International Journal of Fuzzy Mathematical Archive

Vol. 12, No. 2, 2017, 55-66
ISSN: 2320 –3242 (P), 2320 –3250 (online)
Published on 16 June 2017

www.researchmathsci.org
DOI: http://dx.doi.org/10.22457/ijfma.v12n2a2

Vertex Domination Critical in Circulant Graphs

A.A.Talebi1, M.Zameni2 and Hossein Rashmanlou3

1,2Department of Mathematics, University of Mazandaran, Babolsar, Iran
3Sama Technical and Vocational Training College, Islamic Azad University
Sari Branch, Sari, Iran
Email: 1a.talebi@umz.ac.ir, 2mahsa.zameni@yahoo.com
3Corresponding author. rashmanlou.1987@gmail.com

Received 10 March 2017; accepted 15 June 2017

Abstract. A graph G is vertex domination critical if for any vertex v of G, the domination number of G – v is less than the domination number of G. We call these graphs γ-critical if domination number of G is γ. In this paper, we determine the domination and the total domination number of Cir(n,A) for two particular generating sets A of Zn, and then study γ-critical in these graphs.

Keywords: Domination, total domination, circulant graph.

AMS Mathematics Subject Classification (2010): 05C72

1. Introduction

A vertex in a graph G dominates itself and its neighbors. A set of vertices S in a graph G is a dominating set, if each vertex of G is dominated by some vertex of S. The domination number γ(G) of G is the minimum cardinality of a dominating set of G. A dominating set S is called a total dominating set if each vertex v of G is dominated by some vertex u ≠ v of S. The total domination number of G, denoted by γt(G), is the minimum cardinality of a total dominating set of G.

We denote the open neighborhood of a vertex v of G by N(v), or just N(v), and its closed neighborhood by N[v]. For a vertex set S ⊆ V(G), N(S) = ∪v∈S N(v) and N[S] = ∪v∈S N[v]. So, a set of vertices S in G is a dominating set, if N[S] = V(G). Also, S is a total dominating set, if N(S) = V(G). For notation and graph theory terminology in general we follow [3]. Rashmanlou and Pal et al. [5-17] studied different kinds of fuzzy graphs. We call a dominating set of cardinality γ(G), a γ(G) – set and a total dominating set of cardinality γt(G), a γt(G) – set. A graph G is called vertex domination critical if γ(G – v) < γ(G), for every vertex v in G. For references on the vertex domination critical graphs see [1,2,3].

Jafari Rad [4], determines the domination number and the total domination number of graph Cir(n, {1, 3}), for any integer n, and then study γ – criticality in Cir(n, {1, 3}).

Let n ≥ 7 be a positive integer. The circulant graph Cir(n, A) where A = {1, n – 1, 3, n – 3, 5, n – 5, …, 2k – 1, n – (2k – 1), 2k + 1, n – (2k + 1)} is the graph with vertex set {v0,
A.A.Talebi, M.Zameni and Hossein Rashmanlou

Let \(G = \{ v_0, v_1, \ldots, v_n \} \) and edge set \(\{ [v_i, v_j] : i \in \{ 0, 1, \ldots, n-1 \}, j \in \{ 1, n-1, 2, n-2, \ldots, 2k+1, n-(2k+2) \} \} \), \(k \) is an integer such that \(0 \leq k < \left\lfloor \frac{n-3}{4} \right\rfloor \).

Let \(n \geq 9 \) be a positive integer. The circulant graph \(\text{Cir}(n,B) \) where \(B = \{ l, n-l, 2, n-2, 4, n-4, \ldots, 2k, n-2k, 2k+1, n-(2k+2) \} \) is the graph with vertex set \(\{ v_0, v_1, \ldots, v_n \} \), and edge set \(\{ [v_i, v_j] : i \in \{ 0, 1, \ldots, n-1 \}, j \in \{ 1, n-1, 2, n-2, \ldots, 2k+1, n-(2k+2) \} \} \), \(k \) is an integer such that \(0 \leq k < \left\lfloor \frac{n-5}{4} \right\rfloor \).

All arithmetic on the indices is assumed to be modulo \(n \).

In this paper, we first determine the domination number and the total domination number in the circulant graphs \(\text{Cir}(n,A) \) and \(\text{Cir}(n,B) \) for any integer \(n \), and then study \(\gamma \) – criticality and \(\gamma_1(G) \) – criticality in these class of graphs.

For two vertices \(x, y \) in a graph \(G \) we denote the distance between \(x \) and \(y \) by \(d_G(x,y) \), or just \(d(x,y) \).

2. Domination and total domination

Let \(G \) be a circulant graph with \(n \) vertices. Let cycle \(C = C(G) \) be the subgraph of \(G \) with vertex set \(\{ v_0, v_1, \ldots, v_n \} \) and edge set \(\{ [v_i, v_{i+1}] : i \in \{ 0, 1, \ldots, n-1 \} \} \). For a subset \(S \subseteq V(G) \) with at least three vertices, we say that \(x, y \in S \) are consecutive if there is no vertex \(z \in S \) such that \(z \) lies between \(x \) and \(y \) in \(C \). For two consecutive vertices \(x, y \) in a subset of vertices \(S \), we define \(|x - y| = d_G(x,y) \). So, \(|x - y| \) equals to the number of edges in a shortest path between \(x \) and \(y \) in the cycle \(C \).

Theorem 2.1. For any integer \(n \geq 7 \),

\[
\gamma(\text{Cir}(n,A)) = \begin{cases}
\left\lfloor \frac{n}{2k+3} \right\rfloor + 1 & n \equiv 4,6,8, \ldots, 2k+2 \pmod{2k+3} \\
\left\lfloor \frac{n}{2k+3} \right\rfloor & \text{otherwise}
\end{cases}
\]

Proof: Let \(S \) be a \(\gamma(G) \)-set of \(G = \text{Cir}(n,A) \). Any vertex of \(G \) dominates \(2k+3 \) vertices of \(G \) including itself, so \(|S| \geq \left\lfloor \frac{n}{2k+3} \right\rfloor + 1 \).

We claim that if \(n = 2t \pmod{2k+3} \), for an integer \(t \) such that \(2 \leq t \leq k+1 \), then \(|S| \geq \left\lfloor \frac{n}{2k+3} \right\rfloor + 1 \).

To see this, assume to the contrary that \(n \equiv 2t \pmod{2k+3} \), and \(|S| = \left\lfloor \frac{n}{2k+3} \right\rfloor \). There are two consecutive vertices \(v, v' \in S \) such that \(|v-v'| < 2k+3 \). Let \(v'' \neq v \) be a consecutive vertex of \(v' \). Without loss of generality assume that \(|v'' - v| = 2k+3+2t \). Then there are \(2k+2+2t \) possibilities for \(v'' \) to lie between \(v \) and \(v' \). In each possibly there exists a vertex between \(v \) and \(v'' \) which is not dominated by \(\{ v, v', v'' \} \), a contradiction. Hence, for \(n \equiv 2t \pmod{2k+3} \), \(|S| \geq \left\lfloor \frac{n}{2k+3} \right\rfloor + 1 \).

Now it is sufficient to get a dominating set \(S \) of required cardinality. We consider the following cases:

1. For \(n \equiv 4 \pmod{2k+3} \), \(S = \{ v_{2k+3i} : 0 \leq i < \left\lfloor \frac{n}{2k+3} \right\rfloor \} \cup \{ v_{n-2} \} \).
Vertex Domination Critical in Circulant Graphs

2. For \(n \equiv 6, 8, 10, 12, 14, \ldots, 2k+2 \pmod{2k+3} \), \(S = \{ v_{(2k+3)i}; 0 \leq i < \left\lfloor \frac{n}{2k+3} \right\rfloor \} \cup \{ v_{n,1} \} \).

3. For \(n \equiv 4, 6, 8, 10, \ldots, 2k+2 \pmod{2k+3} \), \(S = \{ v_{(2k+3)i}; 0 \leq i < \left\lfloor \frac{n}{2k+3} \right\rfloor \} \).

In each of the above cases, \(S \) is a dominating set for \(Cir(n, A) \) of cardinality \(\left\lceil \frac{n}{2k+3} \right\rceil + 1 \) when \(n \equiv 4, 6, 8, \ldots, 2k+2 \pmod{2k+3} \), and of cardinality \(\left\lfloor \frac{n}{2k+3} \right\rfloor \) when \(n \equiv 6, 8, 10, \ldots, 2k+2 \pmod{2k+3} \). Hence, the result follows.

Theorem 2.2. For any integer \(n \geq 9 \),

\[
\gamma(Cir(n, B)) = \begin{cases}
\left\lceil \frac{n}{2k+5} \right\rceil + 1, & n \equiv 6, 8, 10, \ldots, 2k+4 \pmod{2k+5} \\
\left\lfloor \frac{n}{2k+5} \right\rfloor, & \text{otherwise}
\end{cases}
\]

Proof: Let \(S \) be a \(\gamma(G) \)-set of \(G = Cir(n, B) \). Any vertex of \(G \) dominates \(2k+5 \) vertices of \(G \) including itself, so \(|S| \geq \left\lceil \frac{n}{2k+5} \right\rceil \).

We claim that if \(n \equiv 2t \pmod{2k+5} \), \(t \) is an integer such that \(3 \leq t \leq k+1 \), then \(|S| \geq \left\lceil \frac{n}{2k+5} \right\rceil + 1 \). To see this, assume to the contrary that \(n \equiv 2t \pmod{2k+5} \), and \(|S| = \left\lfloor \frac{n}{2k+5} \right\rfloor \). There are two consecutive vertices \(v, v' \in S \) such that \(|l - l'| < 2k+5 \). Let \(v'' = v' \neq v \) is a consecutive vertex of \(v' \). Without loss of generality we assume that \(|v'' - v| = 2k+5+2t \). Then there are \(2k+4+2t \) possibilities for \(v'' \) to lies between \(v \) and \(v'' \). In each possibly there exists a vertex between \(v \) and \(v'' \) which is not dominated by \(\{v, v', v''\} \), a contradiction. Hence, for \(n \equiv 2t \pmod{2k+5} \), \(|S| \geq \left\lceil \frac{n}{2k+5} \right\rceil + 1 \).

Now it is sufficient to get a dominating set \(S \) of required cardinality. We consider the following cases:

1. For \(n \equiv 6, 8, 10, 12, 14, \ldots, 2k+4 \pmod{2k+5} \), \(S = \{ v_{(2k+5)i}; 0 \leq i < \left\lfloor \frac{n}{2k+5} \right\rfloor \} \cup \{ v_{n,1} \} \).

2. For \(n \equiv 6, 8, 10, \ldots, 2k+4 \pmod{2k+5} \), \(S = \{ v_{(2k+5)i}; 0 \leq i < \left\lfloor \frac{n}{2k+5} \right\rfloor \} \).

In each of the above cases \(S \) is a dominating set for \(Cir(n, B) \) of cardinality \(\left\lceil \frac{n}{2k+5} \right\rceil + 1 \) when \(n \equiv 6, 8, \ldots, 2k+4 \pmod{2k+5} \), and of cardinality \(\left\lfloor \frac{n}{2k+5} \right\rfloor \) when \(n \equiv 6, 8, 10, \ldots, 2k+4 \pmod{2k+5} \). Hence, the result follows.

Theorem 2.3. For any integer \(n \geq 7 \),

\[
\gamma_t(Cir(n, A)) = \begin{cases}
\left\lceil \frac{2n}{4k+4} \right\rceil + 1, & n \equiv 2, 4, 6, \ldots, 2k+2 \pmod{4k+4} \\
\left\lfloor \frac{2n}{4k+4} \right\rfloor, & \text{otherwise}
\end{cases}
\]

Proof. Let \(S \) be a \(\gamma_t \)-set of \(G = Cir(n, A) \). Note that \(|A| = 2k+2 \) and \(G \) is \(2k+2 \)-regular.

From the definition of the total domination number, it follows that \(\left\lfloor \frac{n}{2k+2} \right\rfloor \leq \gamma_t(G) \), \(\gamma_t(G) = |S| \).

For \(n \equiv 2j \pmod{4k+4} \), \(j \) is an integer such that \(0 \leq j < 2k+2 \), we have
A.A. Talebi, M. Zameni and Hossein Rashmanlou

\[\frac{n}{2k+2} = \frac{2n}{4k+4}, \text{ so } \frac{2n}{4k+4} \leq \gamma(G). \]

For \(n \equiv 2j \pmod{4k+4}, j \) is an integer such that \(0 \leq j < 2k+1 \), \(n \) can be written as \(n = (4k+4)l + j = 2((2k+2)l + j) \), which \(l \) is integer and \(n \) is an even number. We partition \(V(G) \) into two disjoint sets \(I_1 = \{v_j, v_{j+1}, v_{j+2}, \ldots, v_{j+(n-3)}\} \) and \(I_2 = \{v_{n-1}, v_{n-2}, \ldots, v_{n-d}\} \). Note that \(|I_1| = |I_2| = (2k+2)l + j \). For any \(x \in I_1, N(x) \subseteq I_2, \) for any \(y \in I_2, N(y) \subseteq I_1 \). It follows that \(G \) is a balanced bipartite graph with bipartition sets \(I_1 \) and \(I_2 \). We can write \(S = S_1 \cup S_2 \), such that \(S_1 \subseteq I_2, \ S_2 \subseteq I_1, \) is dominated by \(S_1 \), \(l \leq i \leq 2 \) and \(|S_1| = |S_2| \).

If \(0 \leq j \leq k+1 \), then \(|S_1| = |S_2| \leq \frac{(2k+2)l+j}{2k+2} = l + 1 \) and \(\gamma(G) = |S| = |S_1| + |S_2| \geq 2\left(\frac{(2k+2)l+j}{2k+2}\right) = 2l + 2 \). On the other hand \(2l + 2 = \frac{(4k+4)(2l+j)}{4k+4} + 1 \), and so

\[\gamma(G) \geq \frac{(4k+4)(2l+j)}{4k+4} + 1. \]

If \(k+2 \leq j \leq 2k+1 \), then \(|S_1| = |S_2| \geq \frac{(2k+2)l+j}{2k+2} = l + 1 \) and \(\gamma(G) = |S| = |S_1| + |S_2| \geq 2\left(\frac{(2k+2)l+j}{2k+2}\right) = 2l + 2 \). On the other hand \(2l + 2 = \frac{(4k+4)(2l+j)}{4k+4} \), and so

\[\gamma(G) \geq \frac{(4k+4)(2l+j)}{4k+4}. \]

If \(j = 0 \), then \(|S_1| = |S_2| \geq \frac{(2k+2)l+j}{2k+2} = l \) and \(\gamma(G) = |S| = |S_1| + |S_2| \geq 2\left(\frac{(2k+2)l+j}{2k+2}\right) = 2l \)

On the other hand \(2l = \frac{(4k+4)(2l+j)}{4k+4} \), and so \(\gamma(G) \geq \frac{(4k+4)(2l+j)}{4k+4} \).

Now it is sufficient to define a total dominating set \(S \) of required cardinality. We consider the following cases:

1. For \(n \equiv 0 \pmod{4k+4}, \) \(S = \{v_{i+2k+2j}, \ldots, v_{i+4k+4j+2k+2}\} \), \(0 \leq i < \frac{n}{4k+4} \).
2. For \(n \equiv 1, 3, 5, 7, \ldots, 2k+1 \pmod{4k+4}, \) \(S = \{v_{i+2k+2j+2k+1}, \ldots, v_{i+4k+4j+2k+2}\} \), \(0 \leq i < \frac{n}{4k+4} \). \(\cup \{v_0\} \).
3. For the cases \(n \equiv 2, 4, 6, \ldots, 2k+2 \pmod{4k+4} \) and \(n \equiv 2k+3, 2k+4, 2k+5, 2k+6, \ldots, 4k+2, 4k+3 \pmod{4k+4} \), \(S = \{v_{i+2k+2j+2k+1}, \ldots, v_{i+4k+4j+2k+2}\} \), \(0 \leq i < \frac{n}{4k+4} \). \(\cup \{v_{n-2k-1}, v_{n-2k-2}\} \).

In each of the above cases, \(S \) is a total dominating set of \(Cir(n, A) \), cardinality of \(S \) is \(\frac{n}{2k+2} + 1 \) when \(n = 2, 4, \ldots, 2k+2 \pmod{4k+4} \), and cardinality of \(S \) is \(\frac{n}{2k+2} \) when \(n = 2, 4, 6, \ldots, 2k+2 \pmod{4k+4} \). Hence, the result follows.

Lemma 2.1. Let \(S \) be a subset of vertices of \(G = Cir(n, B) \) with \(k \geq 3 \) and \(G[S] \) has no isolated vertices. If \(|S| \) is even, then \(S \) dominates at most \((2k+3)|S|\) vertices of \(G \).

Proof: Let \(S \) be a subset of vertices of \(G \) with \(|S| = t\), where \(t \) is even. Any two adjacent vertices of \(S \) dominate \(4k+6 \) vertices of \(G \) including themselves. \(S \) dominates at most \((4k+6)|S| - 2 \cdot (2k+3)|S| = 2k+6 \) vertices of \(G \).

Lemma 2.2. Let \(S \) be a subset of vertices of \(G = Cir(n, B) \) with \(k \geq 3 \) and \(G[S] \) has no isolated vertices. If \(|S| \) is odd, then \(S \) dominates at most \((2k+3)|S| - (k+1)\) vertices of \(G \).

Proof: Let \(S \) be a subset of vertices of \(G \) with \(|S| = t\), where \(t \) is odd. Without loss of generality we may assume that \(G[S] \) has \(d = \left|\frac{|S|-3}{2}\right| + 1 \) components \(G_1, G_2, \ldots, G_d \) where \(|V(G_i)| = 3 \) and \(|V(G_j)| = 2 \) for \(i = 2, 3, 4, \ldots, d \). Let \(V(G_i) = \{x, y, z\} \), then \(\{x, y, z\} \)
Vertex Domination Critical in Circulant Graphs
dominishes at most 5k+8 vertices of G. S dominates at most (4k+6) \left(\frac{|S|-3}{2}\right) + 5k + 8 = (2k+3)t-(k+1) vertices of G.\blacksquare

Theorem 2.4. For any integer \(n \geq 21 \) and \(k \geq 3 \),

\[\gamma(Cir(n, B)) = \begin{cases} \frac{n}{\gcd(3,4,5)} & n \equiv 3, 4, 5, \ldots, 2k+3 \pmod{4k+6} \\ \frac{n}{\gcd(3,4,5)} & \text{otherwise} \end{cases} \]

Proof: Let \(S \) be a \(\gamma_t \)-set of \(G = Cir(n, B) \). It follows from Lemma 2.1 and Lemma 2.2 that \(|S| \geq \frac{n}{\gcd(3,4,5)} \).

We claim that if \(n \equiv 3, 4, 5, \ldots, 2k+3 \pmod{4k+6} \) and \(S \) is a total dominating for \(G \), then \(|S| \geq \frac{n}{\gcd(3,4,5)} + 1 \).

To see this, assume to the contrary that \(|S| = \frac{n}{\gcd(3,4,5)} \). We have \(n = (4k+6)l+j \), where \(l \) is a positive integer, \(j \in \{3, 4, 5, \ldots, 2k+3\} \) then \(|S| = \frac{(4k+6)(l+j)}{\gcd(3,4,5)} = 2l + j \) is an odd number. So, the induced subgraph \(G[S] \) has an odd component \(H \) with at least three vertices. We proceed to prove the following facts.

(i) Any component of \(G[S] \) has at most three vertices.
Assume to the contrary that \(G_1 \) is a component of \(G[S] \) and \(G_1 \) has at least 4 vertices. Without loss of generality assume that \(G_1 \) has 4 vertices. Then \(S \) dominates at most \(6k+10+(4k+6)\left(\frac{|S|-3}{2}\right) + 5k + 8 = (4k+6)l-k \) vertices of \(G \), a contradiction.

(ii) \(H \) is the only odd component of \(G[S] \).
Assume to the contrary that \(H' \neq H \) is a component of \(G[S] \) with \(|V(H')| \) odd. It follows from fact (i) that \(|V(H')| = 3 \). Since \(|S| \) is odd, there is another component \(H' \) with three vertices. Now \(S \) dominates at most \((4k+6)\left(\frac{|S|-3}{2}\right) + 3(5k+8) = (4k+6)l-k \) vertices of \(G \), a contradiction.

For \(n \equiv k+3+k+4+k+5, \ldots, 2k+3 \pmod{4k+6} \) and we have \(V(H) = \{v_{ij} \} \) and \(S \) dominates \((4k+6)\left(\frac{|S|-3}{2}\right) + 5k + 8 = (4k+6)(l-k) \) vertices of \(G \), a contradiction.

For \(n \equiv 3, 4, 5, \ldots, k+2 \pmod{4k+6} \). We have \(n = (4k+6)l+j \), where \(l \) is a positive integer, \(j \in \{3, 4, 5, \ldots, k+2\} \). It follows from facts that \(G[S] \) has \(l = \left(\frac{|S|-3}{2}\right) + 1 \) components \(G_1, G_2, \ldots, G_l \) where \(|V(G_i)| = 2 \) for \(i = 2, 3, 4, \ldots, l \) and \(|V(G_l)| = 3 \). Any two adjacent vertices of \(G \) dominates at most \(4k+6 \) consecutive vertices of \(V(G) \).

\(V(G) \) can be partitioned into \(l \) subsets \(I_1 = \{v_{0l}, v_{1l}, v_{2l}, \ldots, v_{dl}\} \), \(I_2 = \{v_{dl+1}, v_{dl+2}, \ldots, v_{d(1-l)}\} \), \(I_3 = \{v_{d(1-l)+1}, v_{d(1-l)+2}, \ldots, v_{dl}\} \), \(I_4 = \{v_{dk+6(d-l)+1}, v_{dk+6(d-l)+2}, \ldots, v_{dl}\} \).

Note that, \(|I_1| = 4k+6 \) for \(i = 1, 2, 3, \ldots, l-1 \) and \(4k+9 \leq |I_l| \leq 5k+8 \).

Without loss of generality we may assume that \(I_1 \) is dominated by \(\{v_{2k+2}, v_{2k+3}\} \) of \(S \) and \(I_l \) is dominated by \(\{v_{2k+2}, v_{2k+3}\} \) then each of \(I_i \) is by two adjacent vertices of \(S \). Then, vertices \(I_i (4k+9 \leq |I| \leq 5k+8) \) is dominated by three consecutive vertices of \(S \). In

59
each possibility there exists at least one vertex in I which is not dominated by this three vertices, a contradiction. This completes the claim.

Now it is sufficient to define a total dominating set \(S \) of required cardinality.

We consider the following case:

1. For \(n \equiv 0 \pmod{4k+6} \), \(S = \{ v_{(4k+6)m+2k+2}, v_{(4k+6)m+2k+3} : 0 \leq m < \left\lfloor \frac{n}{4k+6} \right\rfloor \} \).

2. For \(n \equiv 1,2 \pmod{4k+6} \), \(S = \{ v_{(4k+6)m+2k+2}, v_{(4k+6)m+2k+3} : 0 \leq m < \left\lfloor \frac{n}{4k+6} \right\rfloor \} \cup \{ v_n \} \).

3. For \(n \equiv 3,4,5,...,4k+5 \pmod{4k+6} \), \(S = \{ v_{(4k+6)m+2k+1}, v_{(4k+6)m+2k+2} : 0 \leq m < \left\lfloor \frac{n}{4k+6} \right\rfloor \} \cup \{ v_{n-(2k+2)}, v_{n-(2k+1)} \} \).

Lemma 2.3. Let \(S \) be a subset of vertices of \(G = Ciri(n,B) \) with \(k=2 \) and \(G[S] \) has no isolated vertices. If \(|S| \) is even, then \(S \) dominates at most \(7|S| \) vertices of \(G \).

Proof: Let \(S \) be subset of vertices of \(G \) with \(|S|=t \), where \(t \) is even. Any two adjacent vertices of \(S \) dominate 14 vertices of \(G \) including them selves. \(S \) dominates at most \(14\left(\left\lfloor \frac{|S|}{2} \right\rfloor \right) = 7|S| \) vertices of \(G \).

Lemma 2.4. Let \(S \) be a subset of vertices of \(G = Ciri(n,B) \), \(k = 2 \) and \(G[S] \) has no isolated vertices. If \(|S| \) is odd, then \(S \) dominates at most \(7|S|-2 \) vertices of \(G \).

Proof: Let \(S \) be subset of vertices of \(G \) with \(|S|=t \), where \(t \) is odd. Without loss of generality we may assume that \(G[S] \) has \(d = \left\lfloor \frac{|S|-3}{2} \right\rfloor +1 \) components \(G_1, G_2, ..., G_d \), where \(|V(G_i)|=3 \) and \(|V(G_i)|=2 \) for \(i=2,3,4,...,d \). let \(V(G_1) = \{ x, y, z \} \), then \(\{ x, y, z \} \) dominates at most \(19 \) vertices of \(G \). \(S \) dominates at most \(14\left(\left\lfloor \frac{|S|-3}{2} \right\rfloor \right) +19 = 7(|S|-3)+19 = 7|S|-2 \) vertices of \(G \).

Theorem 2.5. For any integer \(n \geq 17 \) and \(k=2 \),

\[
\gamma_t(\text{Ciri}(n,B)) = \begin{cases}
\left\lfloor \frac{n}{7} \right\rfloor +1 & n \equiv 3,4,5,6,7 \pmod{14} \\
\left\lfloor \frac{n}{7} \right\rfloor & \text{otherwise}
\end{cases}
\]

Proof: Let \(S \) be a \(\gamma_t \)-set of \(G = \text{Ciri}(n,B) \). It follows from Lemma 2.3 and Lemma 2.4 that \(|S| \geq \left\lfloor \frac{n}{7} \right\rfloor +1 \).

We claim that if \(n \equiv 3,4,5,6,7 \pmod{14} \) and \(S \) is a total dominating for \(G \), then \(|S| \geq \left\lfloor \frac{n}{7} \right\rfloor +1 \).

To see this, assume to the contrary that \(|S| = \left\lfloor \frac{n}{7} \right\rfloor \). We have \(n=14l+j \), where \(l \) is a positive integer, \(j \in \{3,4,5,6,7\} \). Then \(|S| = \left\lfloor \frac{14l+j}{7} \right\rfloor = 2l+1 \) is an odd number. So, the induced subgraph \(G[S] \) has a component \(H \) with at least three vertices. We proceed to prove following facts.

i. Any component of \(G[S] \) has at most three vertices.
Assume to the contrary that H' is a component of $G[S]$ with $|V(H')|$ odd. It follows from fact \(i \) that $|V(H')|=3$. Since $|S|$ is odd, there is another component H' with three vertices. Now S dominates at most
\[14 + (14) \left(\frac{|S|-3}{2} \right) + 24 = 14l + 1 \] vertices of G, a contradiction.

\[ii. \] H is the only odd component of $G[S]$.

Assume to the contrary that $H' \neq H$ is a component of $G[S]$ with $|V(H')|$ odd. It follows from fact \(i \) that $|V(H')|=3$. Since $|S|$ is odd, there is another component H' with three vertices. Now S dominates at most
\[14 \left(\frac{|S|-3-3-3}{2} \right) + 3(19) = 14l + 1 \] vertices of G, a contradiction.

Hence, we conclude that H is the only odd component of $G[S]$.

For $n \equiv 6,7 \pmod{14}$ and we have $V(H)=\{v_j, v_k, v_l\}$ and S dominates $14 \left(\frac{|S|-3}{2} \right) + 19 = 14l + 5$ vertices of G, a contradiction.

For $n \equiv 3, 4, 5 \pmod{14}$. We have $n=14l+j$, where l is a positive integer, $j \in \{3,4,5\}$. It follows from facts that $G[S]$ has $l=\left(\frac{|S|-3}{2} \right) + 1$ components.

For any two adjacent vertices v_i and v_{i+1} of S at most 14 consecutive vertices of $V(G)$.

For $n \equiv 0 \pmod{14}$, $S = \{v_{14l+j+1}, v_{14l+j+2}, \ldots, v_{14l+j+14} \}$.

Note 1. For any two adjacent vertices v_a and v_b of $G = Cir(n,B)$, $k=1$ and $n \geq 13$. We have the following:

iv. If $|v_a, v_b|=1$, then v_a and v_b dominate 10 vertices of G including themselves.

ii. If $|v_a, v_b|=2$, then v_a and v_b dominate 9 vertices of G including themselves.

ii. If $|v_a, v_b|=4$, then v_a and v_b dominate 11 vertices of G including themselves.

Therefore, any two adjacent vertices of G dominate at most 11 vertices of G including themselves.

Note 2. Let G_1 be a component of $G[S]$ with three vertices v_a, v_b, v_c, we have the following:

iv. If $|v_a, v_b|=1$, then G_1 dominates 11 vertices of G including themselves.

ii. If $|v_a, v_b|=2$, then G_1 dominates 11 vertices of G including themselves.
A.A. Talebi, M. Zameni and Hossein Rashmanlou

iii. If \(|v_{i^*} v_0|=1, |v_{i^*} v_i|=2\) then \(G_1\) dominates 14 vertices of \(G\) including themselves.

iv. If \(|v_{i^*} v_0|=4, |v_{i^*} v_i|=2\) then \(G_1\) dominates 13 vertices of \(G\) including themselves.

v. If \(|v_{i^*} v_0|=|v_{i^*} v_i|=4\) then \(G_1\) dominates 15 vertices of \(G\) including themselves.

Therefore, any three vertices of \(G\) belong to a component dominate at most 15 vertices of \(G\) including themselves.

Lemma 2.5. Let \(S\) be a subset of vertices of \(G=\text{Cir}(n, B)\) with \(k = 1\) and \(G[S]\) has no isolated vertices. If \(|S|\) is even, then \(S\) dominates at most \(\left\lceil \frac{|S|}{2} \right\rceil\) vertices of \(G\).

Proof: Let \(S\) be a subset of vertices of \(G\) with \(|S|\equiv t\), where \(t\) is even. Any two adjacent vertices of \(S\) dominate 11 vertices of \(G\) including themselves. So \(S\) dominates at most \(\left\lceil \frac{|S|}{2} \right\rceil\) vertices of \(G\). ■

Lemma 2.6. Let \(S\) be a subset of vertices of \(G=\text{Cir}(n , B)\), \(k = 1\) and \(G[S]\) has no isolated vertices. If \(|S|\) is odd, then \(S\) dominates at most \((\frac{|S|−3}{2})11 + 15\) vertices of \(G\).

Proof: Let \(S\) be a subset of vertices of \(G\) with \(|S|\equiv t\), where \(t\) is odd. Without loss of generality we may assume that \(G[S]\) has \(d = (\frac{|S|−3}{2}) + 1\) components \(G_1, G_2, ..., G_d\), where \(|V(G_i)|=3\) and \(|V(G_i)| = 2\) for \(i = 2, 3, 4, ..., d\). Let \(V(G_i) = \{x, y, z\}\), then \(\{x, y, z\}\) dominates at most 15 vertices of \(G\). So \(S\) dominates at most \((\frac{|S|−3}{2})11 + 15\) vertices of \(G\). ■

Theorem 2.6. For any integer \(n \geq 13\) and \(k = 1\),

\[
\gamma_t(\text{Cir}(n, B)) = \begin{cases}
\left\lceil \frac{2n}{11} \right\rceil + 1 & n \equiv 3, 5, 10 \text{ (mod 11)} \\
\left\lceil \frac{2n}{11} \right\rceil & \text{otherwise}
\end{cases}
\]

Proof: Let \(S\) be a \(\gamma_t\)-set of \(G = \text{Cir}(n, B)\). It follows from Lemma 2.5 and Lemma 2.6 that \(|S| \geq \left\lceil \frac{2n}{11} \right\rceil\). In the next we prove two claims as following.

Claim 1. If \(n \equiv 3, 5 \text{ (mod 11)}\) and \(S\) is a total dominating set for \(G\), then \(|S| = \left\lceil \frac{2n}{11} \right\rceil + 1\).

Let \(n \equiv 3, 5 \text{ (mod 11)}\) and let \(S\) be a total dominating set for \(G\). Assume to the contrary that \(|S| = \left\lceil \frac{2n}{11} \right\rceil\). We have \(n=11l+j\), where \(l\) is a positive integer, \(j \in \{3, 5\}\). Then \(|S| = \left\lceil \frac{2l+j}{11} \right\rceil = 2l+j\) is an odd number. So, the induced subgraph \(G[S]\) has an odd component \(H\) with at least three vertices. We proceed to following facts.

(i) Any component of \(G[S]\) has at most three vertices.

Assume to the contrary that \(G_1\) is a component of \(G[S]\) and \(G_1\) has at least 4 vertices. Without loss of generality assume that \(G_1\) has 4 vertices. Then \(S\) dominates at most \(15+(11)\left\lceil \frac{|S|−3}{2} \right\rceil + 20 = 11l+2\) vertices of \(G\), a contradiction.

(ii) \(H\) is the only odd component of \(G[S]\).
Vertex Domination Critical in Circulant Graphs

Assume to the contrary that H'_eH is a component of $G[S]$ with $|V(H')|=3$. Since $|S|$ is odd, there is another component H' with three vertices. Now S dominates at most $11\left\lceil\frac{|S|-3-3}{2}\right\rceil + 3(15) = 11l + 1$ vertices of G, a contradiction.

For $n\equiv5 \pmod{11}$ and we have $V(H)=\{v_5, v_9, v_{13}\}$ and S dominates $11\left\lceil\frac{|S|-3}{2}\right\rceil + 15 = 11l+4$ vertices of G, a contradiction.

When $n\equiv3 \pmod{11}$, we have $n=11l+3$, where l is a positive integer. According to note 1, $\{v_2, v_4\}$ dominate 11 vertices. $N(\{v_6, v_9\})=\{v_6, v_{12}, \ldots, v_{15}\}$ and v_{12} is dominated by v_{16}. $N(\{v_{16}, v_{20}\})=\{v_{16}, v_{24}, \ldots, v_{27}\}$ and v_{24} is dominated by v_{27}. $N(\{v_{27}, v_{31}\})=\{v_{27}, v_{35}, \ldots, v_{38}\}$, we continue this process and $N(\{v_{l+2}\})=\{v_{l+2}, v_{l+9}, \ldots, v_{l+15}\}$. So $\{v_{l+15}, v_{l+30}, v_{l+36}, \ldots, v_{l+11l}\}=\{v_{l+2}, v_{l+15}\}$ is dominated by three vertices. In each possibility there exits at least one vertex in $\text{Last subset which is not dominated by this 3 vertices}$, a contradiction.

This completes the Claim 1.

Claim 2. If $n\equiv10 \pmod{11}$ and let S be a total dominating set for G, then $|S|\geq\frac{2n}{11}+1$.

Assume to the contrary that $|S|=\frac{2n}{11}$. We have $n=11l+10$ where l is a positive integer. Then $|S|=\frac{2n}{11}+2=2l+2$ is an even number. We have any component of G has at least two vertices. Now we are proving any component of G has exactly two vertices.

Assume to the contrary that G_1 is a component of G and it has at least 3 vertices. Let G_1 has 3 vertices. So $|S|$ is an even number, there exist $G_1\neq G_1'$ is a component of $G[S]$ with $|V(G_1')|=3$, then at least $|V(G_1')|$ is 3. If $|V(G_1')|=3$, then S dominates at most $11\left\lceil\frac{|S|-3-3}{2}\right\rceil + 2(15) = 11l + 8$ vertices of G, a contradiction.

So the induced subgraph $G[S]$ has components with two vertices. It follows from Note 1 and process of case 2, $S=\{v_5, v_9, v_{16}, v_{20}, v_{27}, v_{31}, \ldots, v_{l+15}, v_{l+19}, v_{l+23}, v_{l+27}\}$. We have $N(\{v_5, v_9\})=\{v_1, v_2, v_{15}, \ldots, v_{24}\}$, $N(\{v_{15}, v_{20}\})=\{v_{16}, v_{24}, v_{27}, v_{31}\}$, $N(\{v_{27}, v_{31}\})=\{v_{28}, v_{30}, v_{33}, \ldots, v_{37}\}$, $N(\{v_{l+15}, v_{l+19}\})=\{v_{l+16}, v_{l+24}, v_{l+27}, v_{l+31}\}$, $N(\{v_{l+23}, v_{l+27}\})=\{v_{l+24}, v_{l+30}, v_{l+33}, \ldots, v_{l+37}\}$. We have $\{v_5, v_9\}=: \{v_5, v_9\}$ and $\{v_{l+15}, v_{l+19}\}=: \{v_{l+15}, v_{l+19}\}$. We have $\{v_{l+23}, v_{l+27}\}=: \{v_{l+23}, v_{l+27}\}$ and v_2 is not dominated by S, a contradiction.

This completes the Claim 2.

Now it is sufficient to define a total dominating set S of required cardinality. We consider the following cases:

1. For $n\equiv0 \pmod{11}$, $S=\{v_{l+6k+5}, v_{l+6k+9}: 0 \leq k < \left\lceil\frac{n}{11}\right\rceil\}$.
2. For $n\equiv1,2,4 \pmod{11}$, $S=\{v_{l+6k+5}, v_{l+6k+9}: 0 \leq k < \left\lceil\frac{n}{11}\right\rceil\} \cup\{v_{n-2}\}$.
3. For $n\equiv3,5,6,7,8 \pmod{11}$, $S=\{v_{l+6k+5}, v_{l+6k+9}: 0 \leq k < \left\lceil\frac{n}{11}\right\rceil\} \cup\{v_{n-2}, v_{n-3}\}$.
4. For $n\equiv9 \pmod{11}$, $S=\{v_{l+6k+5}, v_{l+6k+9}: 0 \leq k < \left\lceil\frac{n}{11}\right\rceil\} \cup\{v_{n-2}, v_{n-3}\}$.
5. For $n\equiv0 \pmod{11}$, $S=\{v_{l+6k+5}, v_{l+6k+9}: 0 \leq k < \left\lceil\frac{n}{11}\right\rceil\}$.
A.A.Talebi, M.Zameni and Hossein Rashmanlou

Theorem 2.7. For $n \geq 7$, $Cir(n, A)$ is γ-critical if and only if $n \equiv 4 \pmod{2k+3}$.

Proof. First we show that if $n \equiv 4 \pmod{2k+3}$ that G is γ-critical. Let x be a vertex of $G = Cir((2k+3)l+4, A)$, for some positive integer l. Since G is transitive, we assume that $x = v_{n-2}$. It is easy to see that $S = \{v_{(2k+3)i}: 0 \leq i \leq \lceil \frac{n}{2k+3} \rceil \}$ is a dominating set for $G - x$. It follows that $\gamma(G - x) \leq \lfloor \frac{n}{2k+3} \rfloor \leq \lfloor \frac{n}{2k+3} \rfloor + 1 = \gamma(G)$. Hence, G is γ-critical.

Suppose now that $n \equiv 4 \pmod{2k+3}$, we show that G is not γ-critical. Let T be a subset of vertices with $|T| < \gamma(G)$. Without loss of generality we let $|T| = \gamma(G)-1$. We show that any $|T|$ vertices of G dominate at most $n - 2$ vertices of G.

We consider the following cases:

1. For $n \equiv 4, 6, 8, \ldots, 2k+2 \pmod{2k+3}$, by Theorem 2.1 $\gamma(G) = \lfloor \frac{n}{2k+3} \rfloor$.

 If $n \equiv 0 \pmod{2k+3}$, then $n = (2k+3)l$ for some integer l. It follows that $\gamma(G) = l$. Now T dominates at most $(2k+3)(l-1) \leq n - 2$ vertices of G. Similarly, for $n \equiv 2, 3, 5, 7, 9, 11, \ldots, 2k+1 \pmod{2k+3}$, T dominates at most $(2k+3)(l-1) \leq n - 2$ vertices of G.

 We assume that $n \equiv 1 \pmod{2k+3}$. There is an integer l such that $n = (2k+3)l + 1$, $|T| \equiv \lfloor \frac{n}{2k+3} \rfloor - 1 = l$.

 If there are two consecutive vertices x, y in T such that $|x - y| < 2k+3$, then $N_{d}(x) \cap N_{d}(y) \not= \emptyset$. Hence, $\{x, y\}$ dominates at most $4k+5$ vertices of G and $T \setminus \{x, y\}$ dominates at most $(2k+3)(l-2)$ vertices of G. So, T dominates at most $n - 2$ vertices of G.

 It remains to assume that for any two consecutive vertices a, b in T, $|a - b| \geq 2k+3$. In this case, there are two consecutive vertices x, y in T such that $|x - y| > 2k+3$. Then there exist two vertices u, v lie between x and y in G, and T does not dominate $\{u, v\}$. So, T dominates at most $n - 2$ vertices of G, which is a contradiction.

2. For $n \equiv 2t \pmod{2k+3}$, t is an integer with $3 \leq t \leq k+1$ by Theorem 2.1, $\gamma(G) = \lfloor \frac{n}{2k+3} \rfloor + 1$. There are two consecutive vertices $v_i, v_{i+1} \in S$ such that $|i - i'| < 2k+3$. Let $v_i' \not= v_i$ be a consecutive vertex of v_i. Without loss of generality we assume that $|v_i' - v_i| = 2k+3+2t$. Then there are $2k+2+2t$ possibilities for v_i' to lie between v_i and v_i''. In each possibility there exists at least two vertex between v_i and v_i'' which is not dominated by $\{v_0, v_i', v_i''\}$.

 So, T dominates at most $n - 2$ vertices of G, which is a contradiction.

Theorem 2.8. For $n \geq 9$, $Cir(n, B)$ is γ-critical if and only if $n \equiv 6 \pmod{2k+5}$.

Proof: First we show that if $n \equiv 6 \pmod{2k+5}$ that G is γ-critical. Let x be a vertex of $G = Cir((2k+5)l+6, A)$ for some positive integer l. Since G is transitive, we assume that $x = v_{n-3}$. It is easy to see that $S = \{v_{(2k+5)i}: 0 \leq i \leq \lceil \frac{n}{2k+5} \rceil \}$ is a dominating set for $G - x$. It follows that $\gamma(G - x) \leq \lfloor \frac{n}{2k+5} \rfloor \leq \lfloor \frac{n}{2k+5} \rfloor + 1 = \gamma(G)$. Hence, G is γ-critical.

Suppose now, that $n \equiv 6 \pmod{2k+5}$. We show that G is not γ-critical. Let T be a subset of vertices with $|T| < \gamma(G)$. Without loss of generality we let $|T| = \gamma(G)-1$. We show that any $|T|$ vertices of G dominate at most $n - 2$ vertices of G.

We consider the following cases:

1. For $n \equiv 8, \ldots, 2k+2, 2k+4 \pmod{2k+5}$, by Theorem 2.2, $\gamma(G) = \lfloor \frac{n}{2k+5} \rfloor$.

64
Vertex Domination Critical in Circulant Graphs

If \(n \equiv 0 \pmod{2k+5} \), then \(n = (2k+5)l \) for some integer \(l \). It follows that \(\gamma(G) = l \). Now, \(T \) dominates at most \((2k+5)(i-1) \leq n - 2\) vertices of \(G \). Similarly for \(n \equiv 2,3,4,5,7,9,11, \ldots,2k+3 \pmod{2k+5} \), \(T \) dominates at most \((2k+5)(i-1) \leq n - 2\) vertices of \(G \). We assume that
\(n \equiv 1 \pmod{2k+5} \). There is an integer \(l \) such that \(n = (2k+5)l+1 \). Without loss of generality we let \(|T| = \left[\frac{n}{2k+5} \right] = 1 = l \).

If there are two consecutive vertices \(x, y \) in \(T \) such that \(|x - y| < 2k+5 \), then \(N_G(x) \cap N_G(y) \neq \emptyset \). Hence, \(\{x,y\} \) dominates at most \(4k+9 \) vertices of \(G \) and \(T \setminus \{x,y\} \) dominates at most \((2k+5)(l-2)\) vertices of \(G \). So, \(T \) dominates at most \(n - 2 \) vertices of \(G \).

It remains to assume that for any two consecutive vertices \(a,b \) in \(T \), \(|a-b| \geq 2k+5 \). In this case there are two consecutive vertices \(x,y \) in \(T \) such that \(|x - y| > 2k+5 \). Then there exist two vertices \(u, v \) lie between \(x \) and \(y \) in \(C \), and \(T \) does not dominate \(\{u,v\} \). So, \(T \) dominates at most \(n - 2 \) vertices of \(G \), which is a contradiction. □

2. For \(n \equiv 2t \pmod{2k+5} \), \(t \) is an integer with \(4 \leq t \leq k+2 \), by Theorem 2.2, \(\gamma(G) = \left[\frac{n}{2k+5} \right] + 1 \). There are two consecutive vertices \(v_i, v_j \in S \) such that \(|l - l'| < 2k+5 \). Let \(v_l'' \neq v_j \) be a consecutive vertex of \(v_i \). Without loss of generality we assume that \(|v_l'' - v_j| = 2k+5+2t \). Then there are \(2k+4+2t \) possibilities for \(v_l'' \) to lies between \(v_i \) and \(v_j \). In each possibly there exists at least two vertex between \(v_i \) and \(v_j '' \) which is not dominated by \(\{v_i,v_j,'',v_j''\} \).

So, \(T \) dominates at most \(n - 2 \) vertices of \(G \), which is a contradiction. □

REFERENCES