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Abstract. A graph G is vertex domination critical if for amgrtex v of G, the domination
number of G — v is less than the domination nundb&3. We call these graphyscritical

if domination number of G ig. In this paper, we determine the domination armdtthal
domination number of Cir(n,A) for two particularrggating sets A of Z and then study
y-critical in these graphs.
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1. Introduction

A vertex in a graph G dominates itself and its hbags. A set of vertices S in a graph G
is a dominating set, if each vertex of G is dongdaby some vertex of S. The
domination numbey(G) of G is the minimum cardinality of a dominatiset of G. A
dominating set S is called a total dominating iSeach vertex v of G is dominated by
some vertex y v of S. The total domination number of G, denobgdy,(G), is the
minimum cardinality of a total dominating set of G.

We denote the open neighborhood of a vesteef G by N;(v), or just N(v), and
its closed neighborhood by N[v]. For a vertexS&eW¥/(G), N(S) =U,esN(v) and N[S] =
UwesN[V]. So, a set of vertices S in G is a dominatisgt, if N[S] = V(G). Also, S is
a total dominating set, if N(S) = V(G). For aton and graph theory terminology in
general we follow [3]. Rashmanlou and Pal et allT$ studied different kinds of fuzzy
graphs.We call a dominating set of cardinalitfG), ay(G) — set and a total dominating
set of cardinality(G), ay(G) — set. A graph G is called vertex dominatiatiaal if y(G
— V) <y(G), for every vertex v in G. For references ba vertex domination critical
graphs see [1,2,3].

Jafari Rad [4], determines the dominatiamber and the total domination number
of graphCir(n,{1, 3}), for any integemn, and then study — criticality in
Cir(n, {1, 3}).

Letn>7 be a positive integer. The circulant gré&gih(n, A) whereA ={1, n—1, 3,
n-3,5n-5,...,2k-1 n— (& -1),2k +1, n— 2k +1)} is the graph with vertex self,
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Vi, ..., Vh-1}, and edge set{{ ,vi,j}: 1€{0, 1, ...,n—1},je{1,n-1, 3n-3, ...2k+ 1,
n-(2k+ 1)}}, k is an integer such that0 < k<[?].

Let n> 9 be a positive integer. The circulant grapin(n , B) whereB = {1, n -1, 2,
n-2,4,n-4, .., 2k n-2k, 2k +2, n — (2k}H&)the graph with vertex sevq, v, ...,
V-1, and edge séfvi, viy} 1 i€{0, 1, ....,n-1}, je{l,n-1,2n-2, ... X+ 2,n—
(2k + 2)}}, k is an integer such thatOk<[ nT_S].

All arithmetic on the indices is assumed to be uhod.

In this paper, we first determine the domorathumber and the total domination
number in the circulant grapi&r(n, A) andCir(n ,B) for any integen, and then study
— criticality andy, (G) — criticality in these class of graphs.

For two vertices andy in a graphG we denote the distance betweeandy by
ds(X,y), or justd(x, ).

2. Domination and total domination

Let G be a circulant graph with vertices. Let cycl€ = C(G) be the subgraph @ with
vertex set{y, Vi, ..., Vo . 11and edge sef{vi , vi.1} : i€{0, 1, ..., n — 1}}. For a subset
ScV(G) with at least three vertices, we say tRayeS are consecutivaf there is no
vertexz eSsuch thatz lies betweenx andy in C. For two consecutive verticasy in a
subset of verticeS we definey -y| =dc(x, y). So, X -y| equals to the number of edges
in a shortest path betwermndy in the cycleC.

Theorem 2.1. For any integen > 7,

n
[2k+3

1+1n=4,6,8, ..., 2k+@mnod 2k+3)

y(Cir(n, A)) = [ﬁ] otherwise

Proof: Let Sbe ay(G)-set ofG = Cir(n, A). Any vertex ofG dominatek+3 vertices of
G including itself, sog > [—].

2k+3
We claim that ih=2t (mod 2k+3), for an integet such thal <t < k+1, then § >

1+
Free]
To see this, assume to the contraryre&t (mod2k+3), and § = [ﬁ]. There are
two consecutive verticeg,v,'eS such thatl|- I' | <k+3. Let v #v be a consecutive

vertex ofv,’. Without loss of generality assume that v, | = 2k+3+2t. Then there are
2k+2+2t possibilities forv;’ to lies betweeny andv,”. In each possibly there exists a
vertex between; andv,” which is not dominated bw{v/’, vi"}, a contradiction. Hence,

for n=2t (mod2k+3), | E[an+3]+ 1.

Now it is sufficient to get a dominating &of required cardinality. We consider the
following cases:

1. Forn = 4mod2k+3), S ={ Vi) : 0< i<[#] JU {Vqoh.
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n

2.Forn=6,8,10, 12,14, ..., 2k+@nod2k+3), S= {Vksg)i: 0<i< [2k+3] U {via}
3.Forn=4, 6, 8,10, ..., 2k+2mod 2k+3), S= {Vsgy: 0< i< [2k"+31 1

In each of the above casé&is a dominating set fo€ir(n , A) of cardinality[#ﬁ 1
whenn =4,6,8, ..., 2k+Amod 2k+3), and of cardinalitjﬁ] when n =4, 6, 8,10, ...,
2k+2(mod2k+3). Hence, the result followa

Theorem 2.2. For any integen > 9,
n

_ Frov:
y(Cir(n,B)) = n
Py

1+1, n= 6,8,10, ..., 2k+4 (Mo@k+5)

5] otherwise

Proof: Let Sbe ay(G)-set of G = Cir(n, B). Any vertex ofG dominate2k+5 vertices of

G including itself, sog> [2kn+5].

We claim that ih=2t (mod 2k+5), t is an integer such th&t<t < k+1, then § >

[———]+ 1. To see this, assume to the contrary tidt (mod 2k+5), and § = [——].
2k+5 2k+5

There are two consecutive verticgsv,’ € S such thatl|— I’ | <2k+5. Let v" £v is a
consecutive vertex of'. Without loss of generality we assume that—|v; | = 2k+5+2t.
Then there ar@k+4+2t possibilities forv,’ to lies betweery, andv”. In each possibly
there exists a vertex between and vi” which is not dominated by{v', v}, a

contradiction. Hence, far=2t (mod2k+5), |§ z[an+5]+ 1.

Now it is sufficient to get a dominating sebf required cardinality. We consider
the following cases:

1. Forn=6,8,10, 12,14, ..., 3 (M0d2k+5), S= {Vsy: 0= i<[="=] }U{Vn3}.

2.Forn=6, 8,10, ..., 2k+4mod 2k+5), S= { Vs 0<i<[="—] }.

In each of the above casBds a dominating set fo€ir(n, B) of cardinality[ﬁh 1
whenn= 6,8, ..., 2k+4 (mo@k+5), and of cardinalitjﬁ] whenn = 6, 8,10, ..., 2k+4
(mod2k+5).

Hence, the result follows

Theorem 2.3. For any integen > 7,
2n
4k+4

]+1n = 2,4,6, ..., 2k+2 (modk+4)
v(Cir(n, A)) =

2n .
[m] otherwise

Proof. Let S be ay-set of G = Cir(n , A). Note thatA| = 2k+2 and G is 2k+2-regular.
From the definition of the total domination numtefpllows that[—"—]< v(G), v(G) =

IS

Forn=2j (mod4k+4), j is an integer such that<j < 2k+2, we have
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ezl Fessl 50 [l 1(©)

Forn = 2j (mod 4k+4), j is an integer such th&t< j < 2k+1, n can be written as
n=(4k+4)1+2j = 2((2k+2)I +j), which | is integer and is an even number. We partite
V(G) into two dlSjOIﬂt set$, = {V]_, V3, V5, V7, ..., V-3, Vn_1} and I,= {Vo, Vo, V4, V6, ..., V-2,
Vh2t. Note that|l4] = |o| = (2k+2)I + . For anyxel;, N(X)<I,, for anyyel,, N(y)< 1. It
follows thatG is a balanced bipartite graph with bipartition de@ndl,. We can write5
=SUS, such thaGcl,, Scly, |; is dominated by , 1 <i<2and |9 = ||

If 0<j <k+1, then |§ = [SE[EE2 1 | 4 7andy(6)=1S] = |8 + Bk

2k+2

2[(2"2:2)2”’] 21+2. On the other hand 22 -[%HL and so
(4k+4)(2D)+4j
(6 2[—— —1+1.
(Qk+2)1+)

If k+2<j < 2k+1, then §| = B)| > [t
(2k+2)l+]

vz 1T 1 andy(6)= |9 = [/l + Bl 2

1=21+2. On the other hand£2 —[%1, and so

A~
k l
HOE _[—(4 |
. 2k+2)1 2k+2)1L
If =0, then $i = Bl 2[2e2= | and w(G)= |5] = |8 + Bl 22152 )=2,

On the other hand 2[(41‘:‘121], and sop(6) 2[(4:;2”].

Now it is sufficient to define a total dominatingt$ of required cardinality. We
consider the following cases:

1. Forn=0 (mod4k+4), S= {Viak+ayirok+1, Viak+ayi+a+2: OSi<[4kr:4]}-

2.Forn=1,3,5,7, ... 2k+1 (Mod4k+4), S={Viaksaysawe, Viakearakrl 0T <[=—]}U{Vo}.
3. Forthe casea=2,4,6, ..., 2k+2 (mod 4k+4) anc n_2k+3 2k+4,2k+5, 2k+6, ...,
4k+2,4k+3 (mod 4k+4), S= {V(4k+4)|+2k+1 viaksayizksz 01 < [ ]} U{Va-2k, Vi-2k+1)}-

In each of the above ca&ds a total dominating set ﬁﬁr(n A), cardinality ofS is
., 2k+2 fnod 4k+4, and cardinality oSis [ﬁ] whenn = 2,
4.6, ..., 2k+2 1ihod4k+4). Hence, the result follovus.

Lemma 2.1. Let Sbe a subset of vertices 6E=Cir(n,B) with k> 3 andG[] has no
isolated vertices. I is even, the® dominates at mosPk+3)|] vertices ofG.

Proof: Let Sbe a subset of vertices &f with |[9=t, wheret is even. Any two adjacent
vertices ofS dominate4k+6 vertices ofG including themselvesS dominates at most

(ak+6)E]) = (2k+3) § vertices oG.m

Lemma 2.2. Let Sbe a subset of vertices G=Cir(n,B) with k> 3 andG[Y has no
isolated vertices. Ify is odd, thers dominates at mos2k+3) |y - (k+1) vertices ofG.
Proof: Let Sa be subset of vertices & with |S|— t, wheret is odd. Without loss of

generality we may assume tlaf{tS hasd = ('S| ——) + 1 component&,, G,, ...,Gy where
IV(Gy|= 3 and |VG)|= 2 fori= 2, 3, 4, ..., dLet V(G)={x, vy, Z, then {x, y, Z
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dominates at mogik+8 vertices ofG. S dominates at most (4k+é§s—|2(_—3) +5k+8=
(2k+3)t-(k+1) vertices ofG.m

Theorem 2.4. For any integen> 21 andk> 3,

n

[

(Cir(n, B)) el TL 1=3,4586, ..., 2k+3 (modk+6)
Yl ’ =

n
[2k+3

Proof: Let Sbe ay-set ofG = Cir(n,B). It follows from Lemma 2.1 and Lemma 2.2 that

n
|S|2 [2k+3]'

We claim that ifn =3,4,5, ..., 2k+3 (modik+6) andSis a total dominating foG, then

n
|S|2 [2k+3]+1'

To see this, assume to the contrary that[ﬁjg]. We haven=(4k+6)I+j, wherel is a
4k+6)I+]

positive integer,§{3,4,5, ..., 2k+3then |S|1E(2T]= 2|+1 is an odd number. So, the

induced subgraph @ has an odd componehtwith at least three vertices. We proceed
to prove the following facts.

(i) Any component of GY| has at most three vertices.

Assume to the contrary th&; is a component of G and G; has at least vertices.
Without loss of generality assume that has4 vertices. ThenS dominates at most

6k+10+(4k+6) |S|_23_4) + 5k + 8 =(4k+6)I-k vertices ofG, a contradiction.

(ii) His the only odd component of §]
Assume to the contrary that'#H is a component of G with [V(H’)| odd. It follows
from fact ) that V(H")|=3. Sinced is odd, there is another componert with three

vertices. Now S dominates at mogk{6) (m%) +305Bk+8)=MAk+6)I—k
vertices of G, a contradiction.

For n= k+3,k+4,k+5, ..., 2k+3 (modk+6) and we hav&/(H)={v:, v, %, } andS
dominates (4k+6§i¥) + 5k + 8 =(4k+6)+k+2 vertices ofG, a contradiction.
Forn= 3, 4,5, ..., k+2 (modik+6). We haven=(4k+6) I+j, wherel is a positive
integer,j €{3,4,5, ..., k+2}. It follows from facts thats[§ hasl= ('SlT_3) + 1 components
Gy, Gy, ....G where Y(G)|=2 fori= 2, 3, 4, ..., Bnd V/(Gy)|=3. Any two adjacent vertices
of Sdominates at most 4k+6 consecutive verticeg(a).
V(G) can be partitioned intbsubset \={Vy, Vi, Vo, ..., Vakss}, 12={Vakeer Vaks7s Vakegs -

| otherwise

Vake11)y 13={Veke12, Veks13, oo Moke1zhs -oor i {Viakes)i-2)y  Viakes)g-2)+ts -1 Vake6)(-1)-1h
L ={ Viaks6)1-1)+15 Viakso)(-1)+25 «-+5 Vb1
Note that, |i|=4k+6fori=1, 2, 3, ..., I-land 4k+% |I||< 5k+8.

Without loss of generality we may amsuthatl; is dominated byfoxsz, Voy+tof
Sandl; is dominated byws«s,Vsx+o}, then each ofl; is by two adjacent vertices &
Then, verticed, (4k+9< |l||< 5k+8) is dominated by three consecutive vertideS. dn
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each possibility there exists at least one vemelhich is not dominated by this three
vertices,a contradiction. This completes the claim.

Now it is sufficient to define a total dominatingt§ of required cardinality.

We consider the following case:

1. Forn=0 (m0d4k+6), S= {V(4k+6)m+2k+2: V(4k+6)m+2k+3: 0 =< m<[ =

4k+né] 2

2. Forn=1,2 (m0d4k+6), S= {V(4k+6)m+2k+2: V(ak+6)m+2k+3- 0< m<[4k+6] }U {Vn.g}.

3. For n 5314151---1 4k+5(m0d 4k+6), S:{\/(4k+6)m+2k+1, V(4k+6)m+2k+2: 0< m<[ﬁ] }U {Vn—

(2k+2):Vn-2k+1)}-

Lemma 2.3. Let S be a subset of vertices @&=Cir(n,B) with k=2 andG[] has no
isolated vertices. I is even, the® dominates at mostY|vertices ofG.

Proof: Let S be subset of vertices of G witB t, wheret is even. Any two adjacent
vertices ofS dominatel4 vertices ofG including them selve$ dominates at most 1%'0

=7 vertices ofc.m

Lemma 2.4. Let Sbe a subset of vertices GECir(n ,B), k= 2 andG[g] has no isolated
vertices. If § is odd, thers dominates at mostS42 vertices ofs.

Proof: Let S be subset of vertices of G witBH t, wheret is odd. Without loss of
generality we may assume ti@ftS] hasd = MT_S) + 1 component$s;, Gy, ...,Gg4, where

[V(Gy)|=3 and |VG)|=2 fori= 2, 3, 4, ..., dlet V(G)={x, Y, Z}, then {x, y, Z} dominates

at most19 vertices of G. S dominates at most 15=|F) +19 = 7(9-3)+19 = 7§-2

vertices ofG.m
Theorem 2.5. For any integen> 17 andk = 2,

[%1+1 n=3,4,56,7 (mod4)
v(Cir(n, B)) =
[%] otherwise

Proof: Let Sbe ay-set ofG = Cir(n ,B). It follows from Lemma 2.3 and Lemma 2.4 that
ISELZ.

We claim that ifr = 3,4,5,6,7 (mod.4) andSis a total dominating fo®, then |Sp
[C1+1.

To see this, assume to the contrary thal[’;l[S|We haven=14I+j, wherel is a

positive integer,j&{3,4,5, 6,4 Then |S|:[14;+j]= 21+1 is an odd number. So, the

induced subgraph @[ has a componert with at least three vertices. We proceed to
prove following facts.

i Any component of GJ| has at most three vertices.
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Assume to the contrary th&; is a component of & and G; has at leastiverticies.
Without loss of generality assume ti&thas4 verticies. Thers
dominates at mo:§19+(14)(|s|_%) + 24=14lI+1 verticies ofG, a contradiction.

ii. H is the only odd component of §]
Assume to the contrary thét#H is a component of & with [V(H')| odd. It follows
from facti that V(H')|=3. Since{ is odd, there is another componéhtwith three
vertices. NowS dominates at most

14(“%) + 3(19) = 141 + 1 verticies of G, a contradiction.

For n = 6,7 (mod14) and we haveV(H)={v, v, \, } and S dominates li‘??) +
19 =141+5 vertices ofG, a contradiction.

For n= 3, 4, 5 (modL4). We haven=14l+j, wherel is a positive integejj,c {3,4,5}. It
follows from facts thaG[g hasl= (|s|T-3) + 1 components

Gy, Gy, ..,Gwhere V(G)|=2 fori= 2, 3, 4, ..., Bnd V(Gy)|=3. Any two adjacent of at
most 14 consecutive vertices\4iG).

V(G) can be partition intd subsets {F{vi, V,...,\ig}, |:={VisVig,..., Vog}, |3={Vag, Vag,
w2 e L= {Vagy e Vag g2y - Nyt 1={ a1+ Vaaye-nezs - Vol
Note that,lj|= 14fori=1, 2, 3, ..., I-land 17< |I|] < 19.

Without loss of generality we may assuna this dominated by, vg} of Sandl,
is dominated by{,;,v»5}, then each of; is by two adjacent vertices &f Verticesl; (1<
[li< 19) is dominated by three consecutive verticegalth possibility there exists at least
one vertex in;which is not dominated by this three verticespntradiction.
This completes the claim.

Now it is sufficient to define a total dorating setS of required cardinality.
We consider the following case:

1. For n= 0 (mod14), S= {Vaaym+% Vaams 0= m<[ﬁ] }
2. For n=1,2(mod14), S= {Vaaym+n Vagms 0= m<[%] Hu{Va g}
3. For n=3,4,5,...,13m0d 14), S= {Vuaym:7 Viaamss 0< M<[-] }U{Vis, Vor5}.

Note 1. For any two adjacent verticesandv, of G = Cir(n,B), k=1 andn> 13. We have
the following:

i. If [ve- vo| =1, thenv,andv, dominate 10 verticies of G including themselves.

ii. If Jva- vp| =2, thenvandvy, dominate 9 verticies of G including themselves.

iii. If |va- wp| =4, then/;andv, dominatellverticies of G including themselves.
Therefore, any two adjacent vertices of G domirstenost 11 vertices of G including
themselves.

Note 2. Let G; be a component of-set such tha; has three vertices, v, V., we have
the following:
i. If |Va- Vb|=|Ve- Ve|=1 thenG; dominatesllverticies of G including themselves.
ii. If |Va- Vo|=|Ve- Vc|=2 thenG; dominates1l vertices of G including themselves.
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iii. If Vo Wo|=1, |Vo- V|=2 then G; dominatesl4 vertices of G including
themselves.
iv. If |Va- Vo|=4, Vo~ V¢| =2 thenG; dominates13 vertices of G including themselves.
V. I [Va- V|5V~ Ve|=4 thenG; dominates 15 verticies of G including themselves
Therefore, any three vertices of G belong to a ammept dominate at most 15 vertices of
G including themselves.

Lemma 2.5. Let Sbe a subset of vertices &=Cir(n,B) with k = 1 andG[] has no
isolated vertices. I§|is even, the® dominates at most 1'—;.—'0 vertices ofG.

Proof: Let Sbe a subset of vertices &f with [S=t, wheret is even. Any two adjacent
vertices ofS dominatell vertices ofG including themselves. S8 dominates at most

11('%') vertices oiG.m

Lemma 2.6. Let Sbe a subset of vertices GECir(n , B), k=1 andG[§ has no isolated
vertices. If § is odd, thers dominates at mosﬁF}ll +15 vertices ofG.

Proof: Let S be a subset of vertices & with |[§9= t, wheret is odd. Without loss of
generality we may assume ti@ftS hasd = ('SlT_S) + 1 component&s;, G, ...,Gy, where
IV(G)|=3 and |VG)| = 2 fori= 2, 3, 4, ..., dLet V(G)={x, vy, Z, then {x, vy, Z
dominates at modi5 vertices ofG. SoSdominates at mosﬂz_—g)ll +15 vertices ofG.m

Theorem 2.6. For any integen> 13 andk = 1,

2n
_ [—=]+12=3, 5,10 (modL1)
v(Cir(n, B)) = 1
2n .
[H] otherwise
Proof: Let Sbe ay-set ofG = Cir(n,B). It follows from Lemma 2.5 and Lemma 2.6 that
[S|> [i—rll]. In the next we prove two claims as following.

Claim 1. If n=3,5 (modl11) andSis a total dominating set f@, then |§_¢[i—?]+1.
Let n =3,5 (mod1l) and letS be a total dominating set f@. Assume to the contrary

that |S|:Fi—rll]. We haven=11I+j , wherel is a positive integei£{3,5}. Then |S|=[22i;2j =

21+1 is an odd number. So, the induced subgraf k&s an odd componeht with at
least three vertices. We proceed to following facts

(i) Any component of G| has at most three vertices.
Assume to the contrary th&; is a component of G and G; has at least vertices.
Without loss of generality assume that has4 vertices. ThenS dominates at most

15+(11) |S|_23_4) + 20=11I+2 vertices ofG, a contradiction.

(ii) H is the only odd component of §][
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Assume to the contrary that'#H is a component of & with [V(H)| odd. Then
[V(H)|=3. Since §| is odd, there is another componéhtwith three vertices. Novs

dominates at moﬂﬂ.(lslﬂ%) + 3(15) = 111 + 1 verticies of G, a contradiction.

For n=5 (mod11) and we hav&/(H)={vy, V,, Vp} andS dominateslﬁ?) +15=11+4
vertices ofG, a contradiction.

Whenn = 3 (mod11). We haven=111+3, wherel is a positive integer

According to note X{vs,vg} dominate 11 vertices. N¢, Vo})={ v1,Vz, ..., Ma}-{ V2, viz} and
Vi2is dominated byis, N({Vis Vood)={ Vi2,Va3,..., Va}-{ Vis, Voa} and vo3is dominated by
Vo7, N({ Va7, Vai)={ Va3, Vos, ..., \bs}-{ Vas, Vaa}, We continue this process and Mggyia+s, V-
11490 ={ Virr21:.1 V11120 -+, Margb{ ViziooViziaghs SO {ViagVat-nVitke -« V1, Vi U{Va, Vi
10fis dominated by three vertices. In each possipiliere exits at least one vertex in
Last subset which is not dominated by this 3 vesti contradiction.

This completes the Claim 1.

Claim 2. If n= 10 (mod11) and letSbe a total dominating set f&, then |Slz[i—rll]+1.

Assume to the contrary that |S—i}rllq. We haven=11I+10 wherel is a positive integer.

Then |S|1L-2211—J;201=21+2is an even number. We have any

component of G has at least two vertices. Now veepaoving any component of G has
exactly two vertices.

Assume to the contrary that i a component of G and it has at least 3 vertices
Let G, has 3 vertices. S§|is an even number, there ex&t#G; is a component of §

with V(G| is odd, then at leadt(G,)| is 3. If V(G,)|=3, then S dominates at most

11(@) + 2(15) = 111 + 8 vertices of G, a contradiction.

So the induced subgra@{S] has components with two vertices. It follows frdvote 1
and process of case S{Vs, Vo, Vig, Voo, Vor, Va1, --., \-1)11+5 Vo140, Va1ws, Vo-1}. We have
N({vs, Vo)={ Vi, Va,..., Ma{ Vo, VighN({Vie, Vooh)={ VizVaz,..., Va}{ Vis, Vosg}, N({Var,
Vai})={ Vog, ..., Vesp{ Voa, Vaa}, ....N({ Vi-ny114s, Vo-naa+e)={ Ve-nraens - -0 Maaz-{ Va2yr1e2,Vaar-
16h N Vizus,Viteo)={ Vitie1, .., B Va2, \o} and v, is not dominated by S, a
contradiction.

This completes the Claim 2.

Now it is sufficient to define a total dominatingt$ of required cardinality. We consider
the following case:

1. Forn=0 (mod11), S= {Vai)m+s Vaym+s 0= m<[1n_1] 3

2. For n=1,24 (Mod11), S= {Viaymss Vaymes 0< M<[=] }u{va 3}

3. For n=3,5,6,7,8mod11), S= {Vu1ymss Vanymss 0< m<[%] }U{ V-2, Vn-a}.
4. For n=9 (mod11), S= {Va1ms Vanmss 0< m<[1n—1] JU{Vn2, Vg

5. For n=10(M0d11), S= {Vuyymss Vanyms 0< M<[Z] JU{VnoVo g Vo s}
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Theorem 2.7. Forn>7,Cir(n, A)is y-critical if and only ifn= 4 (mod2k+3).

Proof. First we show that i = 4 (mod2k+3) thatG is y-critical. Letx be a vertex 06
= Cir((2k+3)I+4 , A), for some positive integér SinceG is transitive, we assume that
= Vpo. It is easy to see th&= {Vpa)i 0< i< [L]} is a dominating set foG — x. It

2k+3
follows thaty(G - X)< [="=] < [="—=]+1 = ¥(G). Hence G is y-critical.

Suppose now that= 4 (mod2k+3), we show tha is noty-critical. Let T be a subset of
vertices with [T | <(G). Without loss of generality we lefT|| =y(G)-1. We show that
any |T | vertices of5 dominate at most - 2 vertices ofG.

1<

We consider the following cases:
1. Forn=4,6,8, ..., 2k+2 (mo@k+3), by Theorem 2.3(G) = [2kn+3].

If n=0 (mod2k+3), thenn = (2k+3)I for some intrget. It follows thaty(G) =1. Now T
dominates at mo@k+3)(-1) < n -2 vertices of G. Similarly, for n=2,3,5,7,9,11,
...,2k+1(mod X+3), T dominates at mog2k+3)(I-1) <n -2 vertices ofs.

We assume that= 1 (mod X+3). There is an integérsuch that

n=2k+3)l+1, |T| :[ﬁ] -1 =L,

If there are two consecutive verticey in T such that k —y| <2k+3, then Ns(X)N
Ng(y) # 0. Hence, &, y} dominates at mostk+5 vertices ofG andT \{x,y} dominates at
most(2k+3)(I -2) vertices ofG. So, T dominates at most -2 vertices ofG.

It remains to assume that for any two contiee verticeg,bin T, |a—b |>2k+3. In
this case, there are two consecutive verticgesn T such that k —y|>2k+3. Then there
exit two vertices u,v lie betweenx andy in G, andT does not dominateu{v}. So, T
dominates at most -2 vertices ofG, which is a contradiction.

2. For n = 2t (mod 2k+3), t is an integer witi3 <t < k+1 by Theorem 2.1y(G) =

[Zk"+3]+1. There are two consecutive vertiogsy’eSsuch thatl |- 1" | <2k+3. Letv,” £v,

be a consecutive vertex @f. Without loss of generality we assume that"- v, | =
2k+3+2t. Then there ar@k+2+2t possibilities forv,’ to lies betweerv, andv,”. In each
possibly there exists at least two vertex betwgeandv,” which is not dominated by
{vi,v',vi"}.

So,T dominates at most-2 vertices ofG, which is a contradictiom.

Theorem 2.8. Forn> 9, Cir(n, B) isy-critical if and only ifn= 6 (mod 2k+5).
Proof: First we show that i = 6 (mod2k+5) thatG is y-critical. Letx be a vertex ofs
= Cir((2k+5)I+6 , A)for some positive integér SinceG is transitive, we assume that

Vos It is easy to see th& = {Vpys) O< i< [ﬁ]} is a dominating set fo6 — x. It

follows thaty(G - x)< [an+5] <[2k"+5]+1 =v(G). Hence G is y-critical.

Suppose now, that= 6 (mod2k+5). We show thats is noty-critical. Let T be a
subset of vertices withT | <y(G). Without loss of generality we IeT | =y(G)-1. We
show that anyT | vertices of dominate at most - 2 vertices ofG.

We consider the following cases:

1. Forn=38, ..., 2k+2, 2k+4 (mo@k+5), by Theorem 2.2(G) =

n
2k+5""
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If n= 0 (mod2k+5), thenn = (2k+5)I for some integek. It follows thaty(G) =1. Now, T
dominates at most2k+5)(i-1) < n -2 vertices ofG. Similarly for n =2,3,45,7,9,11,
...,2k+3 (mod 2k+5), T dominates at mogRk+5)(i-1) < n -2 vertices ofG. We assume
thatn = 1 (mod2k+5). There is an integdrsuch thain = (2k+5)I+1. Without loss of

generality we let T | =[="—]-1 =I.

If there are two consecutive vertices/ in T such thatk —y| <2k+5, thenNg(x)N Ng(y)
# 0. Hence, &y} dominates at mogk+9 vertices ofG andT \{x,y} dominates at most
(2k+5)(l -2) vertices ofG. So, T dominates at most-2 vertices ofG.

It remains to assume that for any two consecutiréicesa,b in T, |a—b |> 2k+5. In this
case there are two consecutive vertigxgsn T such that k —y|>2k+5. Then there exit
two vertices u, v lie betweenx andy in C, andT does not dominateu{v}. So, T
dominates at most -2 vertices ofG, which is a contradiction.

2. For n = 2t (mod 2k+5), t is an integer withtd <t < k+2, by Theorem 2.2y(G) =

[Zk"+5]+1. There are two consecutive vertiogsy'eSsuch thatl |- I" | <2k+5. Letv,” #v;

be a consecutive vertex of. Without loss of generality we assume that— v, | =
2k+5+2t. Then there ar@k+4+2t possibilities fory,’ to lies betweery, andv;”. In each
possibly there exists at least two vertex betwgeandv,” which is not dominated by
{v,vi', v}

So,T dominates at most-2 vertices ofG, which is a contradictiorn
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