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1. Introduction  
Atanassov [1] introduced the concept of intuitionistic fuzzy set (IFS) which is the 
generalization of fuzzy set introduced by Zadeh [21]. Since its appearance, intuitionistic 
fuzzy set has been investigated by many researchers and applied to many fields, such as 
decision making, clustering analysis etc. Using the fuzzy set theory, Kim and Roush [9] 
studied fuzzy matrices as a generalization of matrices over the two element Boolean 
algebra. Using the theory of intuitionistic fuzzy set, Im et al. [6] defined the notion of 
intuitionistic fuzzy matrix (IFM) as a generalization of fuzzy matrix. 
        IFM is very useful in the discustion of intuitionistic fuzzy relation (IFR) [4,11]. 
Lee and Jeong [10] obtained a canonical form of the transtive IFM. Sriram and Murugadas 
[15] proved the set of all IFMs form a semiring with respect to max-min composition of 
IFMs. Zhong et al. [20] constructed the intuitionistic fuzzy similarity matrix and then 
utilize it to derive a method for clustering analysis. 
        Simultaneously, Pal et al. [7] defined the IFM and Pal [14] introduced the 
intuitionistic fuzzy determinant, studied some properties on it. Khan and Pal [8] studied 
some operations on IFMs. Shyamal and Pal [17] defined the two new operators on fuzzy 
matrices and studied their algebraic properties. Recently, Pal [23,24] defines new kind of 
fuzzy matrices. In these matrices rows and columns are also uncertain. 
         In Zhang and Zheng [22] defined two fuzzy operators and four cut sets for fuzzy 
matrices and studied their algebraic properties. Boobalan and Sriram [3,16] studied the 
algebraic sum and algebraic product of two intuitionistic fuzzy matrices and their algebraic 
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properties. Also they proved the set of all intuitionistic fuzzy matrices forms a 
commutative monoid with respect to these operations. 
          Muthuraji et al. [12] introduced a new composition operator for IFMs and 
studied the algebraic properties also obtained a decomposition of an IFM. Muthuraji and 
Sriram [13] defined two operators namely Lukasiwicz disjunction and conjunction for 
IFMs and investigated its algebraic properties also results which connects the above set 
operators with the other existing operators. 
          Emam and Fndh [5] defined some kinds of IFMs, the max-min and min-max 
composition of IFMs. Also they derived several importent results by these compositions 
and constract an idempotent intuitionistic fuzzy matrix from any given one through the 
min-max composition. In [2] Atanassov, five new intuitionistic fuzzy operations on 
intuitionistic fuzzy sets containing multiplication were introduced and their properties are 
studied.  
        Venkatesan and Sriram [19] extended Multiplicative operations of IFMs of two 
operators namely �� and �� and investigated its algebraic properties. In this paper, we 
extend amoung two of these operations to IFMs and investigate their algebraic properties.  
 
2. Preliminaries  
In this section, we give to some basic definitions of intuitionistic fuzzy matrix that are 
necessary for this paper.  
 
Definition 2.1. ([14]) Consider a matrix � = (	
�)×�  where 	
� ∈ �0,1�, 1 ≤ � ≤ � 
and	1 ≤ � ≤ �. Then � is fuzzy matrix. 
 
Definition 2.2. ([6]) An intuitionistic fuzzy matrix(IFM) is a matrix of pairs 
� = �〈	
�, 	
�′ 〉� of a non negative real numbers satisfying 0 ≤ 	
� + 	
�′ ≤ 1 for all i, j. 
 
Definition 2.3. ([14]) For any two IFMs � and ! of same size, we have 
(�) The max-min composition of � and ! is defined by 
� ∨ ! = �〈max	(	
�, &
�),min	(	
�′ , &
�′ )〉�. 
(��) The min-max composition of � and ! is defined by 
� ∧ ! = �〈min	(	
� , &
�),max	(	
�′ , &
�′ )〉�. 
 
Definition 2.4. ([14]) For any two IFMs � and ! of same size, � ≥ ! iff 	
� ≥ &
� and  

	
�′ ≤ &
�′  for all i, j.  
 
Definition 2.5. ([3]) The �× � zero IFM + is an IFM all of whose entries are 〈0,1〉. 
The � × � universal IFM - is an IFM all of whose entries are 〈1,0〉.  
 
Definition 2.6. ([14]) The complement of an IFM � which is denoted by �.  and is 
defined by  �. =	�〈	
�′ . 	
�〉�. 
 
Lemma 2.7. ([20]) Let 	, & and / be real numbers. Then the following equalities hold: 
(�)	max	(	,min(	, &) = 	,min(	,max(	, &)) = 	. 	
(��)max(	,max(&, /)) = max(max(	, &) , /) ,min	(	,min(&, /) = min(min(	, &) , /).  
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Lemma 2.8. ([20]) Let 	, & ∈ �0,1�, we have 
(�)	max	(	,min	(&, /)) = min(max(	, &) ,max(	, /)),  
   	min	(	,max(&, /)) = max(min(	, &) ,min(	, /)). 
(��)max(	, &)max(	, /) ≤ max(	, &/),	min(	, &)min(	, /) ≥ min(	, &/). 
 
Definition 2.9. ([19]) For any two IFMs � and	! of same size, then we define 
(�)���! = �〈max	(	
�, &
�), 	
�′ &
�′ 〉�. 	 
(��)���! = �〈	
�&
� ,max	(	
�′ , &
�′ )〉�.  

	
�&
� and 		
�′ &
�′ 	are the ordinary multiplications. 
 
3. Main results  
In this section, we difine operations �� and �� of IFMs and investigate their algebraic 
properties. 
 
Definition 3.1. For any two IFMs � and	! of same size, then we define 
(�)���! = �〈min	(	
� , &
�), 	
�′ &
�′ 〉�. 	 
(��)���! = �〈	
�&
� ,min	(	
�′ , &
�′ )〉�.  

	
�&
� and 		
�′ &
�′ 	are the ordinary multiplications. 
 
Property 3.2. If � and ! are any two IFMs of same size, we have ���! ≤ ���!.   
Proof: Let � = �〈	
�, 	
�′ 〉� and ! = �〈&
� , &
�′ 〉� be two IFMs of same size. 

Since 	
�&
� ≤ min(	
� , &
�) ≤ max	(	
�, &
�) and min	(	
�′ , &
�′ ) ≥ 	
�′ &
�′ , for all i, j. 
Hence, ���! ≤ ���!.  
 
Property 3.3. For any IFM �, we have 
(�)	���� ≠ �.  
(��)	���� ≠ �.   
Proof: Let � = �〈	
�, 	
�′ 〉� be an IFM. Then	 
(�)	���� = 1〈	
� , 	
�2

3〉4  

          ≠ �〈	
�, 	
�′ 〉�.	 
Hence, ���� ≠ �. 
(��)	���� = �〈	
�� , 	
�′ 〉�  

           ≠ �〈	
� , 	
�′ 〉�.    
Hence, ���� ≠ �. 
 
The following properties are obvious. The operations �� and �� are commutative as well 
as associative.  
 
Property 3.4. Let �, ! and 5 be any three IFMs of same size, we have 
(�)	���! = !���.  
(��)	(���!)��5 = ���(!��5).  
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(���)	���! = !���.  
(�6)	(���!)��5 = ���(!��5).    
 
Property 3.5. For any three IFMs �, ! and 5 of same size, we have 
(�)	Nullity: 	���- = -, ���+ = +.  
(��)	Identity:  ���+ = �, ���- = �.   
(���)	Distributivity: ���(!��5) ≠ 	 (���!)��(���5)  and 

    ���(!��5) ≠ 	 (���!)��(���5).    
(�6) Absorption: ���(���!) ≠ � and ���(���!) ≠ �. 
Proof: (�) and (��) are clear by the definition of  �� and ��. 
(���) ���(!��5) = 	 �〈min	(	
�, 	&
�/
�), 	
�′ min	(&
�′ , /
�′ )〉�  
(���!)��(���5) = 	�〈min	(	
�, &
�)max	(	
�, /
�), max	(	
�′ &
�′ , 	
�′ /
�′ )〉�  

                    =	�〈max	(	
�, &
�)min	(	
�, /
�), 	
�′ 	min	(&
�′ , /
�′ )〉�      

Since min�	
� , &
��max	(	
�, /
�) ≤ min	(	
�, 	&
�/
�), for all i, j.                                                                                
Hence, ���(!��5) ≠ 	 (���!)��(���5).  
Similarly we can prove the other one. 
(�6)	���(���!) =	 �〈min	(	
�, 	
�&
�), 	
�′ min	(	
�′ , &
�′ )	〉�  

                 	= 	 �〈	
�&
�, 	
�′ min	(	
�′ , &
�′ )	〉�  

                  ≠ �〈	
�, 	
�′ 〉�.  
Hence,  ���(���!) ≠ �.    
Similarly we can prove the other one.  
 
4. Results on complement of IFM 
The operator complement obey the De Morgan's laws for the operations �� and	��.  
This is established in the following properties.   
 
Property 4.1. For the IFMs � and ! of same size, we have 
(�)	(���!). = �.��!. .  
(��)	(���!). = �.��!. .  
(���)	(���!). ≤ �.��!..  
(�6)	(���!). ≤ �.��!. .   
Proof: (�)	(���!). = �〈		
�′ &
�′ , min	(	
�, &
�)〉�   
                      = �.��!. .           
Hence, (���!). = �.��!. . 
(��)	(���!). = �〈min	(	
�′ , &
�′ )	, 	
�&
�〉�	  
              = �.��!..                           
Hence, (���!). = �.��!. .   
(���) Since 	
�′ &
�′ ≤ min�	
�′ , &
�′ � ,min	(	
� , &
�) ≥ 		
�&
� and from the Definition (2.4) 
	(���!). ≤ �.��!. .  
The proof (�6)	is similar to that of (���). 
 
Property 4.2. For any IFM �, we have 
(�)	����. ≠ +.        
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(��)	����. ≠ -.   
Proof: (�)	����. = �〈min(	
� , 	
�′ ) , 	
�′ 	
�〉� 

           ≠ 〈0,1〉. 
Hence, ����. ≠ +.    
(��)	����. = �〈	
�	
�′ ,min(	
� , 	
�′ )〉�     
            = 〈1,0〉. 
Hence, ����. ≠ -. 
 
Property 4.3. For any IFM �, we have 
(�)	(����.). = ����. .  
(��)	(����.). = ����..   
Proof: ����. = �〈min(	
� , 	
�′ ) , 	
�′ 	
�〉� and ����. = �〈	
�	
�′ , min(	
� , 	
�′ )〉�. 
(�)	(����.). = �〈	
�′ 	
�,min(	
� , 	
�′ )〉�  

      = �〈	
�	
�′ ,min(	
�′ , 	
�)〉� 
      = ����. . 

Hence, (����.). = ����. . 
(��)	(����.). = �〈min(	
�′ , 	
�) , 	
�	
�′ 〉�  

       = �〈min(	
� , 	
�′ ) , 	
�′ 	
�〉� 
       = ����. .   

Hence, (����.). = ����. .    
 
Property 4.4. For any two IFMs � and ! of same size, we have 
(�)(����.)��(����.) ≠ ����..  
(��)(����.)��(����.) ≠ ����. .   
Proof: (�)(����.)��(����.) = �〈min(min(	
�, 	
�′ ) ,min(	
� , 	
�′ )) , (	
�	
�′ )�〉�. 
����. = �〈min(	
� , 	
�′ ) , 	
�′ 	
�〉�.  

Since (	
�	
�′ )� ≤ 	
�′ 	
�, for all i, j. 
Hence, (����.)��(����.) ≠ ����.. 
The proof (��)	is similar to that of (�). 
 
5. Results on 78 and 79 combined with max-min and min-max compositions of 
IFMs 
We shall discuss the absorption property in the case where the operations ��,	��	, 
max-min and min-max are combined each other. 
 
Property 5.1. Let � and ! are any two IFMs of same size, we have 
(�)	���(� ∨ !) ≠ �.  
(��)	���(� ∧ !) ≠ �.  
Proof:	(�)	���(� ∨ !) = �〈min	(	
�,max(	
�, &
�) , 	
�′ min	(	
�′ , &
�′ )〉� 

                = �〈	
� , 	
�′ 	
�′ 〉� 
                = 1〈	
� , 	
�′

�〉4 
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                ≠ �〈	
� , 	
�′ 〉�. 
Hence, ���(� ∨ !) ≠ �. 
The proof (��)	is similar to that of (�). 
 
Property 5.2. Let � and ! are any two IFMs of same size, we have 
(�)	���(� ∨ !) ≠ �.  
(��)	���(� ∧ !) ≠ �.  
Proof:	(�)	���(� ∨ !) = �〈	
�max(	
�, &
�) ,min	(	
�′ min(	
�′ , &
�′ ))〉� 
                         =�〈max(	
�� , 	
�&
�) ,min	(	
�′ min(	
�′ , &
�′ ))〉� 

                 ≠ �〈	
�, 	
�′ 〉�. 
Hence, ���(� ∨ !) ≠ �. 
The proof (��)	is similar to that of (�). 
 
Property 5.3. Let � and ! are any two IFMs of same size, we have 
(�)	� ∨ (���!) = ���!.  
(��)	� ∧ (���!) = �.  
Proof:	(�)	� ∨ (���!) = �〈max	(	
� ,min	(	
� , &
�)),min	(	
�′ , 	
�′ &
�′ )〉� 

                = �〈	
� , 	
�′ &
�′ 〉� 
                ≠ �〈	
� , 	
�′ 〉�.              

Hence, � ∨ (���!) ≠ �. 
(��)	� ∧ (���!) = �〈min	(	
� ,min	(	
� , &
�)),max	(	
�′ , 	
�′ &
�′ )〉�  

                 = �〈&
�, 	
�′ 〉� 
                 ≠ �〈	
�, 	
�′ 〉�. 
Hence, � ∧ (���!) ≠ �. 
Similarly, we can prove the following property 
 
Property 5.4. Let � and ! are any two IFMs of same size, we have 
(�)	� ∧ (���!) ≠ �.  
(��)	� ∨ (���!) ≠ �.  
 
Next, we shall discuss the distributivity in the case where the operations ��,	��	, max-min 
and min-max are combined each other. 
  
Property 5.5. Let �, ! and 5 are any three IFMs of same size, we have 
(�)���(! ∨ 5) = (���!) ∨ (���5).  
(��)���(! ∧ 5) = (���!) ∧ (���5).  
Proof: (�)	���(! ∨ 5) = �〈min	(	
�, (max	(&
� , /
�)), 	
�′ min	(&
�′ , /
�′ )〉� 
                         = �〈max	(min	(	
�, &
�),min	(	
� , /
�),min	(	
�′ &
�′ , 	
�′ /
�′ )〉� 
                         = (���!) ∨ (���5). 
Hence, ���(! ∨ 5) = (���!) ∨ (���5). 
The proof (��) is similar to that of (�). 
 
Property 5.6. Let �, ! and 5 are any three IFMs of same size, we have 
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(�)���(! ∨ 5) 	= (���!) ∨ (���5).  
(��)���(! ∧ 5) = (���!) ∧ (���5).  
Proof: (�)	���(! ∨ 5) = �〈	
�(max	(&
� , /
�),min	(	
�,′ min	(&
�′ , /
�′ )〉� 
                         = �〈max	(	
�&
�, 	
�/
�),min	(min	(	
�′ , &
�′ ),min	(	
�′ , /
�′ )〉� 
                         = (���!) ∨ (���5).  
Hence, ���(! ∨ 5) =	 (���!) ∨ (���5).  
The proof (��)	is similar to that of (�). 
 
Property 5.7. Let �, ! and 5 are any three IFMs of same size, we have 
(�)� ∨ (!��5) ≠ (� ∨ !)��(� ∨ 5).  
(��)� ∧ (!��5) ≠ (� ∧ !)��(� ∧ 5).  
Proof: (�)� ∨ (!��5) = �〈max	(	
�,min	(&
� , /
�)),min	(	
�′ , &
�′ /
�′ )〉� 
                       = �〈min	(max	(	
� , &
�),max	(	
�, /
�)),min	(	
�′ , &
�′ /
�′ )〉� 
                       ≠ (� ∨ !)��(� ∨ 5).  
Hence, � ∨ (!��5) ≠ (� ∨ !)��(� ∨ 5). (By using Lemma 2.8) 
The proof (��)	is similar to that of (�). 
 
Property 5.8. Let �, ! and 5 are any three IFMs of same size, we have 
(�)� ∨ (!��5) ≠	 (� ∨ !)��(� ∨ 5).  
(��)� ∧ (!��5) ≠ 	 (� ∧ !)��(� ∧ 5).  
Proof: (�)� ∨ (!��5) = �〈max	(	
�, &
�/
�),min	(	
�′ ,min	(&
�	′ , /
�′ ))〉� 
                        = �〈max	(	
�, &
�/
�),min(min	(	
�′ , &
�′ ) ,min	(	
�′ , /
�′ ))〉� 
                        ≠ (� ∨ !)��(� ∨ 5).  
Hence, � ∨ (!��5) ≠	 (� ∨ !)��(� ∨ 5). (By using Lemma 2.8) 
The proof (��)	is similar to that of (�). 
 
Property 5.9. If � and ! are any two IFMs of same size, we have 
(�)���! ≠ � ∧ !.  
(��)���! ≠ � ∨ !.   
(���)���! ≥ � ∧ !.  
(�6)���! ≥ � ∨ !.  
Proof:	(�)���! = �〈min	(	
�, &
�), 	
�′ &
�′ 〉� and  

� ∧ ! = �〈min	(	
� , &
�),max	(	
�′ , &
�′ )〉�.  

Since 	
�′ &
�′ ≤ max	(	
�′ , &
�′ ), for all i, j. 
Hence, ���! ≠ � ∧ !.  
(��)���! = �〈	
�&
� ,min	(	
�′ , &
�′ )〉� and 

� ∨ ! = �〈max	(	
�, &
�),min	(	
�′ , &
�′ )〉�.  
Since 	
�&
� ≤ max	(	
�, &
�), for all i, j. 
Hence, ���! ≠ � ∨ !.   
(���) Since  	
�&
� ≤ min	(	
� , &
�) and min	(	
�′ , &
�′ ) ≥ max	(	
�′ , &
�′ ),   
Hence, ���! ≥ � ∧ !.  
(�6) Since min	(	
� , &
�) ≥ max	(	
�, &
�) and 	
�′ &
�′ ≤ min	(	
�′ , &
�′ ), 
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Hence, ���! ≠ � ∨ !.  
 
Property 5.10. If � and ! are any two IFMs of same size, we have 
(�)(� ∨ !) ∨ (���!) = ���!.  
(��)(� ∧ !) ∧ (���!) = ���!. 		 
Proof: 
(�)(� ∨ !) ∨ (���!) =
								�〈max	(max	(	
�, &
�),min(	
� , &
�)) , min	(min	(	
�′ , &
�′ ), 	
�′ &
�′ )〉� 
                     = �〈max	(	
�, &
�), 	
�′ &
�′ 〉� 
                     	= ���!. 
Hence, (� ∨ !) ∨ (���!) = ���!. 
The proof (��)	is similar to that of (�). 
 
Property 5.11. If � and ! are any two IFMs of same size, we have 
(�)(� ∧ !)��(� ∨ !) = ���!.  
(��)(� ∧ !)��(� ∨ !) = ���!.  
Proof: 
(�)(� ∧ !)��(� ∨ !) =
								�〈min	(min	(	
� , &
�),max(	
�, &
�)) ,max	(	
�′ , &
�′ )min(	
�′ , &
�′ )〉� 
                     = �〈min(	
�, &
�) , 	
�′ &
�′ 〉� 
                     	= ���!. 
Hence, (� ∧ !)��(� ∨ !) = ���!. 
The proof (��)	is similar to that of (�). 
 
6. Conclusions 
The set of all IFMs with respect to the operations �� and �� form a commutative monoid. 
The operations �� and ��  of IFMs are satisfy the De Morgan’s laws. Distributive laws 
max-min and min-max composition over �� and �� are proved and established some 
algebraic properties. 
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