Intern. J. Fuzzy Mathematical Archive

Vol. 13, No. 1, 2017, 99-103

ISSN: 2320 -3242 (P), 2320 -3250 (online)

Published on 30 September 2017

www.researchmathsci.org

DOI: http://dx.doi.org/10.22457/ijfma.v13n1a10

International Journal of **Fuzzy Mathematical Archive**

General Fifth M-Zagreb Indices and Fifth M-Zagreb **Polynomials of PAMAM Dendrimers**

V.R.Kulli

Department of Mathematics Gulbarga University, Gulbarga 585106, India e-mail: vrkulli@gmail.com

Received 21 September 2017; accepted 30 September 2017

Abstract. A molecular graph or a chemical graph is a simple graph related to the structure of a chemical compound. In this paper, we introduce the general fifth M-Zagreb indices and fifth M_3 -Zagreb index and their polynomials of a molecular graph. Also we compute the general fifth M-Zagreb indices and fifth M_3 -Zagreb index of PAMAM dendrimer graphs. Finally, we compute the fifth M_3 -Zagreb polynomial of PAMAM dendrimer graphs.

Keywords: general fifth M_1 -Zagreb index, general fifth M_2 -Zagreb index, fifth M_3 -Zagreb index, PAMAM dendrimer.

AMS Mathematics Subject Classification (2010): 05C69, 05C07, 05C35

1. Introduction

All graphs considered here are finite, undirected without isolated vertices, loops and multiple edges. For all further notation and terminology we refer the reader to [1].

A molecular graph is simple graph related to the structure of a chemical compound. Each vertex of this graph represents an atom of the molecule and its edge to the bonds between atoms.

Let $S_G(u)$ denote the sum of the degrees of all vertices adjacent to a vertex u. We introduce the general fifth M-Zagreb indices of a molecular graph G as

$$M_{1}^{a}G_{5}(G) = \sum_{uv \in E(G)} \left[S_{G}(u) + S_{G}(v) \right]^{a}, \qquad M_{2}^{a}G_{5}(G) = \sum_{uv \in E(G)} \left[S_{G}(u) S_{G}(v) \right]^{a}. \tag{1}$$

In [2], Graovac et al. defined fifth M -Zagreb indices as

$$M_{1}G_{5}(G) = \sum_{uv \in E(G)} \left[S_{G}(u) + S_{G}(v) \right], \qquad M_{2}G_{5}(G) = \sum_{uv \in E(G)} S_{G}(u) S_{G}(v).$$
We introduce the fifth hyper-M-Zagreb indices as

$$HM_{1}G_{5}\left(G\right) = \sum_{uv \in E\left(G\right)} \left[S_{G}\left(u\right) + S_{G}\left(v\right)\right]^{2}, \quad HM_{2}G_{5}\left(G\right) = \sum_{uv \in E\left(G\right)} \left[S_{G}\left(u\right)S_{G}\left(v\right)\right]^{2}.$$

We define a new version of third Zagreb index or fifth M_3 -Zagreb index as

$$M_3G_5(G) = \sum_{uv \in E(G)} \left| S_G(u) - S_G(v) \right|. \tag{2}$$

Corresponding the above indices, we define the Zagreb polynomials as follows:

The general fifth M_1 -Zagreb polynomial and the general fifth M_2 -Zagreb polynomial of a molecular graph G are defined as

$$M_{1}^{a}G_{5}(G,x) = \sum_{uv \in E(G)} x^{\left[S_{G}(u) + S_{G}(v)\right]^{a}}, \qquad M_{2}^{a}G_{5}(G,x) = \sum_{uv \in E(G)} x^{\left[S_{G}(u)S_{G}(v)\right]^{a}}.$$
 (3)

The fifth M_1 -Zagreb polynomial and fifth M_2 -Zagreb polynomial of a molecular graph G are defined as

$$M_{1}G_{5}(G,x) = \sum_{uv \in E(G)} x^{S_{G}(u)+S_{G}(v)}, \qquad M_{2}G_{5}(G,x) = \sum_{uv \in E(G)} x^{S_{G}(u)S_{G}(v)}.$$

The fifth hyper- M_1 -Zagreb polynomial and fifth hyper- M_2 -Zagreb polynomial of a molecular graph G are defined as

$$HM_{1}G_{5}\left(G,x\right)=\sum_{uv\in E(G)}x^{\left[S_{G}\left(u\right)+S_{G}\left(v\right)\right]^{2}}, \qquad HM_{2}G_{5}\left(G,x\right)=\sum_{uv\in E(G)}x^{\left[S_{G}\left(u\right)S_{G}\left(v\right)\right]^{2}}.$$

Recently, some polynomials were studied, for example, in [3,4] and also some topological indices were studied, for example, in [5,6,7,8,9,10,11].

2. PAMAM Dendrimer

We consider the PAMAM dendrimers with n growth stages, denoted by $PD_1[n]$ for every $n \ge 0$, see Figure 1 [12].

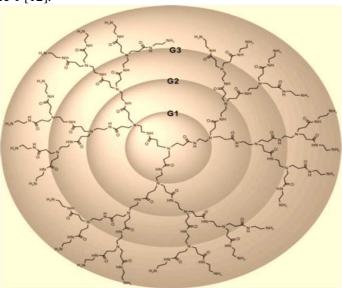


Figure 1: PAMAM dendrimer $PD_1[n]$

Let G be the graph of PAMAM dendrimer $PD_1[n]$. By calculation, we see that G has $12 \times 2^{n+2} - 23$ vertices and $12 \times 2^{n+2} - 24$ edges. Also the edge partition of the form

General Fifth M-Zagreb Indices and Fifth M-Zagreb Polynomials of PAMAM Dendrimers

(2,3), (3,4), (3,5), (4,5), (5,5), (5,6) for PAMAM dendrimer $PD_1[n]$ based on the degree sum of neighbors of end vertices of each edge is obtained, as given in Table 1.

$S_G(u) S_G(v) \setminus uv \in E(G)$	(2, 3)	(3,4)	(3, 5)	(4, 5)	(5, 5)	(5, 6)
Number of edges	3×2^n	3×2^n	$6 \times 2^{n} - 3$	$9 \times 2^{n} - 6$	$18 \times 2^{n} - 9$	$9 \times 2^{n} - 6$

Table 1: Edge partition of $PD_1[n]$

Theorem 1. The general fifth M_1 -Zagreb index of a PAMAM dendrimer is

$$M_1^a G_5(PD_1[n]) = 3 \times 2^n (5^a + 7^a) + (6 \times 2^n - 3)8^a + (9 \times 2^n - 6)9^a + (18 \times 2^n - 9)10^a + (9 \times 2^n - 6)11^a$$

Proof: From equation (1) and Table 1, we have

$$M_1^a G_5 \left(PD_1[n] \right) = \sum_{uv \in E(G)} \left[S_G(u) + S_G(v) \right]^a$$

$$=3\times 2^{n}5^{a}+3\times 2^{n}7^{a}+\left(6\times 2^{n}-3\right)8^{a}+\left(9\times 2^{n}-6\right)9^{a}+\left(18\times 2^{n}-9\right)10^{a}+\left(9\times 2^{n}-6\right)11^{a}$$

Corollary 1.1. The fifth M_1 -Zagreb index of a PAMAM dendrimer is

$$M_1G_5(PD_1[n]) = M_1^1G_5(PD_1[n]) = 444 \times 2^n - 234.$$

Corollary 1.2. The fifth M_1 -Zagreb index of a PAMAM dendrimer is

$$HM_1G_5(PD_1[n] = M_1^2G_5(PD_1[n] = 4224 \times 2^n - 2304.$$

Theorem 2. The general fifth M_2 -Zagreb index of a PAMAM dendrimer is

$$M_2^a G_5(PD_1[n]) = 3 \times 2^n (6^a + 12^a) + (6 \times 2^n - 3)15^a + (9 \times 2^n - 6)20^a + (18 \times 2^n - 9)25^a + (9 \times 2^n - 6)30^a.$$

Proof: From equation (1) and Table 1, we have

$$M_2^a G_5(PD_1[n]) = \sum_{uv \in E(G)} \left[S_G(u) S_G(v) \right]^a$$

$$=3\times 2^{n}6^{a}+3\times 2^{n}12^{a}+\left(6\times 2^{n}-3\right)15^{a}+\left(9\times 2^{n}-6\right)20^{a}+\left(18\times 2^{n}-9\right)25^{a}+\left(9\times 2^{n}-6\right)20^{a}$$

Corollary 2.1. The fifth M_2 -Zagreb index of a PAMAM dendrimer is

$$M_2G_5(PD_1[n]) = M_2^1G_5(PD_1[n]) = 1044 \times 2^n - 570.$$

Corollary 2.2. The fifth M_2 -Zagreb index of a PAMAM dendrimer is

$$HM_2G_5(PD_1[n]) = M_2^2G_5(PD_1[n]) = 24840 \times 2^n - 14100.$$

Theorem 3. The fifth M_3 -Zagreb index of a PAMAM dendrimer is

$$M_3G_5(PD_1[n]) = 48 \times 2^n - 24.$$

Proof: From equation (2) and Table 1, we have

$$M_3G_5(PD_1[n]) = \sum_{uv \in E(G)} |S_G(u) - S_G(v)|$$

$$=3\times 2^{n}+3\times 2^{n}+(6\times 2^{n}-3)4+(9\times 2^{n}-6)+(18\times 2^{n}-9)0+(9\times 2^{n}-6)$$

$$=48\times2^{n}-24.$$

Theorem 4. The general fifth M_1 -Zagreb polynomial of a PAMAM dendrimer is $M_1^a G_5(PD_1[n], x) = 3 \times 2^n x^{5^a} + 3 \times 2^n x^{7^a} + (6 \times 2^n - 3) x^{8^a} + (9 \times 2^n - 6) x^{9^a} + (18 \times 2^n - 9) x^{10^a} + (9 \times 2^n - 6) x^{11^a}$.

Proof: From equation (3) and Table 1, we have

$$M_1^a G_5(PD_1[n],x) = \sum_{uv \in E(G)} x^{\left[S_G(u) + S_G(v)\right]^a}$$

$$=3\times 2^{n} x^{5^{a}} + 3\times 2^{n} x^{7^{a}} + \left(6\times 2^{n} - 3\right) x^{8^{a}} + \left(9\times 2^{n} - 6\right) x^{9^{a}} + \left(18\times 2^{n} - 9\right) x^{10^{a}} + \left(9\times 2^{n} - 6\right) x^{11^{a}}.$$

Corollary 4.1. The fifth M_1 -Zagreb polynomial of a PAMAM dendrimer is

$$M_1G_5(PD_1[n],x) = 3 \times 2^n x^5 + 3 \times 2^n x^7 + (6 \times 2^n - 3)x^8 + (9 \times 2^n - 6)x^9 + (18 \times 2^n - 9)x^{10} + (9 \times 2^n - 6)x^{11}$$

Corollary 4.2. The fifth M_1 -Zagreb polynomial of a PAMAM dendrimer is

$$HM_{1}G_{5}(PD_{1}[n],x) = 3 \times 2^{n} x^{25} + 3 \times 2^{n} x^{49} + (6 \times 2^{n} - 3) x^{64} + (9 \times 2^{n} - 6) x^{81} + (18 \times 2^{n} - 9) x^{100} + (9 \times 2^{n} - 6) x^{121}$$

Theorem 5. The general fifth M_2 -Zagreb polynomial of a PAMAM dendrimer is

$$M_2^a G_5(PD_1[n], x) = 3 \times 2^n x^{6^a} + 3 \times 2^n x^{12^a} + (6 \times 2^n - 3) x^{15^a}.$$

$$+(9\times2^{n}-6)x^{20^{a}}+(18\times2^{n}-9)x^{25^{a}}+(9\times2^{n}-6)x^{30^{a}}$$

Proof: From equation (3) and Table 1, we have

$$\begin{split} M_{2}^{a}G_{5}(PD_{1}[n],x) &= \sum_{uv \in E(G)} x^{\left[S_{G}(u)S_{G}(v)\right]^{a}} \\ &= 3 \times 2^{n} x^{6^{a}} + 3 \times 2^{n} x^{12^{a}} + (6 \times 2^{n} - 3) x^{15^{a}} + (9 \times 2^{n} - 6) x^{20^{a}} \\ &+ (18 \times 2^{n} - 9) x^{25^{a}} + (9 \times 2^{n} - 6) x^{30^{a}}. \end{split}$$

Corollary 5.1. The fifth M_2 –Zagreb polynomial of a PAMAM dendrimer is

$$M_{2}G_{5}(PD_{1}[n],x) = 3 \times 2^{n} x^{6} + 3 \times 2^{n} x^{12} + (6 \times 2^{n} - 3) x^{15} + (9 \times 2^{n} - 6) x^{20} + (18 \times 2^{n} - 9) x^{25} + (9 \times 2^{n} - 6) x^{30}.$$

Corollary 5.2. The fifth hyper- M_2 –Zagreb polynomial of a PAMAM dendrimer is $HM_2G_5(PD_1[n],x) = 3 \times 2^n x^{36} + 3 \times 2^n x^{144} + (6 \times 2^n - 3) x^{225} + (9 \times 2^n - 6) x^{400}$

$$+(18\times2^{n}-9)x^{625}+(9\times2^{n}-6)x^{900}.$$

Theorem 6. The fifth M_3 -Zagreb polynomial of a PAMAM dendrimer is

General Fifth M-Zagreb Indices and Fifth M-Zagreb Polynomials of PAMAM Dendrimers

$$M_3G_5(PD_1[n],x) = (6\times 2^n - 3)x^2 + (24\times 2^n - 12)x + (18\times 2^n - 9).$$

Proof: From Table 1, we have

$$M_{3}G_{5}(PD_{1}[n],x) = \sum_{uv \in E(G)} x^{|S_{G}(u)-S_{G}(v)|}$$

$$= 3 \times 2^{n} x + 3 \times 2^{n} x + (6 \times 2^{n} - 3)x^{2} + (9 \times 2^{n} - 6)x$$

$$+ (18 \times 2^{n} - 9)x^{0} + (9 \times 2^{n} - 6)x$$

$$= (6 \times 2^{n} - 3)x^{2} + (24 \times 2^{n} - 12)x + (18 \times 2^{n} - 9).$$

REFERENCES

- 1. V.R.Kulli, *College Graph Theory*, Vishwa International Publications, Gulbarga, India (2012).
- 2. A.Graovac, M.Ghorbani and M.A.Hosseinzadeh, Computing fifth geometric-arithmetic index of nanostar dendrimers, *Journal of Mathematical Nanoscience*, 1(1) (2011) 33-42.
- 3. V.R.Kulli, General Zagreb polynomials and *F*-polynomial of certain nanostructrues, to appear *International J. Mathematical Archive*, (2017).
- 4. V.R.Kulli, Certain topological indices and their polynomials of dendrimer nanostars, *Annals of Pure and Applied Mathematics*, 14(2) (2017) 263-269.
- 5. V.R.Kulli, First multiplicative K Banhatti index and coindex of graphs, *Annals of Pure and Applied Mathematics*,11(2) (2016)79-82.
- 6. V.R.Kulli, On K indices of graphs, *International of Fuzzy Mathematical Archive*, 10(2) (2016) 105-109.
- 7. V.R.Kulli, Computation of some topological indices of certain networks, *International Journal of Mathematical Archive*, 8(2) (2017) 100-106.
- 8. V.R.Kulli, New arithmetic-geometric indices, *Annals of Pure and Applied Mathematics*, 13(2) (2017) 165-172.
- 9. V.R.Kulli, The Gourava indices and coindices of graphs, *Annals of Pure and Applied Mathematics*, 14(1) (2017) 33-38.
- 10. V.R.Kulli, New K Banhatti topological indices, *International Journal of Fuzzy Mathematical Archive*, 12(1) (2017) 29-37.
- 11. V.R.Kulli, The product connectivity Gourava index, *Journal of Computer and Mathematical Sciences*, 8(6) (2017) 235-242.
- 12. M.N.Husin, R.Hasni, N.E.Arif and M.Imran, On topological indices of certain families of nanostar dendrimers, *Molecules*, 21 (2016) 821.