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1. Introduction
Let G be a graph with vertex s&t(G), |V (G)| = n, and edge set(G), |E(G)| = m. As
usual,n is order andn is size ofG. If u andv are two adjacent vertices 6f, then the
edge connecting them will be denoted dy. The degree of a vertax € V(G) is the
number of vertices adjacent to and is denoted byl;(w). Any unexplained graph
theoretical terminology and notation may be foum{bi or [8].

The first and second Zagreb indices, respectividfined

M@= ) de@?= ) [dgw) +de(v)]
uev(G) UVEE(G)
and M,(G) = Yuver() de(Wdg(v)
are widely studied degree-based topological irglitteat were introduced by Gutman and
Trinajstic’ [5] in 1972.

Noticing that contribution of non adjacent verteairp should be taken into
account when computing the weighted Wiener polyatsnof certain composite graphs
(see [3]) Ashrafi et al. [1], defined the first Zah coindex and second Zagreb coindex as

M1(G) = Yuver(s) [de() + dg(v)] and M, (G) = Yuvere) de(Wdg(v),
respectively.
The vertex-degree-based graph invariant

F(G) = ZVEV(G) de(v)® = ZuveE(G) [da(u)2 +dg (U)Z]

was encountered in [5]. Recently there has beeresoterest toF, called forgotten
topological index or F-index [4].
Shirdel et al.[11] introduced a new Zagreb indexaofiraphG named hyper-Zagreb
indexand is defined as:
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HM@©) = ) (do(w) +dg®)?
UveE(G)
Recently, Veylaki et al.[12] defined the hyper-Zagicoindex as

HM(G) = Yuwver(c) (deg(w) + dg(v))?.
Li and Zhao [9] introduced the first general Zagiediex as follows

ME@ = D [dew]”
uev(a)
It is easy to write that

M (G) = z [(de@)* ! + (de ()],
UveE(G)
The general sum connectivity index [15] was intmetliby Zhou et al. and is defined as

(@ = ) [de(w) +dg(®)]".
UveE(G)
The general product connectivity index [2] is defiras

Re(@) = ) [de(de()]"
uveE(G)
Su et al.[13] introduced the general sum-conndgtoeindex as

Tl@ = D [de()+de(@)]”
UuvéE(G)
The general product connectivity coindex is defined

Re@= D [dedg®)]™
Uv€E(G)
Here we note thaty,(G) = M;(G), x,(G) = M1(G), xo(G) =HM(G), X,(G) =
HM(G), Ry(G) = My(G), Ri(G) = M3(G), MF(G) = M1(G), M{(G) = F(G).

2.E-graphs

Let G andH be two graphs. Designate two nodgsandx,, x; # x, in H as e-nodes
such that there is an automorphismV (H) — V(H) with the propertyo(x;) = x5;
o(xy) = x1. Then the symmetric edge replacementzoby H written asG|H, is the
E-graph got by replacing every edge of ¢ with a copy ofH identifyingu andv
with x; andx, respectively [7].

Figurel: E-graphG|H.
The E-graph K,,|C, where the e-nodes are two nonadjacent vertices, ofs
called as thez-network [7].
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K4Z 0411:1

K4|C4 B

Figure 2: G—networkK,|C,.

The E-graph K, |Ws where two nonadjacent vertices of degree threH' are
the enodes is called as the extende-network [14].

A

I(3|W5 . @

Figure 3: Extended G—networlk;|Ws.

The E-graph G|C, where the erodes are two nonadjacent verticesC,, is
called as thds,-network [10]The architecture of majority of computer networkbase
on hypercubeg),. So we consider heiG,-network @, |C,.

Q3|Cy :

L,

Figure4: G,—networkQz|Cy.
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3.Topological indices of G-networks, extended G-networksand G z-network
Theorem 3.1. (i) M{(K,|Cy) = n(n — 1)%2% + n(n — 1)2¢.
(iD)xa(KnlCa) = (n — 1)(20)+1,
(iiD)Ry(Ky|Cy) = n(n — 1)**+122a+1
Proof: The G —network K,,|C, containsn? vertices, out of whicl(n — 1) vertices are
of degree2 and remainingn vertices of degre@(n — 1). So theM{ —value ofK,|C,
is equal ton(n — 1)*2% + n(n — 1)2%. This completes the proof of (i).

The G —network K,,|C, contains2n(n — 1) edges whose end vertices have
degree2 and 2(n—1). Hence,y, and R, — values ofK,|C, are (n— 1)(2n)**!
andn(n — 1)#*t122¢+1 regpectively. This completes the proof of (ii) &jiil. a

By putting @ = 2,3 in Theorem 3.1 ()@ = 2 in Theorem 3.1 (ii) andr = 1 in
Theorem 3.1 (iii), we get the following corollary.

Corollary 3.2. (i) M;(K,|C,) = 4n?*(n — 1).
(i) F(K,|Cy) = 8n(n — 1)(n? — 2n + 2).
(iii) HM(K,,|C,) = 8n3(n — 1).

(V)M (Ky|Cy) = 8n(n — 1)2.

n3-7n?+4n

Theorem 33. (0 Z,(KalC) = ("0 ™ 1) 4% + () 4%(n — D@ + 222 e,

n3 —7n? + 4n
(4~ )"

2
Proof: The G — network K,|C, contains (;l )— 2n(n—1) non adjacent pairs of

(i) Ry (Kn|Cs) = ("2(" “D)ary (D)4 - 12+ 2

vertices, out of whicr(n(zn B 1)) pairs of vertices of degre2 and 2, (721) pairs of

3_ 2
vertices of degre@(n — 1) and2(n — 1) and remainingznz—n”n pairs of vertices of

degree2 and2(n — 1). .
Hence, )_(a(Kn|C4) = (le(n - 1)) 4% 4 (;) 4%m — 1)* + W(Zn)a and

n3-7n%+4n

Ra(alC) = ("7 D)4+ (3) 49(n - 12 + 225 4 — 1), 0

By putting @ = 1,2 in Theorem 3.3 (i) and = 1 in Theorem 3.3 (ii), we get the
following corollary.

nn—1)
2
(i) HM(K,,|C,) = (”(2” ~ )16+ (3) 160 — 1)2 + (2n® — 7n? + 4n)2n2,

(i) My(Kylcy) = ("7

Corollary 34. (i) My(K,|C,) = ( )4+ (’21) 4(n—1) + (2n3 — 7n? + 4n)n.

)4 + (’21) 4(n— 1) + 2(n — 1)(2n% — 7n? + 4n).
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Theorem 3.5. (i) M¥(K,|[Ws) = 3%(n — 1)*n + 3%n(n — 1) + 22 In(n — 1).

() yo(KnlWs) =2n(n - 1)Bn)* + Bn+ D*n(n—1) + 7%n(n — 1).

(iii) Ry (Kn|Ws) = 2n9%(n — 1)**! + 12%(n — 1)**1 + n(n — 1)12%.

Proof: The extended; —network K, |Ws contains®22=2 vertices, out of whichn

2
vertices are of degreg(n — 1), n(n — 1) vertices of degre8 and the remaining—n(";l)

vertices of degred. So theM{ —value of K,,|W; is equal to3%(n — 1)*n + 3%n(n —
1) + 2247 In(n — 1). This completes the proof of (i).

The extendeds —network K, |Ws contains4n(n — 1) adjacent pair vertices,
out of which2n(n — 1) pair of vertices of degreg@ and3(n — 1), n(n — 1) pair of
vertices of degred and3(n— 1), andn(n — 1) pair of vertices of degreg and 4.
Hence, y, and R, — values ofK,|Ws are 2n(n—1)(3n)*+ Bn+ 1)*n(n—1) +
7% (n—1) and 2n9%m — 1)**! + 12%(n — 1)1 + n(n — 1)12% respectively.
This completes the proof of (ii) and (iii). ]

By putting @ = 2,3 in Theorem 3.5 ()@ = 2 in Theorem 3.5 (ii) andr = 1 in
Theorem 3.5 (iii), we get the following corollary.

Corollary 3.6. (i) M{(K,|Ws) =9n(n—1)2+17n(n — 1).

(i) F(Kp|Ws) = 27n(n — 1)3 + 59n(n — 1).

(i) HM(K,|[Ws) = 18n3(n— 1) + n(n — 1)(3n + 1)? + 49n(n — 1).
(V)M (K, |Ws) = 30n(n — 1)2 + 12n(n — 1).

Theorem 3.7.

_ 2p iz ~
(i))_(a(Kn|W5)=M6“(n—l)“+n(n 1)2 n(n 1)6a

n(n—1)?-2n(n-1)
+ 8%+ n(n—1n-2)3Bn)“
(GBn+ 1) + nn - 1)(n§n — D=2
n?(n—1)%-n(n-1) o
2
16 +n(n—1)(n—-2)9(n — 1)“
nn—1)(nn-1)—-2) 122

8
4 n(n — 1;(11 —-2)

(iD) R, (K, |Ws) = @9“@1 —1)2@ 4

N n?(n—1)2?-2n(n—1)

12%(n — 1)% +

8
4 n(n — 1;(11 —-2)

n3n-1)
Proof: The extended: —network K, | W5 contains< 2 ) —4n(n — 1) non adjacent
2

pairs of vertices, out of whicﬁ(nz;l) pairs of vertices of degret(n — 1) and3(n — 1),
2 —_1)2_ _ 2 —1)2 — —
M pairs of vertices of degrez and 3, -~ - 21 nairs of vertices of
degree4 and 4, n(n—1)(n—2) pairs of vertices of degre8 and 3(n—1),
nn-1)(n-2) nn-1)(n(n-1)-2)

pairs of vertices of degrek and3(n — 1), and remainingz—

pairs of vertices of degred and 3. Hence, x (K,|Ws) = @6“(11— D*+
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n?(n-1)?-n(n-1) 6% 4 n?(n-1)%?-2n(n-1) g
8

nn-1)(n-2)
2

+nn—1)n-2)Bn)* + (Bn+

2
1)& + n(n-1)(n(n-1)-2) 7@
2

— _ o .
Ry (Kl W) = "D e — 1y 4 O 000D g w21’ 2nnet) gy
n(n—1)(n—2)9a(n—1)a+w12am_1)a+wlza. -

and

By putting @ = 1,2 in Theorem 3.7 (i) and = 1 in Theorem 3.7 (ii), we get the
following corollary.

Corollary 3.8. (i) M;(K,|Ws) = 3n(n — 1)? + 4n?(n — 1)? — 5n(n — 1) + 3n?(n —
1)(n _ 2) + n(n-1)(n-2)(3n+1) + n(n-1)(n(n—1)-2)

2 2

()HM (Ky|Ws)
=18n(n— 13 +26n’(n—1)? —34n(n— 1)+ In3(n— 1)(n — 2)
N n(n—1)(n—2)(3n + 1)? N 49n(n — D[n(n — 1) — 2]

2 2
In(n —1)3 N 25n2(n—1)? 41n(n-—1)

2 2 2

({) My (K |Ws) =

+ 15n(n — 1)?(n — 2).

Theorem 3.9. (i) M¥(Q,|C,) = 2™*(n* + n).
(i) Xe(QnlCs) = 274+ (n + 1)%n,
(iii)Ra(Qn|C4) — 22a+n+1na+1'
Proof: The G, —network Q,,|C, contains2™(n + 1) vertices, out of whicl2™ vertices
are of degreen, and remainingi2™ vertices of degre@. So theM{* —value of Q,,|C,
is equal to2™*%(n* + n). This completes the proof of (i).

The G4 —network Q| C, containsn2™*! edges whose end vertices have degree
2 and 2n. Hence, y, and R, — values of Q,|C, are 2™%*1(n+ 1)*n and
22atn+lnatl ragpectively. This completes the proof of (i) djiidl. O

By puttinga = 2,3 in Theorem 3.9 ()@ = 2 in Theorem 3.9 (i) and = 1 in

Theorem 3.9 (iii), we get the following corollary.

Corollary 3.10. (i) M;(Q,|Cy) = 2™*2(n? + n).
(it) F(QnlCy) = 2™3 (3 + n).

(iii) HM(Q,|Cy) = 2™"3n(n + 1)2

(V)M (Qn|Cy) = 2™302,

on
— 2n—1n 271 2
(ii)Ra(Qn|C4) — 22a+1( 5 )+ 4an2a (2 ) + 22a+n+1na+1.

-1
Theorem 3.11. (i)¥,,(QnlCs) = 229+ (2; ™)+ 470 (27) + 294 (n + D).
n
Proof: The G, —network Q,|C, contains(2 Z(n + 1)) —2™1n non adjacent pairs of

. . zn_ln . . n .
vertices, out of whlcm( 5 ) pairs of vertices of degre2 and 2, (2 ) pairs of
vertices of degre@€n and2n, and remainin®2"*1n pairs of vertices of degrez and
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-1 n
2n . Hence, Z,(QulCy) =22 (2 ™) +4%ne(2") 429+ ) and

2 2
— -1 n
Ral@alcy) = 22041 (27) 1 gz (27) 4 gresmeigenn, o

By putting @ = 1,2 in Theorem 3.11 (i) and = 1 in Theorem 3.11 (ii), we get
the following corollary.

- -1
Corollary 3.12. ()M;(0,IC,) = 8 (2; ™) + 4n (;") +2"2(n 4 Dn,

(i)HM(Q,|Cy) = 32 (2;_1") + 1602 (én) +2"3(n + 1)%n.

(iti) M, (Qn|Cs) = 8 (2;_1”) + 4n? (;n) + 232,
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