right\rceil\right\}$ is a dominating set for $G-x$. It follows that $\gamma(G-x) \leq\left\lceil\frac{n}{2 k+3}\right\rceil<\left\lceil\frac{n}{2 k+3}\right\rceil+1=\gamma(G)$. Hence, G is γ-critical.
Suppose now that $n \equiv 4(\bmod 2 k+3)$, we show that G is not γ-critical. Let T be a subset of vertices with $|T|<\gamma(G)$. Without loss of generality we let $|T|=\gamma(G)-1$. We show that any $|T|$ vertices of G dominate at most $n-2$ vertices of G.

We consider the following cases:

1. For $n \equiv 4,6,8, \ldots, 2 \mathrm{k}+2(\bmod 2 k+3)$, by Theorem $2.1 \gamma(G)=\left\lceil\frac{n}{2 k+3}\right\rceil$.

If $n \equiv 0(\bmod 2 k+3)$, then $n=(2 k+3) l$ for some intrger l. It follows that $\gamma(G)=l$. Now T dominates at $\operatorname{most}(2 k+3)(l-1) \leq n-2$ vertices of G. Similarly, for $n \equiv 2,3,5,7,9,11$, $\ldots, 2 k+1(\bmod 2 k+3), T$ dominates at most $(2 k+3)(l-1) \leq n-2$ vertices of G.
We assume that $n \equiv 1(\bmod 2 k+3)$. There is an integer l such that
$n=(2 k+3) l+1,|T|=\left\lceil\frac{n}{2 k+3}\right\rceil-1=l$.
If there are two consecutive vertices x, y in T such that $|x-y|<2 k+3$, then $\mathrm{N}_{G}(x) \cap$ $\mathrm{N}_{G}(y) \neq \emptyset$. Hence, $\{x, y\}$ dominates at most $4 k+5$ vertices of G and $T \backslash\{x, y\}$ dominates at most $(2 k+3)(l-2)$ vertices of G. So, T dominates at most $n-2$ vertices of G.

It remains to assume that for any two consecutive vertices a, b in $T,|a-b| \geq 2 k+3$. In this case, there are two consecutive vertices x, y in T such that $|x-y|>2 k+3$. Then there exit two vertices u, v lie between x and y in G, and T does not dominate $\{u, v\}$. So, T dominates at most $n-2$ vertices of G, which is a contradiction.
2. For $n \equiv 2 \mathrm{t}(\bmod 2 k+3), t$ is an integer with $3 \leq t \leq k+1$ by Theorem 2.1, $\gamma(G)=$ $\left\lceil\frac{n}{2 k+3}\right\rceil+1$. There are two consecutive vertices $v_{l}, v_{l}^{\prime} \in S$ such that $\left|l-l^{\prime}\right|<2 k+3$. Let $v_{l}{ }^{\prime \prime} \neq v_{l}$ be a consecutive vertex of v_{l}^{\prime}. Without loss of generality we assume that $\left|v_{l}{ }^{\prime \prime}-v_{l}\right|=$ $2 k+3+2 t$. Then there are $2 k+2+2 t$ possibilities for $v_{l}{ }^{\prime}$ to lies between v_{l} and $v_{l}{ }^{\prime \prime}$. In each possibly there exists at least two vertex between v_{l} and $v_{l}{ }^{\prime \prime}$ which is not dominated by $\left\{v_{l}, v_{l}^{\prime}, v_{l}{ }^{\prime \prime}\right\}$.

So, T dominates at most $n-2$ vertices of G, which is a contradiction.
Theorem 2.8. For $n \geq 9, \operatorname{Cir}(n, B)$ is γ-critical if and only if $n \equiv 6(\bmod 2 k+5)$.
Proof: First we show that if $n \equiv 6(\bmod 2 k+5)$ that G is γ-critical. Let x be a vertex of G $=\operatorname{Cir}((2 k+5) l+6, A)$ for some positive integer l. Since G is transitive, we assume that $x=$ v_{n-3}. It is easy to see that $S=\left\{v_{(2 k+5) i}: 0 \leq i \leq\left\lceil\frac{n}{2 k+5}\right\rceil\right\}$ is a dominating set for $G-x$. It follows that $\gamma(G-x) \leq\left\lceil\frac{n}{2 k+5}\right\rceil<\left\lceil\frac{n}{2 k+5}\right\rceil+1=\gamma(G)$. Hence, G is γ-critical.

Suppose now, that $n \equiv 6(\bmod 2 k+5)$. We show that G is not γ-critical. Let T be a subset of vertices with $|T|<\gamma(G)$. Without loss of generality we let $|T|=\gamma(G)-1$. We show that any $|T|$ vertices of G dominate at most $n-2$ vertices of G.

We consider the following cases:

1. For $n \equiv 8, \ldots, 2 \mathrm{k}+2,2 \mathrm{k}+4(\bmod 2 k+5)$, by Theorem $2.2, \gamma(G)=\left\lceil\frac{n}{2 k+5}\right\rceil$.

Vertex Domination Critical in Circulant Graphs

If $n \equiv 0(\bmod 2 k+5)$, then $n=(2 k+5) l$ for some integer l. It follows that $\gamma(G)=l$. Now, T dominates at most $(2 k+5)(i-1) \leq n-2$ vertices of G. Similarly for $n \equiv 2,3,4,5,7,9,11$, $\ldots, 2 k+3(\bmod 2 k+5), T$ dominates at most $(2 k+5)(i-1) \leq n-2$ vertices of G. We assume that $n \equiv 1(\bmod 2 k+5)$. There is an integer l such that $n=(2 k+5) l+1$. Without loss of generality we let $|T|=\left\lceil\frac{n}{2 k+5}\right\rceil-1=l$.
If there are two consecutive vertices x, y in T such that $|x-y|<2 k+5$, then $\mathrm{N}_{G}(x) \cap \mathrm{N}_{G}(y)$ $\neq \emptyset$. Hence, $\{x, y\}$ dominates at most $4 k+9$ vertices of G and $T \backslash\{x, y\}$ dominates at most $(2 k+5)(l-2)$ vertices of G. So, T dominates at most $n-2$ vertices of G.
It remains to assume that for any two consecutive vertices a, b in $T,|a-b| \geq 2 k+5$. In this case there are two consecutive vertices x, y in T such that $|x-y|>2 k+5$. Then there exit two vertices u, v lie between x and y in C , and T does not dominate $\{u, v\}$. So, T dominates at most $n-2$ vertices of G, which is a contradiction.
2. For $n \equiv 2 \mathrm{t}(\bmod 2 k+5), t$ is an integer with $4 \leq t \leq k+2$, by Theorem 2.2, $\gamma(G)=$ $\left\lceil\frac{n}{2 k+5}\right\rceil+1$. There are two consecutive vertices $v_{l}, v_{l}^{\prime} \in S$ such that $\left|l-l^{\prime}\right|<2 k+5$. Let $v_{l}{ }^{\prime \prime} \neq v_{l}$ be a consecutive vertex of $v_{l}{ }^{\prime}$. Without loss of generality we assume that $\left|v_{l}{ }^{\prime \prime}-v_{l}\right|=$ $2 k+5+2 t$. Then there are $2 k+4+2 t$ possibilities for $v_{l}{ }^{\prime}$ to lies between v_{l} and $v_{l}{ }^{\prime \prime}$. In each possibly there exists at least two vertex between v_{l} and $v_{l}{ }^{\prime \prime}$ which is not dominated by $\left\{v_{l}, v_{l}{ }^{\prime}, v_{l}{ }^{\prime \prime}\right\}$.

So, T dominates at most $n-2$ vertices of G, which is a contradiction.

REFERENCES

1. R.C.Brigham, P.Z.Chinn and R.D.Dutton, Vertex domination-critical graphs, Networks, 18 (1988) 173-179.
2. W.Goddard, T.W.Haynes, M.A.Henning and L.C.van der Merwe, The diameter of total domination vertex critical graphs, Discrete Math., 286 (2004) 255-261.
3. T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc, New York (1998).
4. N.Jafari Rad, Domination in circulant graphs, An. St. Univ. Ovidius Constanta, 17 (2009) 169-176.
5. H.Rashmanlou and M.Pal, Antipodal interval-valued fuzzy graphs, International Journal of Applications of Fuzzy Sets and Artificial Intelligence, 3 (2013) 107-130.
6. H.Rashmanlou and M.Pal, Balanced interval-valued fuzzy graph, Journal of Physical Sciences, 17 (2013) 43-57.
7. H.Rashmanlou and M.Pal, Isometry on interval-valued fuzzy graphs, Int. J. Fuzzy Math Arch, 3 (2013) 28 -35.
8. H.Rashmanlou and M.Pal, Some properties of highly irregular interval-valued fuzzy graphs, World Applied Sciences Journal, 2013, 27 (12) 1756-1773.
9. H.Rashmanlou and M.Pal, Intuitionistic fuzzy graphs with categorical properties, Fuzzy Information and Engineering, 7 (2015) 317-384.
10. H.Rashmanlou, S.Samanta, M.Pal and R.A.Borzooei, Bipolar fuzzy graphs with categorical properties, International Journal of Computational Intelligent Systems, 8 (5) (2015) 808-818.
11. H.Rashmanlou, S.Samanta, M.Pal and R.A.Borzooei, A study on bipolar fuzzy graphs, Journal of Intelligent and Fuzzy Systems, 28 (2015) 571-580.

A.A.Talebi, M.Zameni and Hossein Rashmanlou

12. S.Samanta and M.Pal, Fuzzy k-competition graphs and p-competition fuzzy graphs, Fuzzy Inf. Eng, 5 (2) (2013) 191-204.
13. S.Samanta and M.Pal, Fuzzy tolerance graphs, Int. J. Latest Trend Math., 1 (2) (2011) 57-67.
14. S.Samanta and M.Pal, Bipolar fuzzy hypergraphs, Int. J. Fuzzy Logic Syst., 2 (1) (2012) 17-28.
15. S.Samanta and M.Pal, Irregular bipolar fuzzy graphs, International Journal of Applications of Fuzzy Sets, 2 (2013) 91-102.
16. S.Samanta and M.Pal, Fuzzy planar graphs, IEEE Transactions on Fuzzy Systems, 23 (6) (2015)1936-1942.
17. Sk. M.A.Nayeem and M Pal, Shortest path problem on a network with imprecise edge weight, Fuzzy Optimization and Decision Making, 4 (4) (2005) 293-312.
