Intern. J. Fuzzy Mathematical Archive Vol. 12, No. 2, 2017, 55-66 ISSN: 2320 –3242 (P), 2320 –3250 (online) Published on 16 June 2017 <u>www.researchmathsci.org</u> DOI: http://dx.doi.org/10.22457/ijfma.v12n2a2

International Journal of **Fuzzy Mathematical Archive**

Vertex Domination Critical in Circulant Graphs

A.A.Talebi¹, M.Zameni² and Hossein Rashmanlou³

 ^{1,2}Department of Mathematics, University of Mazandaran, Babolsar, Iran
³Sama Technical and Vocational Training College, Islamic Azad University Sari Branch, Sari, Iran

> Email: ¹a.talebi@umz.ac.ir, ²mahsa.zameni@yahoo.com ³Corresponding author. rashmanlou.1987@gmail.com

Received 10 March 2017; accepted 15 June 2017

Abstract. A graph G is vertex domination critical if for any vertex v of G, the domination number of G – v is less than the domination number of G. We call these graphs γ -critical if domination number of G is γ . In this paper, we determine the domination and the total domination number of Cir(n,A) for two particular generating sets A of Z_n, and then study γ -critical in these graphs.

Keywords: Domination, total domination, circulant graph.

AMS Mathematics Subject Classification (2010): 05C72

1. Introduction

A vertex in a graph G dominates itself and its neighbors. A set of vertices S in a graph G is a dominating set, if each vertex of G is dominated by some vertex of S. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G. A dominating set S is called a total dominating set if each vertex v of G is dominated by some vertex $u \neq v$ of S. The total domination number of G, denoted by $\gamma_t(G)$, is the minimum cardinality of a total dominating set of G.

We denote the open neighborhood of a vertex v of G by $N_G(v)$, or just N(v), and its closed neighborhood by N[v]. For a vertex set $S \subseteq V(G)$, $N(S) = \bigcup_{v \in S} N(v)$ and $N[S] = \bigcup_{v \in S} N[v]$. So, a set of vertices S in G is a dominating set, if N[S] = V(G). Also, S is a total dominating set, if N(S) = V(G). For notation and graph theory terminology in general we follow [3]. Rashmanlou and Pal et al. [5-17] studied different kinds of fuzzy graphs. We call a dominating set of cardinality $\gamma(G)$, a $\gamma(G)$ – set and a total dominating set of cardinality $\gamma_t(G)$, a $\gamma_t(G)$ – set. A graph G is called vertex domination critical if $\gamma(G - v) < \gamma(G)$, for every vertex v in G. For references on the vertex domination critical graphs see [1,2,3].

Jafari Rad [4], determines the domination number and the total domination number of graph $Cir(n, \{1, 3\})$, for any integer *n*, and then study γ – criticality in $Cir(n, \{1, 3\})$.

Let $n \ge 7$ be a positive integer. The circulant graph Cir(n, A) where $A = \{1, n - 1, 3, n - 3, 5, n - 5, ..., 2k - l, n - (2k - 1), 2k + l, n - (2k + l)\}$ is the graph with vertex set $\{v_0, v_0\}$

 $v_1, ..., v_{n-1}$, and edge set{ $\{v_i, v_{i+j}\}$: $i \in \{0, 1, ..., n-1\}, j \in \{1, n-1, 3, n-3, ..., 2k+1\}$ n - (2k + 1)}, k is an integer such that $0 \le k < [\frac{n-3}{4}]$.

Let $n \ge 9$ be a positive integer. The circulant graph Cir(n, B) where $B = \{1, n - 1, 2, ..., n < 0\}$ n-2, 4, n-4, ..., 2k, n-2k, 2k+2, n-(2k+2) is the graph with vertex set $\{v_0, v_1, ..., v_n\}$ v_{n-1} , and edge set{ $\{v_i, v_{i+j}\}$: $i \in \{0, 1, ..., n-1\}$, $j \in \{1, n-1, 2, n-2, ..., 2k+2, n-1\}$ (2k+2)}, k is an integer such that $0 \le k < [\frac{n-5}{4}]$.

All arithmetic on the indices is assumed to be modulo *n*.

In this paper, we first determine the domination number and the total domination number in the circulant graphs Cir(n, A) and Cir(n, B) for any integer n, and then study γ – criticality and γ_t (G) – criticality in these class of graphs.

For two vertices x and y in a graph G we denote the distance between x and y by $d_G(x, y)$, or just d(x, y).

2. Domination and total domination

Let G be a circulant graph with n vertices. Let cycle C = C(G) be the subgraph of G with vertex set $\{v_0, v_1, ..., v_{n-1}\}$ and edge set $\{\{v_i, v_{i+1}\} : i \in \{0, 1, ..., n-1\}\}$. For a subset $S \subseteq V(G)$ with at least three vertices, we say that x, $y \in S$ are *consecutive* if there is no vertex $z \in S$ such that z lies between x and y in C. For two consecutive vertices x, y in a subset of vertices S, we define $|x - y| = d_C(x, y)$. So, |x - y| equals to the number of edges in a shortest path between x and y in the cycle C.

Theorem 2.1. For any integer $n \ge 7$,

$$\gamma(Cir(n, A)) = \begin{cases} \left\lceil \frac{n}{2k+3} \right\rceil + 1n \equiv 4, 6, 8, \dots, 2k+2 \pmod{2k+3} \\ \left\lceil \frac{n}{2k+3} \right\rceil \text{ otherwise} \end{cases}$$

Proof: Let *S* be a $\gamma(G)$ -set of G = Cir(n, A). Any vertex of *G* dominates 2k+3 vertices of

We claim that if $n \equiv 2t \pmod{2k+3}$, for an integer t such that $2 \le t \le k+1$, then $|S| \ge \lfloor \frac{n}{2k+3} \rfloor + 1$.

To see this, assume to the contrary that $n \equiv 2t \pmod{2k+3}$, and $|S| = \lceil \frac{n}{2k+3} \rceil$. There are two consecutive vertices $v_l, v_l \in S$ such that |l - l'| < 2k+3. Let $v_l'' \neq v_l$ be a consecutive vertex of v_l . Without loss of generality assume that $|v_l'' - v_l| = 2k + 3 + 2t$. Then there are 2k+2+2t possibilities for v_l to lies between v_l and v_l ". In each possibly there exists a vertex between v_l and v_l'' which is not dominated by $\{v_l, v_l', v_l''\}$, a contradiction. Hence, for $n \equiv 2t \pmod{2k+3}, |S| \ge \lfloor \frac{n}{2k+3} \rfloor + 1.$

Now it is sufficient to get a dominating set S of required cardinality. We consider the following cases:

1. For $n \equiv 4 \pmod{2k+3}$, $S = \{v_{(2k+3)i} : 0 \le i < \lceil \frac{n}{2k+3} \rceil \} \cup \{v_{n-2}\}.$

2. For $n \equiv 6, 8, 10, 12, 14, ..., 2k+2 \pmod{2k+3}$, $S = \{v_{(2k+3)i}: 0 \le i < \lceil \frac{n}{2k+3} \rceil \} \cup \{v_{n-1}\}$. **3.** For $n \equiv 4, 6, 8, 10, ..., 2k+2 \pmod{2k+3}$, $S = \{v_{(2k+3)i}: 0 \le i < \lceil \frac{n}{2k+3} \rceil \}$. In each of the above cases, *S* is a dominating set for *Cir(n*, *A*) of cardinality $\lceil \frac{n}{2k+3} \rceil + 1$ when $n \equiv 4, 6, 8, ..., 2k+2 \pmod{2k+3}$, and of cardinality $\lceil \frac{n}{2k+3} \rceil$ when $n \equiv 4, 6, 8, 10, ..., 2k+2 \pmod{2k+3}$. Hence, the result follows.

Theorem 2.2. For any integer $n \ge 9$,

$$\gamma(Cir(n, B)) = -\begin{cases} [\frac{n}{2k+5}] + 1, n \equiv 6, 8, 10, \dots, 2k+4 \pmod{2k+5} \\ [\frac{n}{2k+5}] & otherwise \end{cases}$$

Proof: Let *S* be a $\gamma(G)$ -set of G = Cir(n, B). Any vertex of *G* dominates 2k+5 vertices of *G* including itself, so $|S| \ge \lceil \frac{n}{2k+5} \rceil$.

We claim that if $n \equiv 2t \pmod{2k+5}$, t is an integer such that $3 \le t \le k+1$, then $|S| \ge \lfloor \frac{n}{2k+5} \rfloor + 1$. To see this, assume to the contrary that $n \equiv 2t \pmod{2k+5}$, and $|S| = \lfloor \frac{n}{2k+5} \rfloor$. There are two consecutive vertices $v_l, v_l' \in S$ such that |l - l'| < 2k+5. Let $v_l'' \ne v_l$ is a consecutive vertex of v_l' . Without loss of generality we assume that $|v_l'' - v_l| = 2k+5+2t$. Then there are 2k+4+2t possibilities for v_l' to lies between v_l and v_l''' . In each possibly there exists a vertex between v_l and v_l'' which is not dominated by $\{v_l, v_l', v_l''\}$, a contradiction. Hence, for $n \equiv 2t \pmod{2k+5}$, $|S| \ge \lfloor \frac{n}{2k+5} \rfloor + 1$.

Now it is sufficient to get a dominating set *S* of required cardinality. We consider the following cases:

1. For
$$n \equiv 6, 8, 10, 12, 14, ..., 2k+4 \pmod{2k+5}$$
, $S = \{v_{(2k+5)i}: 0 \le i < \lceil \frac{n}{2k+5} \rceil \} \cup \{v_{n-3}\}$
2. For $n \equiv 6, 8, 10, ..., 2k+4 \pmod{2k+5}$, $S = \{v_{(2k+5)i}: 0 \le i < \lceil \frac{n}{2k+5} \rceil \}$.

In each of the above cases *S* is a dominating set for *Cir(n, B)* of cardinality $\lceil \frac{n}{2k+5} \rceil + 1$ when $n \equiv 6, 8, ..., 2k+4 \pmod{2k+5}$, and of cardinality $\lceil \frac{n}{2k+5} \rceil$ when $n \equiv 6, 8, 10, ..., 2k+4 \pmod{2k+5}$.

Hence, the result follows. ■

Theorem 2.3. For any integer $n \ge 7$,

$$\gamma_{t}(Cir(n, A)) = \begin{cases} \left\lceil \frac{2n}{4k+4} \right\rceil + 1n \equiv 2, 4, 6, \dots, 2k+2 \pmod{4k+4} \\ \left\lceil \frac{2n}{4k+4} \right\rceil otherwise \end{cases}$$

Proof. Let *S* be a γ_t -set of G = Cir(n, A). Note that |A| = 2k+2 and *G* is 2k+2-regular. From the definition of the total domination number, it follows that $\left\lceil \frac{n}{2k+2} \right\rceil \leq \gamma_t(G), \gamma_t(G) = |S|$.

For $n \equiv 2j \pmod{4k+4}$, *j* is an integer such that $0 \le j < 2k+2$, we have

 $\left[\frac{n}{2k+2}\right] = \left[\frac{2n}{4k+4}\right], \text{ so } \left[\frac{2n}{4k+4}\right] \le \gamma_{\mathsf{t}}(G).$

For $n \equiv 2j \pmod{4k+4}$, *j* is an integer such that $0 \le j < 2k+1$, *n* can be written as n=(4k+4)l+2j = 2((2k+2)l+j), which *l* is integer and *n* is an even number. We partite V(G) into two disjoint sets $I_1 = \{v_1, v_3, v_5, v_7, \dots, v_{n-3}, v_{n-1}\}$ and $I_2 = \{v_0, v_2, v_4, v_6, \dots, v_{n-4}, v_{n-2}\}$. Note that $|I_1| = |I_2| = (2k+2)l + j$. For any $x \in I_1$, $N(x) \subseteq I_2$, for any $y \in I_2$, $N(y) \subseteq I_1$. It follows that *G* is a balanced bipartite graph with bipartition sets I_1 and I_2 . We can write $S = S_1 \cup S_2$, such that $S_1 \subseteq I_2$, $S_2 \subseteq I_1$, I_i is dominated by S_i , $1 \le i \le 2$ and $|S_1| = |S_2|$.

If
$$0 < j \le k+1$$
, then $|S_1| = |S_2| \ge \lceil \frac{(2k+2)l+j}{2k+2} \rceil = l+1$ and $\gamma_1(G) = |S| = |S_1| + |S_2| \ge 2\lceil \frac{(2k+2)l+j}{2k+2} \rceil = 2l+2$. On the other hand $2l+2 = \lceil \frac{(4k+4)(2l)+4j}{4k+4} \rceil + 1$, and so $\gamma_1(G) \ge \lceil \frac{(4k+4)(2l)+4j}{4k+4} \rceil + 1$.

If $k+2 \le j \le 2k+1$, then $|S_1| = |S_2| \ge \lceil \frac{(2k+2)l+j}{2k+2} \rceil = l+1$ and $\gamma_t(G) = |S| = |S_1| + |S_2| \ge 2\lceil \frac{(2k+2)l+j}{2k+2} \rceil = 2l+2$. On the other hand $2l+2 = \lceil \frac{(4k+4)(2l)+4j}{4k+4} \rceil$, and so $\gamma_t(G) \ge \lceil \frac{(4k+4)(2l)+2j}{2k+2} \rceil$.

If j=0, then $|S_1| = |S_2| \ge \left\lceil \frac{(2k+2)l}{2k+2} \right\rceil = l$ and $\gamma_t(G) = |S| = |S_1| + |S_2| \ge 2\left\lceil \frac{(2k+2)l}{2k+2} \right\rceil = 2l$. On the other hand $2l = \left\lceil \frac{(4k+4)2l}{4k+4} \right\rceil$, and so $\gamma_t(G) \ge \left\lceil \frac{(4k+4)2l}{4k+4} \right\rceil$.

Now it is sufficient to define a total dominating set *S* of required cardinality. We consider the following cases:

1. For $n \equiv 0 \pmod{4k+4}$, $S = \{v_{(4k+4)i+2k+1}, v_{(4k+4)i+4k+2}: 0 \le i < [\frac{n}{4k+4}]\}$. 2. For $n \equiv 1,3,5,7, \ldots, 2k+1 \pmod{4k+4}$, $S = \{v_{(4k+4)i+2k+1}, v_{(4k+4)i+4k+2}: 0 \le i < [\frac{n}{4k+4}]\} \cup \{v_0\}$. 3. For the cases $n \equiv 2,4,6, \ldots, 2k+2 \pmod{4k+4}$ and $n \equiv 2k+3,2k+4,2k+5, 2k+6, \ldots, 4k+2,4k+3 \pmod{4k+4}$, $S = \{v_{(4k+4)i+2k+1, v(4k+4)i+2k+2}: 0 \le I < [\frac{n}{4k+4}]\} \cup \{v_{n-2k}, v_{n-(2k+1)}\}$.

In each of the above cases *S* is a total dominating set of Cir(n, A), cardinality of *S* is $\left[\frac{n}{2k+2}\right]+1$ when $n \equiv 2,4, ..., 2k+2 \pmod{4k+4}$, and cardinality of *S* is $\left[\frac{n}{2k+2}\right]$ when $n \equiv 2, 4, ..., 2k+2 \pmod{4k+4}$. Hence, the result follows.

Lemma 2.1. Let *S* be a subset of vertices of G=Cir(n,B) with $k \ge 3$ and G[S] has no isolated vertices. If |S| is even, then *S* dominates at most (2k+3)|S| vertices of *G*. **Proof:** Let *S* be a subset of vertices of *G* with |S|=t, where *t* is even. Any two adjacent

Proof: Let S be a subset of vertices of G with |S| = t, where t is even. Any two adjacent vertices of S dominate 4k+6 vertices of G including themselves. S dominates at most $(4k+6)(\frac{|S|}{2}) = (2k+3) |S|$ vertices of G.

Lemma 2.2. Let S be a subset of vertices of G=Cir(n,B) with $k \ge 3$ and G[S] has no isolated vertices. If |S| is odd, then S dominates at most (2k+3) |S| - (k+1) vertices of G. **Proof:** Let S a be subset of vertices of G with |S|=t where t is odd. Without loss of

Proof: Let *S* a be subset of vertices of *G* with |S|=t, where *t* is odd. Without loss of generality we may assume that G[S] has $d = (\frac{|S|-3}{2}) + 1$ components $G_1, G_2, ..., G_d$ where $|V(G_1)|=3$ and $|V(G_i)|=2$ for i=2, 3, 4, ..., d. Let $V(G_1)=\{x, y, z\}$, then $\{x, y, z\}$

dominates at most 5k+8 vertices of *G*. *S* dominates at most $(4k+6)\left(\frac{|S|-3}{2}\right) + 5k + 8 = (2k+3)t-(k+1)$ vertices of *G*.

Theorem 2.4. For any integer $n \ge 21$ and $k \ge 3$,

$$\gamma_{t}(Cir(n, B)) = \begin{cases} \left[\frac{n}{2k+3}\right] + 1, n \equiv 3, 4, 5, 6, \dots, 2k+3 \pmod{4k+6} \\ \left[\frac{n}{2k+3}\right] otherwise \end{cases}$$

Proof: Let *S* be a γ_t -set of G = Cir(n,B). It follows from Lemma 2.1 and Lemma 2.2 that $|S| \ge \left[\frac{n}{2k+3}\right]$.

We claim that if $n \equiv 3,4,5, ..., 2k+3 \pmod{4k+6}$ and S is a total dominating for G, then $|S| \ge \lceil \frac{n}{2k+3} \rceil + 1$.

To see this, assume to the contrary that $|S| = \lceil \frac{n}{2k+3} \rceil$. We have n = (4k+6)l+j, where *l* is a positive integer, $j \in \{3,4,5, ..., 2k+3\}$ then $|S| = \lceil \frac{(4k+6)l+j}{2k+3} \rceil = 2l+1$ is an odd number. So, the induced subgraph G[S] has an odd component *H* with at least three vertices. We proceed to prove the following facts.

(i) Any component of G [S] has at most three vertices.

Assume to the contrary that G_1 is a component of G[S] and G_1 has at least 4 vertices. Without loss of generality assume that G_1 has 4 vertices. Then S dominates at most $6k+10+(4k+6)(\frac{|S|-3-4}{2}) + 5k + 8 = (4k+6)l-k$ vertices of G, a contradiction.

(ii) H is the only odd component of G[S].

Assume to the contrary that $H' \neq H$ is a component of G[S] with |V(H')| odd. It follows from fact (i) that |V(H')|=3. Since |S| is odd, there is another component H'' with three vertices. Now S dominates at most (4k+6) $(\frac{|S|-3-3-3}{2}) + 3(5k+8) = (4k+6)l - k$ vertices of G, a contradiction.

For $n \equiv k+3, k+4, k+5, \dots, 2k+3 \pmod{4k+6}$ and we have $V(H) = \{v_f, v_q, v_p\}$ and S dominates $(4k+6)(\frac{|S|-3}{2}) + 5k + 8 = (4k+6)l+k+2$ vertices of G, a contradiction.

For $n \equiv 3, 4, 5, ..., k+2 \pmod{4k+6}$. We have n=(4k+6) l+j, where *l* is a positive integer, $j \in \{3,4,5, ..., k+2\}$. It follows from facts that G[S] has $l = \binom{|S|-3}{2} + 1$ components $G_1, G_2, ..., G_l$ where $|V(G_i)|=2$ for i=2, 3, 4, ..., l and $|V(G_1)|=3$. Any two adjacent vertices of *S* dominates at most 4k+6 consecutive vertices of V(G).

 $V(G) \text{ can be partitioned into } l \text{ subset } I_{l} = \{v_{0}, v_{1}, v_{2}, \dots, v_{4k+5}\}, I_{2} = \{v_{4k+6}, v_{4k+7}, v_{4k+8}, \dots, v_{8k+11}\}, I_{3} = \{v_{8k+12}, v_{8k+13}, \dots, v_{12k+17}\}, \dots, I_{l-1} = \{v_{(4k+6)(l-2)}, v_{(4k+6)(l-2)+1}, \dots, v_{(4k+6)(l-1)-1}\}, I_{l} = \{v_{(4k+6)(l-1)+1}, v_{(4k+6)(l-1)+2}, \dots, v_{n-1}\}.$

Note that, $|I_i|=4k+6$ for i=1, 2, 3, ..., l-1 and $4k+9 \le |I_l| \le 5k+8$.

Without loss of generality we may assume that I_1 is dominated by $\{v_{2k+2}, v_{2k+3}\}$ of *S* and I_2 is dominated by $\{v_{6k+8}, v_{6k+9}\}$, then each of I_i is by two adjacent vertices of *S*. Then, vertices I_l (4k+9 $\leq |I_l| \leq 5k+8$) is dominated by three consecutive vertices of *S*. In

each possibility there exists at least one vertex in I_l which is not dominated by this three vertices, a contradiction. This completes the claim.

Now it is sufficient to define a total dominating set *S* of required cardinality. We consider the following case:

1. For $n \equiv 0 \pmod{4k+6}$, $S = \{v_{(4k+6)m+2k+2}, v_{(4k+6)m+2k+3}: 0 \le m < [\frac{n}{4k+6}] \}$. 2. For $n \equiv 1,2 \pmod{4k+6}$, $S = \{v_{(4k+6)m+2k+2}, v_{(4k+6)m+2k+3}: 0 \le m < [\frac{n}{4k+6}] \} \cup \{v_{n-3}\}$. 3. For $n \equiv 3, 4, 5, ..., 4k+5 \pmod{4k+6}$, $S = \{v_{(4k+6)m+2k+1}, v_{(4k+6)m+2k+2}: 0 \le m < [\frac{n}{4k+6}] \} \cup \{v_{n-2k+2}, v_{n-2k+1}\}$.

Lemma 2.3. Let *S* be a subset of vertices of G=Cir(n,B) with k=2 and G[S] has no isolated vertices. If |S| is even, then *S* dominates at most 7|S| vertices of *G*.

Proof: Let *S* be subset of vertices of *G* with |S| = t, where *t* is even. Any two adjacent vertices of *S* dominate *14* vertices of *G* including them selves. *S* dominates at most $14(\frac{|S|}{2}) = 7|S|$ vertices of *G*.

Lemma 2.4. Let *S* be a subset of vertices of G=Cir(n,B), k = 2 and G[S] has no isolated vertices. If |S| is odd, then *S* dominates at most 7|S|-2 vertices of *G*.

Proof: Let *S* be subset of vertices of *G* with |S| = t, where *t* is odd. Without loss of generality we may assume that G[S] has $d = (\frac{|S|-3}{2}) + 1$ components $G_1, G_2, ..., G_d$, where $|V(G_1)|=3$ and $|V(G_i)|=2$ for i=2, 3, 4, ..., d. let $V(G_1)=\{x, y, z\}$, then $\{x, y, z\}$ dominates at most 19 vertices of *G*. *S* dominates at most $14(\frac{|S|-3}{2}) + 19 = 7(|S|-3)+19 = 7|S|-2$ vertices of *G*.

Theorem 2.5. For any integer $n \ge 17$ and k = 2,

$$\gamma_{t}(Cir(n, B)) = \begin{cases} [\frac{n}{7}] + 1 \ n \equiv 3,4,5,6,7 \ (\text{mod } 14) \\ [\frac{n}{7}] \ otherwise \end{cases}$$

Proof: Let *S* be a γ_t -set of G = Cir(n, B). It follows from Lemma 2.3 and Lemma 2.4 that $|S| \ge \lfloor \frac{n}{2} \rfloor$.

We claim that if $n \equiv 3,4,5,6,7 \pmod{14}$ and *S* is a total dominating for *G*, then $|S| \ge \left\lfloor \frac{n}{2} \right\rfloor + 1$.

To see this, assume to the contrary that $|S| = \lceil \frac{n}{7} \rceil$. We have n = 14l+j, where *l* is a positive integer, $j \in \{3,4,5, 6,7\}$. Then $|S| = \lceil \frac{14l+j}{7} \rceil = 2l+1$ is an odd number. So, the induced subgraph G[S] has a component *H* with at least three vertices. We proceed to prove following facts.

i. Any component of G [S] has at most three vertices.

Assume to the contrary that G_1 is a component of G[S] and G_1 has at least 4verticies. Without loss of generality assume that G_1 has 4 verticies. Then S

dominates at most $19+(14)(\frac{|S|-3-4}{2}) + 24=14l+1$ vertices of G, a contradiction.

ii. H is the only odd component of G[S].

Assume to the contrary that $H' \neq H$ is a component of G[S] with |V(H')| odd. It follows from fact *i* that |V(H')|=3. Since |S| is odd, there is another component H'' with three vertices. Now S dominates at most

 $14(\frac{|S|-3-3-3}{2}) + 3(19) = 14l + 1$ verticies of *G*, a contradiction.

For $n \equiv 6,7 \pmod{14}$ and we have $V(H) = \{v_{f_p} \ v_{q_p} \ v_p\}$ and S dominates $14(\frac{|S|-3}{2}) + 19 = 14l+5$ vertices of G, a contradiction.

For $n \equiv 3, 4, 5 \pmod{14}$. We have n=14l+j, where *l* is a positive integer, $j \in \{3,4,5\}$. It follows from facts that G[S] has $l = (\frac{|S|-3}{2}) + 1$ components

 G_1, G_2, \dots, G_l where $|V(G_i)|=2$ for $i=2, 3, 4, \dots, l$ and $|V(G_1)|=3$. Any two adjacent of S at most 14 consecutive vertices of V(G).

V(G) can be partition into l subsets $I_{l}=\{v_{1}, v_{2}, ..., v_{14}\}$, $I_{2}=\{v_{15}, v_{16}, ..., v_{28}\}$, $I_{3}=\{v_{29}, v_{30}, ..., v_{42}\}$, ..., $I_{l-1}=\{v_{(14)(l-2)+1}, v_{(14)(l-2)+2}, ..., v_{(14)(l-1)}\}$, $I_{l}=\{v_{(14)(l-1)+1}, v_{(14)(l-1)+2}, ..., v_{n}\}$. Note that, $|I_{i}|= 14$ for i = 1, 2, 3, ..., l-1 and $17 \le |I_{l}| \le 19$.

Without loss of generality we may assume that I_l is dominated by $\{v_7, v_8\}$ of *S* and I_2 is dominated by $\{v_{2l}, v_{22}\}$, then each of I_i is by two adjacent vertices of *S*. Vertices I_i (17 \leq $|I_i| \leq$ 19) is dominated by three consecutive vertices. In each possibility there exists at least one vertex in I_l which is not dominated by this three vertices, a contradiction. This completes the claim.

Now it is sufficient to define a total dominating set *S* of required cardinality. We consider the following case:

1. For $n \equiv 0 \pmod{14}$, $S = \{v_{(14)m+7}, v_{(14)m+8}: 0 \le m < \lceil \frac{n}{14} \rceil\}$. 2. For $n \equiv 1, 2 \pmod{14}$, $S = \{v_{(14)m+7}, v_{(14)m+8}: 0 \le m < \lceil \frac{n}{14} \rceil\} \cup \{v_{n-2}\}$. 3. For $n \equiv 3, 4, 5, ..., 13 \pmod{14}$, $S = \{v_{(14)m+7}, v_{(14)m+8}: 0 \le m < \lceil \frac{n}{14} \rceil\} \cup \{v_{n-6}, v_{n-5}\}$.

Note 1. For any two adjacent vertices v_a and v_b of G = Cir(n,B), k=1 and $n \ge 13$. We have the following:

i. If $|v_a - v_b| = 1$, then v_a and v_b dominate 10 vertices of G including themselves.

ii. If $|v_a - v_b| = 2$, then v_a and v_b dominate 9 vertices of G including themselves.

iii. If $|v_a - v_b| = 4$, then v_a and v_b dominate 11 vertices of G including themselves.

Therefore, any two adjacent vertices of G dominate at most 11 vertices of G including themselves.

Note 2. Let G_1 be a component of γ_t -set such that G_1 has three vertices v_a , v_b , v_c , we have the following:

i. If $|v_a - v_b| = |v_b - v_c| = 1$ then G_1 dominates 11 vertices of G including themselves.

ii. If $|v_a - v_b| = |v_b - v_c| = 2$ then G_1 dominates 11 vertices of G including themselves.

iii. If $|v_a - v_b| = 1$, $|v_b - v_c| = 2$ then G_1 dominates 14 vertices of G including themselves.

iv. If $|v_a \cdot v_b| = 4$, $|v_b \cdot v_c| = 2$ then G_1 dominates 13 vertices of G including themselves. *v*. If $|v_a \cdot v_b| = |v_b \cdot v_c| = 4$ then G_1 dominates 15 vertices of G including themselves. Therefore, any three vertices of G belong to a component dominate at most 15 vertices of G including themselves.

Lemma 2.5. Let *S* be a subset of vertices of G=Cir(n,B) with k = 1 and G[S] has no isolated vertices. If |S| is even, then *S* dominates at most $11(\frac{|S|}{2})$ vertices of *G*.

Proof: Let *S* be a subset of vertices of *G* with |S| = t, where *t* is even. Any two adjacent vertices of *S* dominate *11* vertices of *G* including themselves. So *S* dominates at most $11(\frac{|S|}{2})$ vertices of *G*.

Lemma 2.6. Let *S* be a subset of vertices of G=Cir(n, B), k = 1 and G[S] has no isolated vertices. If |S| is odd, then *S* dominates at most $\left(\frac{|S|-3}{2}\right)11+15$ vertices of *G*.

Proof: Let *S* be a subset of vertices of *G* with |S| = t, where *t* is odd. Without loss of generality we may assume that G[S] has $d = (\frac{|S|-3}{2}) + 1$ components $G_1, G_2, ..., G_d$, where $|V(G_1)|=3$ and $|V(G_i)|=2$ for i=2, 3, 4, ..., d. Let $V(G_1)=\{x, y, z\}$, then $\{x, y, z\}$ dominates at most 15 vertices of *G*. So *S* dominates at most $(\frac{|S|-3}{2})$ 11 +15 vertices of *G*.

Theorem 2.6. For any integer $n \ge 13$ and k = 1,

$$\gamma_{t}(Cir(n, B)) = \begin{cases} \lceil \frac{2n}{11} \rceil + 1n \equiv 3, 5, 10 \pmod{11} \\ \lceil \frac{2n}{11} \rceil \text{ otherwise} \end{cases}$$

Proof: Let *S* be a γ_t -set of G = Cir(n,B). It follows from Lemma 2.5 and Lemma 2.6 that $|S| \ge \lceil \frac{2n}{11} \rceil$. In the next we prove two claims as following.

Claim 1. If $n \equiv 3,5 \pmod{11}$ and *S* is a total dominating set for *G*, then $|S| \ge \lceil \frac{2n}{11} \rceil + 1$. Let $n \equiv 3,5 \pmod{11}$ and let *S* be a total dominating set for *G*. Assume to the contrary that $|S| = \lceil \frac{2n}{11} \rceil$. We have n = 11l + j, where *l* is a positive integer, $j \in \{3,5\}$. Then $|S| = \lceil \frac{22l+2j}{11} \rceil = 2l+1$ is an odd number. So, the induced subgraph G[*S*] has an odd component *H* with at least three vertices. We proceed to following facts.

(i) Any component of G[S] has at most three vertices.

Assume to the contrary that G_1 is a component of G[S] and G_1 has at least 4 vertices. Without loss of generality assume that G_1 has 4 vertices. Then S dominates at most $15+(11)(\frac{|S|-3-4}{2}) + 20=11l+2$ vertices of G, a contradiction. (ii) H is the only odd component of G[S]

(ii) H is the only odd component of G[S].

Assume to the contrary that $H' \neq H$ is a component of G[S] with |V(H')| odd. Then |V(H')|=3. Since |S| is odd, there is another component H'' with three vertices. Now S dominates at most $II(\frac{|S|-3-3-3}{2}) + 3(15) = 11l + 1$ vertices of G, a contradiction.

For $n \equiv 5 \pmod{11}$ and we have $V(H) = \{v_\beta \ v_q, v_p\}$ and $S \operatorname{dominates} 11(\frac{|S|-3}{2}) + 15 = 11l+4$ vertices of G, a contradiction.

When $n \equiv 3 \pmod{11}$. We have n = 11l+3, where *l* is a positive integer.

According to note 1, $\{v_5, v_9\}$ dominate 11 vertices. N($\{v_5, v_9\}$)= $\{v_1, v_2, ..., v_{13}\}$ - $\{v_2, v_{12}\}$ and v_{12} is dominated by v_{16} , N($\{v_{16}, v_{20}\}$)= $\{v_{12}, v_{13}, ..., v_{24}\}$ - $\{v_{13}, v_{23}\}$ and v_{23} is dominated by v_{27} , N($\{v_{27}, v_{31}\}$)= $\{v_{23}, v_{24}, ..., v_{35}\}$ - $\{v_{24}, v_{34}\}$, we continue this process and N($\{v_{(l-2)11+5}, v_{(l-2)11+9}\}$)= $\{v_{11l-21+1}, v_{11l-20}, ..., v_{11l-9}\}$ - $\{v_{11l-20}, v_{11l-10}\}$, So $\{v_{11l-8}, v_{11l-7}, v_{11l-6}, ..., v_{n-1}, v_n\}$ U $\{v_2, v_{11l-10}\}$ is dominated by three vertices. In each possibility there exits at least one vertex in Last subset which is not dominated by this 3 vertices, a contradiction. This completes the Claim 1.

Claim 2. If $n \equiv 10 \pmod{11}$ and let *S* be a total dominating set for *G*, then $|S| \ge \lceil \frac{2n}{11} \rceil + 1$.

Assume to the contrary that $|S| = \lceil \frac{2n}{11} \rceil$. We have n = 11l + 10 where *l* is a positive integer. Then $|S| = \lceil \frac{22l+20}{11} \rceil = 2l+2$ is an even number. We have any

component of G has at least two vertices. Now we are proving any component of G has exactly two vertices.

Assume to the contrary that G_1 is a component of G and it has at least 3 vertices. Let G_1 has 3 vertices. So |S| is an even number, there exist $G_1 \neq G_1$ is a component of G[S] with $|V(G_1')|$ is odd, then at least $|V(G_1')|$ is 3. If $|V(G_1')|=3$, then S dominates at most $II(\frac{|S|-3-3}{2}) + 2(15) = 11l + 8$ vertices of G, a contradiction.

So the induced subgraph *G*[*S*] has components with two vertices. It follows from Note 1 and process of case 2, $S = \{v_5, v_9, v_{16}, v_{20}, v_{27}, v_{31}, ..., v_{(l-1)11+5}, v_{(l-1)l+9}, v_{11l+5}, v_{n-1}\}$. We have $N(\{v_5, v_9\}) = \{v_1, v_2, ..., v_{13}\} - \{v_2, v_{12}\}, N(\{v_{16}, v_{20}\}) = \{v_{12}, v_{13}, ..., v_{24}\} - \{v_{13}, v_{23}\}, N(\{v_{27}, v_{31}\}) = \{v_{23}, ..., v_{35}\} - \{v_{24}, v_{34}\}, ..., N(\{v_{(l-1)11+5}, v_{(l-1)11+9}\}) = \{v_{(l-1)11+1}, ..., v_{11l-17}\} - \{v_{(l-2)11+2}, v_{11l-16}\}, N(\{v_{111+5}, v_{111+2}, v_2\}) = \{v_{111+1}, ..., v_3\} - \{v_{111+2}, v_2\}$ and v_2 is not dominated by S, a contradiction.

This completes the Claim 2.

Now it is sufficient to define a total dominating set *S* of required cardinality. We consider the following case:

1. For $n \equiv 0 \pmod{11}$, $S = \{v_{(11)m+5}, v_{(11)m+9}: 0 \le m < [\frac{n}{11}] \}$.

2. For $n \equiv 1, 2, 4 \pmod{11}$, $S = \{v_{(11)m+5}, v_{(11)m+9}: 0 \le m < [\frac{n}{11}] \} \cup \{v_{n-2}\}.$

- **3**. For $n \equiv 3, 5, 6, 7, 8 \pmod{11}$, $S = \{v_{(11)m+5}, v_{(11)m+9}: 0 \le m < [\frac{n}{11}] \} \cup \{v_{n-2}, v_{n-3}\}$.
- **4.** For $n \equiv 9 \pmod{11}$, $S = \{v_{(11)m+5}, v_{(11)m+9}: 0 \le m < [\frac{n}{11}] \} \cup \{v_{n-2}, v_{n-4}\}.$
- **5.** For $n \equiv 10 \pmod{11}$, $S = \{v_{(11)m+5}, v_{(11)m+9}: 0 \le m < [\frac{n}{11}] \} \cup \{v_{n-2}, v_{n-3}, v_{n-5}\}.$

Theorem 2.7. For $n \ge 7$, *Cir*(n, A) is γ -*critical* if and only if $n \equiv 4 \pmod{2k+3}$. **Proof.** First we show that if $n \equiv 4 \pmod{2k+3}$ that G is γ -*critical*. Let x be a vertex of G = Cir((2k+3)l+4, A), for some positive integer l. Since G is transitive, we assume that $x = v_{n-2}$. It is easy to see that $S = \{v_{(2k+3)i}: 0 \le i \le \lfloor \frac{n}{2k+3} \rfloor\}$ is a dominating set for G - x. It follows that $\gamma(G - x) \le \lfloor \frac{n}{2k+3} \rfloor < \lfloor \frac{n}{2k+3} \rfloor + 1 = \gamma(G)$. Hence, G is γ -*critical*. Let T be a subset of vertices with $|T| < \gamma(G)$. Without loss of generality we let $|T| = \gamma(G)$ -1. We show that any |T| vertices of G dominate at most n - 2 vertices of G.

We consider the following cases:

1. For
$$n \equiv 4,6,8,...,2k+2 \pmod{2k+3}$$
, by Theorem 2.1 $\gamma(G) = \left[\frac{n}{2k+2}\right]$.

If $n \equiv 0 \pmod{2k+3}$, then n = (2k+3)l for some intrger *l*. It follows that $\gamma(G) = l$. Now *T* dominates at $most(2k+3)(l-1) \le n$ -2 vertices of *G*. Similarly, for $n \equiv 2, 3, 5, 7, 9, 11$, ..., $2k+1 \pmod{2k+3}$, *T* dominates at most $(2k+3)(l-1) \le n$ -2 vertices of *G*.

We assume that $n \equiv 1 \pmod{2k+3}$. There is an integer *l* such that

$$n = (2k+3)l+1$$
, $|T| = \left\lceil \frac{n}{2k+3} \right\rceil - 1 = l$.

If there are two consecutive vertices x, y in T such that |x - y| < 2k+3, then $N_G(x) \cap N_G(y) \neq \emptyset$. Hence, $\{x, y\}$ dominates at most 4k+5 vertices of G and $T \setminus \{x, y\}$ dominates at most (2k+3)(l-2) vertices of G. So, T dominates at most n-2 vertices of G.

It remains to assume that for any two consecutive vertices a,b in T, $|a-b| \ge 2k+3$. In this case, there are two consecutive vertices x,y in T such that |x - y| > 2k+3. Then there exit two vertices u,v lie between x and y in G, and T does not dominate $\{u,v\}$. So, T dominates at most n - 2 vertices of G, which is a contradiction.

2. For $n \equiv 2t \pmod{2k+3}$, *t* is an integer with $3 \le t \le k+1$ by Theorem 2.1, $\gamma(G) = \lfloor \frac{n}{2k+3} \rfloor + 1$. There are two consecutive vertices v_l , $v_l \in S$ such that |l - l'| < 2k+3. Let $v_l \neq v_l$ be a consecutive vertex of v_l . Without loss of generality we assume that $|v_l = v_l| = 2k+3+2t$. Then there are 2k+2+2t possibilities for v_l to lies between v_l and v_l . In each possibly there exists at least two vertex between v_l and v_l which is not dominated by $\{v_l, v_l, v_l'\}$.

So, *T* dominates at most *n* -2 vertices of *G*, which is a contradiction.

Theorem 2.8. For $n \ge 9$, Cir(n, B) is γ -critical if and only if $n \equiv 6 \pmod{2k+5}$. **Proof:** First we show that if $n \equiv 6 \pmod{2k+5}$ that *G* is γ -critical. Let *x* be a vertex of *G* = Cir((2k+5)l+6, A) for some positive integer *l*. Since *G* is transitive, we assume that $x = v_{n-3}$. It is easy to see that $S = \{v_{(2k+5)i}: 0 \le i \le \lceil \frac{n}{2k+5} \rceil\}$ is a dominating set for G - x. It follows that $\gamma(G - x) \le \lceil \frac{n}{2k+5} \rceil < \lceil \frac{n}{2k+5} \rceil + 1 = \gamma(G)$. Hence, *G* is γ -critical.

Suppose now, that $n \equiv 6 \pmod{2k+5}$. We show that *G* is not γ -*critical*. Let *T* be a subset of vertices with $|T| < \gamma(G)$. Without loss of generality we let $|T| = \gamma(G)-1$. We show that any |T| vertices of *G* dominate at most *n* - 2 vertices of *G*.

We consider the following cases:

1. For $n \equiv 8, ..., 2k+2, 2k+4 \pmod{2k+5}$, by Theorem 2.2, $\gamma(G) = \lceil \frac{n}{2k+5} \rceil$.

If $n \equiv 0 \pmod{2k+5}$, then n = (2k+5)l for some integer *l*. It follows that $\gamma(G) = l$. Now, *T* dominates at most $(2k+5)(i-1) \le n$ -2 vertices of *G*. Similarly for $n \equiv 2,3,4,5,7,9,11$, ..., $2k+3 \pmod{2k+5}$, *T* dominates at most $(2k+5)(i-1) \le n$ -2 vertices of *G*. We assume that $n \equiv 1 \pmod{2k+5}$. There is an integer *l* such that n = (2k+5)l+1. Without loss of generality we let $|T| = \lceil \frac{n}{2k+5} \rceil - 1 = l$.

If there are two consecutive vertices x, y in T such that |x - y| < 2k+5, then $N_G(x) \cap N_G(y) \neq \emptyset$. Hence, $\{x,y\}$ dominates at most4k+9 vertices of G and $T \setminus \{x,y\}$ dominates at most (2k+5)(l-2) vertices of G. So, T dominates at most n - 2 vertices of G.

It remains to assume that for any two consecutive vertices a,b in T, $|a-b| \ge 2k+5$. In this case there are two consecutive vertices x,y in T such that |x - y| > 2k+5. Then there exit two vertices u, v lie between x and y in C, and T does not dominate $\{u,v\}$. So, T dominates at most n - 2 vertices of G, which is a contradiction.

2. For $n \equiv 2t \pmod{2k+5}$, *t* is an integer with $4 \le t \le k+2$, by Theorem 2.2, $\gamma(G) = \lfloor \frac{n}{2k+5} \rfloor + 1$. There are two consecutive vertices v_l , $v_l \in S$ such that |l - l'| < 2k+5. Let $v_l \neq v_l$ be a consecutive vertex of v_l . Without loss of generality we assume that $|v_l = v_l| = 2k+5+2t$. Then there are 2k+4+2t possibilities for v_l to lies between v_l and v_l . In each possibly there exists at least two vertex between v_l and v_l which is not dominated by $\{v_l, v_l, v_l^{\prime\prime}\}$.

So, *T* dominates at most n -2 vertices of *G*, which is a contradiction.

REFERENCES

- 1. R.C.Brigham, P.Z.Chinn and R.D.Dutton, Vertex domination-critical graphs, *Networks*, 18 (1988) 173-179.
- 2. W.Goddard, T.W.Haynes, M.A.Henning and L.C.van der Merwe, The diameter of total domination vertex critical graphs, *Discrete Math.*, 286 (2004) 255-261.
- 3. T.W.Haynes, S.T.Hedetniemi and P.J.Slater, *Fundamentals of Domination in Graphs*, Marcel Dekker, Inc, New York (1998).
- 4. N.Jafari Rad, Domination in circulant graphs, An. St. Univ. Ovidius Constanta, 17 (2009) 169-176.
- 5. H.Rashmanlou and M.Pal, Antipodal interval-valued fuzzy graphs, *International Journal of Applications of Fuzzy Sets and Artificial Intelligence*, 3 (2013) 107-130.
- 6. H.Rashmanlou and M.Pal, Balanced interval-valued fuzzy graph, *Journal of Physical Sciences*, 17 (2013) 43-57.
- 7. H.Rashmanlou and M.Pal, Isometry on interval-valued fuzzy graphs, *Int. J. Fuzzy Math Arch*, 3 (2013) 28-35.
- H.Rashmanlou and M.Pal, Some properties of highly irregular interval-valued fuzzy graphs, World Applied Sciences Journal, 2013, 27 (12) 1756 - 1773.
- 9. H.Rashmanlou and M.Pal, Intuitionistic fuzzy graphs with categorical properties, *Fuzzy Information and Engineering*, 7 (2015) 317-384.
- H.Rashmanlou, S.Samanta, M.Pal and R.A.Borzooei, Bipolar fuzzy graphs with categorical properties, *International Journal of Computational Intelligent Systems*, 8 (5) (2015) 808-818.
- 11. H.Rashmanlou, S.Samanta, M.Pal and R.A.Borzooei, A study on bipolar fuzzy graphs, *Journal of Intelligent and Fuzzy Systems*, 28 (2015) 571-580.

- 12. S.Samanta and M.Pal, Fuzzy *k*-competition graphs and *p*-competition fuzzy graphs, *Fuzzy Inf. Eng*, 5 (2) (2013) 191-204.
- 13. S.Samanta and M.Pal, Fuzzy tolerance graphs, *Int. J. Latest Trend Math.*, 1 (2) (2011) 57-67.
- 14. S.Samanta and M.Pal, Bipolar fuzzy hypergraphs, *Int. J. Fuzzy Logic Syst.*, 2 (1) (2012) 17-28.
- 15. S.Samanta and M.Pal, Irregular bipolar fuzzy graphs, International Journal of Applications of Fuzzy Sets, 2 (2013) 91-102.
- 16. S.Samanta and M.Pal, Fuzzy planar graphs, *IEEE Transactions on Fuzzy Systems*, 23 (6) (2015)1936-1942.
- 17. Sk. M.A.Nayeem and M Pal, Shortest path problem on a network with imprecise edge weight, *Fuzzy Optimization and Decision Making*, 4 (4) (2005) 293-312.