
Intern. J. Fuzzy Mathematical Archive 
Vol. 12, No. 2, 2017, 67-73 
ISSN: 2320 –3242 (P), 2320 –3250 (online) 
Published on 30 June 2017 
www.researchmathsci.org 
DOI: http://dx.doi.org/10.22457/ijfma.v12n2a3 
 

67 
 

International Journal of 

Computing Certain Degree Based Topological Indices and 
Coindices of E-graphs 

Keerthi G. Mirajkar1 and Pooja B2 

Department of Mathematics, Karnatak University’s Karnatak Arts College 
Dharwad-580 001, Karnataka, India. 

1Email: keerthi.mirajkar@gmail.com,  
Corresponding author. Email: bkvpooja@gmail.com  

Received 20 June 2017; accepted 30 June 2017 

Abstract. In this paper, we obtain the explicit formulae for general sum-connectivity index, 
general product-connectivity index, general Zagreb index and coindices of G-networks, 
extended G-networks and ��-networks.  

Keywords: degree, G-networks, extended G-networks and ��-networks. 

AMS Mathematics Subject Classification (2010): 05C76, 05C07 

1. Introduction 
Let � be a graph with vertex set �(�), |�(�)| = �, and edge set 	(�), |	(�)| = 
. As 
usual, � is order and 
 is size of �. If � and � are two adjacent vertices of �, then the 
edge connecting them will be denoted by ��. The degree of a vertex 
 ∈ �(�) is the 
number of vertices adjacent to 
 and is denoted by ��(
). Any unexplained graph 
theoretical terminology and notation may be found in [6] or [8]. 

The first and second Zagreb indices, respectively, defined  

��(�) = � 	
�∈�(�)

��(�)� = � 	
��∈�(�)

[��(�) + ��(�)] 
and ��(�) = ∑ 	��∈�(�) ��(�)��(�) 

 are widely studied degree-based topological indices, that were introduced by Gutman and 
Trinajsti�′ [5] in 1972. 

Noticing that contribution of non adjacent vertex pairs should be taken into 
account when computing the weighted Wiener polynomials of certain composite graphs 
(see [3]) Ashrafi et al. [1], defined the first Zagreb coindex and second Zagreb coindex as  

��(�) = ∑ 	��∈�(�) [��(�) + ��(�)] and ��(�) = ∑ 	��∈�(�) ��(�)��(�),  
respectively. 
The vertex-degree-based graph invariant   (�) = ∑ 	�∈�(�) ��(�)! = ∑ 	��∈�(�) [��(�)� + ��(�)�] 
was encountered in [5]. Recently there has been some interest to  , called forgotten 
topological index or F-index [4]. 
Shirdel et al.[11] introduced a new Zagreb index of a graph �  named hyper-Zagreb 
indexand is defined as:  
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"�(�) = � 	
��∈�(�)

(��(�) + ��(�))�. 
Recently, Veylaki et al.[12] defined the hyper-Zagreb coindex as  

"�(�) = ∑ 	��∈�(�) (��(�) + ��(�))�.  
Li and Zhao [9] introduced the first general Zagreb index as follows  

��$(�) = � 	
�∈�(�)

[��(�)]$ . 
It is easy to write that  

��$(�) = � 	
��∈�(�)

[(��(�))$%� + (��(�))$%�]. 
The general sum connectivity index [15] was introduced by Zhou et al. and is defined as  

&$(�) = � 	
��∈�(�)

[��(�) + ��(�)]$. 
The general product connectivity index [2] is defined as  

'$(�) = � 	
��∈�(�)

[��(�)��(�)]$ . 
Su et al.[13] introduced the general sum-connectivity coindex as  

&$(�) = � 	
��∉�(�)

[��(�) + ��(�)]$. 
The general product connectivity coindex is defined as  

'$(�) = � 	
��∉�(�)

[��(�)��(�)]$ . 
Here we note that, &�(�) = ��(�) , &�(�) = ��(�) , &�(�) = "�(�) , &�(�) ="�(�), '�(�) = ��(�), '�(�) = ��(�), ���(�) = ��(�), ��!(�) =  (�). 

 
2.E-graphs 
Let � and " be two graphs. Designate two nodes )� and )�, )� ≠ )� in H as e-nodes 
such that there is an automorphism +: �(") → �(")  with the property +()�) = )� ; +()�) = )�. Then the symmetric edge replacement of � by " written as �|", is the 	-graph got by replacing every edge �� of � with a copy of " identifying � and � 
with )� and )� respectively [7].  

 
Figure1: E-graph �|".   

The 	-graph ./|01 where the e-nodes are two nonadjacent vertices of 01, is 
called as the �-network [7].  
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The 	-graph ./

the e-nodes is called as the extended G

 
The 	 -graph �

called as the ��-network [10].
on hypercubes 2/. So we consider here 
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Figure 2: G–network .1|01.  

/|34 where two nonadjacent vertices of degree three in 
nodes is called as the extended G-network [14].  

 
Figure 3: Extended G–network .!|34.  

�|01  where the e-nodes are two nonadjacent vertices of 
network [10].The architecture of majority of computer networks is based 

. So we consider here ��-network 2/|01. 

 
Figure 4: ��–network 2!|01.  
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where two nonadjacent vertices of degree three in "′ are 

nodes are two nonadjacent vertices of 01 , is 
The architecture of majority of computer networks is based 
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3.Topological indices of G-networks, extended G-networks and 56-network 
Theorem 3.1. �7�	��

$�./|01) = �(� − 1)$2$ + �(� − 1)2$ . (77)&$(./|01) = (� − 1)(2�)$;�. (777)'$(./|01) = �(� − 1)$;�2�$;�. 
Proof: The � −network ./|01 contains �� vertices, out of which �(� − 1) vertices are 
of degree 2 and remaining � vertices of degree 2(� − 1). So the ��$ −value of ./|01 
is equal to �(� − 1)$2$ + �(� − 1)2$. This completes the proof of (i). 

The � −network ./|01  contains 2�(� − 1)  edges whose end vertices have 
degree 2  and 2(� − 1) . Hence, &$  and '$ −  values of ./|01  are (� − 1)(2�)$;� 
and �(� − 1)$;�2�$;� respectively. This completes the proof of (ii) and (iii).  □ 

 
By putting < = 2,3 in Theorem 3.1 (i), < = 2 in Theorem 3.1 (ii) and < = 1 in 

Theorem 3.1 (iii), we get the following corollary.  
 

Corollary 3.2. (7)	��(./|01) = 4��(� − 1). (77)	 (./|01) = 8�(� − 1)(�� − 2� + 2). (777)	"�(./|01) = 8�!(� − 1). (7�)��(./|01) = 8�(� − 1)�. 
 

Theorem 3.3. (7)	&$(./|01) = A�(� − 1)			2 B 4$ + A�2B4$(� − 1)$ + �/C%D/E;1/
� (2�)$ . 

(77)	'$(./|01) = A�(� − 1)		2 B 4$ + A�2B 4$(� − 1)�$ + 2�! − 7�� + 4�
2 (4(� − 1))$ . 

Proof: The � − network ./|01  contains A��2 B − 2�(� − 1)  non adjacent pairs of 

vertices, out of which A�(� − 1)			2 B pairs of vertices of degree 2 and 2, A�2B pairs of 

vertices of degree 2(� − 1) and 2(� − 1) and remaining 
�/C%D/E;1/

�  pairs of vertices of 

degree 2 and 2(� − 1).  

Hence, &$(./|01) = A�(� − 1)		2 B 4$ + A�2B4$(� − 1)$ + �/C%D/E;1/
� (2�)$  and 

'$(./|01) = A�(� − 1)		2 B 4$ + A�2B4$(� − 1)�$ + �/C%D/E;1/
� (4(� − 1))$. □ 

 
 By putting < = 1,2 in Theorem 3.3 (i) and < = 1 in Theorem 3.3 (ii), we get the 

following corollary.  
 

Corollary 3.4. (i) ��(./|01) = A�(� − 1)			2 B 4 + A�2B4(� − 1) + (2�! − 7�� + 4�)�. 
(ii) 	"�(./|01) = A�(� − 1)			2 B 16 + A�2B16(� − 1)� + (2�! − 7�� + 4�)2��. 
(iii) ��(./|01) = A�(� − 1)		2 B 4 + A�2B4(� − 1)� + 2(� − 1)(2�! − 7�� + 4�). 
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Theorem 3.5. �i�	��
$�./|34) = 3$(� − 1)$� + 3$�(� − 1) + 2�$%��(� − 1). (ii)	&$(./|34) = 2�(� − 1)(3�)$ + (3� + 1)$�(� − 1) + 7$�(� − 1). (iii)	'$(./|34) = 2�9$(� − 1)$;� + 12$�(� − 1)$;� + �(� − 1)12$ . 

Proof: The extended � −network ./|34  contains 
/(!/%�)

�  vertices, out of which � 

vertices are of degree 3(� − 1), �(� − 1) vertices of degree 3 and the remaining 
/(/%�)

�  

vertices of degree 4. So the ��$ −value of ./|34 is equal to 3$(� − 1)$� + 3$�(� −1) + 2�$%��(� − 1). This completes the proof of (i). 
The extended � −network ./|34  contains 4�(� − 1)  adjacent pair vertices, 

out of which 2�(� − 1) pair of vertices of degree 3 and 3(� − 1), �(� − 1) pair of 
vertices of degree 4 and 3(� − 1), and �(� − 1) pair of vertices of degree 3 and 4. 
Hence, &$  and '$ −  values of ./|34  are 2�(� − 1)(3�)$ + (3� + 1)$�(� − 1) +7$�(� − 1)  and 2�9$(� − 1)$;� + 12$�(� − 1)$;� + �(� − 1)12$  respectively. 
This completes the proof of (ii) and (iii).  □ 

 
By putting < = 2,3 in Theorem 3.5 (i), < = 2 in Theorem 3.5 (ii) and < = 1 in 

Theorem 3.5 (iii), we get the following corollary.  
 

Corollary 3.6. (i) ��(./|34) = 9�(� − 1)� + 17�(� − 1). 
(ii) (./|34) = 27�(� − 1)! + 59�(� − 1). 
(iii)"�(./|34) = 18�!(� − 1) + �(� − 1)(3� + 1)� + 49�(� − 1). 
(iv)��(./|34) = 30�(� − 1)� + 12�(� − 1). 

 
Theorem 3.7.  

(7)	&$(./|34) = �(� − 1)
2 6$(� − 1)$ + ��(� − 1)� − �(� − 1)

2 6$
+ ��(� − 1)� − 2�(� − 1)

8 8$ + �(� − 1)(� − 2)(3�)$
+ �(� − 1)(� − 2)

2 (3� + 1)$ + �(� − 1)(�(� − 1) − 2)
2 7$. 

(77)	'$(./|34) = �(� − 1)
2 9$(� − 1)�$ + ��(� − 1)� − �(� − 1)

2 9$
+ ��(� − 1)� − 2�(� − 1)

8 16$ + �(� − 1)(� − 2)9$(� − 1)$
+ �(� − 1)(� − 2)

2 12$(� − 1)$ + �(� − 1)(�(� − 1) − 2)
2 12$. 

Proof: The extended � −network ./|34 contains L/(!/%�)�		2 M − 4�(� − 1) non adjacent 

pairs of vertices, out of which 
/(/%�)

�  pairs of vertices of degree 3(� − 1) and 3(� − 1), 
/E(/%�)E%/(/%�)

�  pairs of vertices of degree 3 and 3, 
/E(/%�)E%�/(/%�)

N  pairs of vertices of 

degree 4  and 4 , �(� − 1)(� − 2)  pairs of vertices of degree 3  and 3(� − 1) , /(/%�)(/%�)
�  pairs of vertices of degree 4 and 3(� − 1), and remaining 

/(/%�)(/(/%�)%�)
�  

pairs of vertices of degree 4  and 3 . Hence, &$(./|34) = /(/%�)
� 6$(� − 1)$ +
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/E�/%��E%/�/%��

�
6$ +

/E�/%��E%�/�/%��

N
8$ + ��� − 1��� − 2��3��$ +

/�/%���/%��

�
�3� +

1�$ +
/�/%���/�/%��%��

�
7$  and 

'$�./|34) = /(/%�)
� 9$(� − 1)�$ + /E(/%�)E%/(/%�)

� 9$ + /E(/%�)E%�/(/%�)
N 16$ +

�(� − 1)(� − 2)9$(� − 1)$ + /(/%�)(/%�)
� 12$(� − 1)$ + /(/%�)(/(/%�)%�)

� 12$.  □ 

 
 By putting < = 1,2 in Theorem 3.7 (i) and < = 1 in Theorem 3.7 (ii), we get the 

following corollary.  
 

Corollary 3.8. (7)	��(./|34) = 3�(� − 1)� + 4��(� − 1)� − 5�(� − 1) + 3��(� −
1)(� − 2) + /(/%�)(/%�)(!/;�)

� + D/(/%�)(/(/%�)%�)
� . 

(77)"�(./|34)= 18�(� − 1)! + 26��(� − 1)� − 34�(� − 1) + 9�!(� − 1)(� − 2)
+ �(� − 1)(� − 2)(3� + 1)�

2 + 49�(� − 1)[�(� − 1) − 2]
2 . 

(777)��(./|34) = 9�(� − 1)!
2 + 25��(� − 1)�

2 − 41�(� − 1)
2 + 15�(� − 1)�(� − 2). 

 
Theorem 3.9. (7)	��$(2/|01) = 2/;$(�$ + �). (77)	&$(2/|01) = 2/;$;�(� + 1)$�. (777)'$(2/|01) = 2�$;/;��$;�. 
Proof: The �� −network 2/|01 contains 2/(� + 1) vertices, out of which 2/ vertices 
are of degree 2�, and remaining �2/ vertices of degree 2. So the ��$ −value of 2/|01 
is equal to 2/;$(�$ + �). This completes the proof of (i). 

The �� −network 2/|01 contains �2/;� edges whose end vertices have degree 
2  and 2� . Hence, &$  and '$ −  values of 2/|01  are 2/;$;�(� + 1)$�  and 2�$;/;��$;� respectively. This completes the proof of (ii) and (iii).  □ 

 By putting < = 2,3 in Theorem 3.9 (i), < = 2 in Theorem 3.9 (ii) and < = 1 in 
Theorem 3.9 (iii), we get the following corollary.  

 
Corollary 3.10. (7)	��(2/|01) = 2/;�(�� + �). (77)	 (2/|01) = 2/;!(�! + �). (777)	"�(2/|01) = 2/;!�(� + 1)�. (7�)��(2/|01) = 2/;!��. 
 

Theorem 3.11. (7)&$(2/|01) = 2�$;� A2/%��		2 B + 4$�$ A2/2 B + 2$;/;�(� + 1)$�. 
(77)'$(2/|01) = 2�$;� A2/%��		2 B + 4$��$ A2/2 B + 2�$;/;��$;�. 
Proof: The �� −network 2/|01 contains A2/(� + 1)			2 B − 2/;�� non adjacent pairs of 

vertices, out of which 2 A2/%��		2 B pairs of vertices of degree 2 and 2, A2/2 B pairs of 

vertices of degree 2� and 2�, and remaining 2/;�� pairs of vertices of degree 2 and 



Computing Certain Degree Based Topological Indices and Coindices of E-graphs 

73 

 

2� . Hence, &$�2/|01) = 2�$;� A2/%��		2 B + 4$�$ A2/2 B + 2$;/;�(� + 1)$�  and 

'$(2/|01) = 2�$;� A2/%��		2 B + 4$��$ A2/2 B + 2�$;/;��$;�.  □ 

By putting < = 1,2 in Theorem 3.11 (i) and < = 1 in Theorem 3.11 (ii), we get 
the following corollary.  

Corollary 3.12. (7)��(2/|01) = 8 A2/%��		2 B + 4� A2/2 B + 2/;�(� + 1)�. 
(77)"�(2/|01) = 32A2/%��		2 B + 16�� A2/2 B + 2/;!(� + 1)��. 
(777)��(2/|01) = 8 A2/%��		2 B + 4�� A2/2 B + 2/;!��. 
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