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Abstract. In this paper we proved a common fixed point theofer two, four and six
mappings in fuzzy 2-banach space by using comfiitibf type A, compatibility of type
P and implicit relations. Our result is an extensdf existing results in fuzzy 2-banach
space.
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1. Introduction

A theory of fuzzy sets was introduced by Zadeh jhQ]965, which plays a major role in
almost all branches of science and Engineeringe définition of fuzzy norms was
introduced by Wu and Fang [3] and they studiedcthraparison between two definitions
of fuzzy normed spaces. The concept of 2-nornnieal spaces was initiated by Gahler
[4] and White [9] introduced the concept of Causkguences and convergent sequences
in a 2-normed spaces. Also, he introduced theamnaf linear 2-functional on a fuzzy
2-normed space. Many authors have studied comiixed point theorems in fuzzy
banach space. In this paper, we proved some corfiremhpoint theorems for two, four
and six mappings in fuzzy 2-banach space.

2. Preliminaries

In this section, we study 2-normed linear spacezzyf normed spaces its convergence
and completeness of sequences in a fuzzy 2-norimedrispace. Also, we need some
basic definitions required for proving the commaxed point theorems in fuzzy 2-
Banach spaces.

Definition 2.1. Let X be a vector space over a field K (where Risr C) and * be a

continuous t-norm. A fuzzy set N Mx [0, o] is called a fuzzy norm on X if it satisfies
the following conditions:
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® N(x,0)=0VxeX
(i) N(,t)=1, vt>0 iff x=0

(i) NOQx,t) =N (xﬁ) VXxEX, t>0and 1€K.

(iv) N(x+yt+s)=N(xt)*N(y,s), Vx,yEXand t,s = 0.
(V) for every x € X,N(x,.) is left continuous andlim;_,,, N(x,t) = 1.
The triple(X, N,*)will be called fuzzy normed linear space (FNLS).

Definition 2.2. Let X be a vector space over a field K (where Rigr C) and * be a
continuous t-norm. A fuzzy set N iXi? x [0, ] is called a fuzzy 2-norm on X if it
satisfies the following conditions:

® N(x,y,00)=0Vx,yeX

(i) N(x,y,t) =1,vt > 0 and atleast two among the three points are equal.

(iii) N(x,y,t) = N(y, x,t)

(iv) Nx+y+zti+t,+t3) =N(x,y,t;) * N(x,z,t;) * N(y, z, t3),

Vx,y,z € X and t{,t;,t3 = 0.
(v) for every x,y € X,N(x,y,.) is left continuous and
lim;_,, N(x,y,t) = 1.

The triple(X, N,*)will be called fuzzy 2-normed linear space (F2-NLS)

Definition 2.3. A sequence {} in a F2-NLS(X, N,*) is converge ta € X if and only if
lim,, o NCxp, x,t) =1,V t > 0.

Definition 2.4. Let (X, N,*) be a F2-NLS. A sequencep¥n X is called a fuzzy Cauchy
sequence if and only ifm,, ,, o N(xp, x5, t) =1,V p,t > 0.

Definition 2.5. A linear fuzzy 2-normed space in which every Causkquence is
convergent is called a fuzzy 2-Banach space.

Definition 2.6. Self mappingss andT of a fuzzy 2-Banach spa¢#, N,*) are said to be
weakly commuting ifN(STx, TSx,t) = N(Sx,Tx,t),vx € X &t > 0.

Definition 2.7. Self mappingss andT of a fuzzy 2-Banach spa¢#, N,*) are said to be
compatible if and only iflim,_. N(STx,, TSx,,t) =1,Vt > 0 whenever {x} is a
sequence i such thatTx,, Sx,, - p forsome p € X as n - .

Definition 2.8. Self mappings andT of a fuzzy 2-Banach spac&, N,*) are said to be
compatible type (A) if and only if lim,_, N(STx,, TTx,,t) =1 and
lim N(TSx,,SSx,,t) =1,vt > 0whenever {x} is a sequence inX such that

n—oo

Tx,,Sx, —» p forsome p € Xas n - .
Definition 2.9. Self mappings andT of a fuzzy 2-Banach spac&, N,*) are said to be

compatible type (P) if and only ifm,,_,, N(SSx,, TTx,,t) =1 V t > 0 whenever {x}
is a sequence K such thaf'x,,, Sx,, » p forsome peXas n— oo
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Definition 2.10. Supposes andT be self mappings of fuzzy 2-Banach sgacé&/,«). A
point x € X is called a coincidence point 8fandT if and only if Sx = Tx, thenw =
Sx = Tx is called a point of coincidence $fandT.

Definition 2.11. Self-mapsS andT of a fuzzy 2-Banach spac&, N,*) are said to be
weakly compatible if they commute at their coincide points. That is, §p = Tp for
somep € X then STp = TSp.

Definition 2.12. Self-mapsS andT of a fuzzy 2-Banach spad&, N,*) are said to be
occasionally weakly compatible (owc) if and onlythire is a poink € X which is the
coincidence point of andT at which they commute.

Definition 2.13. Self-mapsS andT of a fuzzy 2-Banach spaé&, N,*) are said to be sub
compatible if there exists a sequencg {r X such thatlim,,_,o, Sx, =lim,_,. Tx, =z,
z€X and limN (STx,,, TSx,,t) = 1.

n—oo

Definition 2.14. Self-mapsS andT of a fuzzy 2-Banach spa¢&, N,*) are said to be sub

compatible of type (A) if there exists a sequencg,} {in X such that

lim,,_,o Sx, =lim,_, Tx, =2,z€ X and satisfy lim N(STx,,TTx,,t)=1 and
n—-oo

lim N(TSx,,,SSx,,t) = 1.
n—oo

Implicit Relation: Let {¢} be the set of all real continuous functipn(R*)® - R*
satisfying the following conditionp (u, u, v, v,u,u) = 0 implyu > vV u,v € [0,1].

3. Material and method
Lemma 3.1. Let (X, N,*) be a fuzzy 2-Banach space. If there exts&(0,1) such that
N(x,y, kt) = N(x,y,t) forallx,y € X andt > 0 thenx = y.

Lemma 3.2. Let X be a set, f, g owc self maps of X. If f apdhave a unique point of
coincidence, w =¢= gx; then w is the uniqgue common fixed point of f @nd

Theorem 3.1. Let (X, N,*) be a fuzzy 2-Banach space with continuous t-noket A4, B
be two self mappings df satisfying

1. The pair(4,S) be owc.

2. For some €@ and for al xy,zeX and every >0,

{N(Ax, Ay, t),N(Ax, Sy, t), N(Ax, Sx,t), N(Ay, Sy, t),} >0
¢ N(Ay, Sx,t), N(Sx, Sy, t) =
Then there exists a unique fixed pain€ X such that Aw = Sw = w.
Proof: Since the pai(4, S) be owc, there are pointsy, z € X such thatlx = Sx.
We claim thatAx = Ay.
Supposedx # Ay.
Then by (2),
@{N(Ax, Ay, t), N(Ax, Ay, t), N(Ax, Ax, t), N(Ay, Ay, t), N(Ay, Ax, t), N(Ax, Ay, t)}
=0
That is, p{N(Ax, Ay, t), N(Ax, Ay, t),1,1, N(Ay, Ax,t), N(Ax,Ay,t)} = 0
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That is, p{N (Ax, Ay, t),N(Ax, Ay, t),1,1,N(Ax, Ay, t),N(Ax, Ay, t)} = 0
In view of @ we getdx = Ay.
That is,Ax = Sx = Ay = Sy.
Suppose thav € X is another fixed point such thaiw = Sw.
They by (1),Aw = Sw = By = Ty.
So0,Ax = Aw andw = Ax = Sx is the unique point of coincidenceAfands.
Therefore,w is a common fixed point of andS. [By Lemma 3.2].

Uniqueness:
Letw,; andw, be two common fixed points df ands.
Assume thatv; = w,
N(Awy, Aw,, t), N(Awy, Aw,, t), N(Awy, Awy, t), N(Aw,, Aw,, t), N(Aw,, Aw,, t),
(p{ N(Aw, Aw,, t) }
>0
ie.,
@{N(Aw;, Aw,, t), N(Awy, Aw,, t), 1,1, N(Aw,, Awy, t), N(Awq, Aw,, t)} = 0
ie.,
@{N(Awy, Aw,, t), N(Aw,, Aw,, t), 1,1, N(Awy, Aw,, t), N(Awy, Aw,, t)} = 0
Therefore, w; = w,.
Thusw is the unique fixed point of ands.

Theorem 3.2 Let (X,N,*) be a fuzzy 2-Banach space with continuous t-norbet
A, B, S, T be four self mappings of satisfying
1. The pairg4,S) and(B,T) are owc.
2. For some ¢@€@® and for all xy,zeX and every >0,
N(Ax,By,t),N(Sx,Ty,t),N(Sx,Ax,t), N(Ax, Ty, t),
¢ { N(Sx, By, t),N(Ty, By, t) }
Then there exists a unique fixed pain€ X such thadlw = Sw = w and a unique point
z € X such thatBz =Tz = z. Moreoverz =w is a unique common fixed point of
A,B,S andT.
Proof : Let the pairg4,S) and(B,T) be owc.
So, there are points y, z € X such thalx = Sx and By = Ty.
We claim thatAx = By.
If Ax # By, then by the inequality (2) we have,
{N(Ax, By, t),N(Sx, Ty, t), N(Sx, Ax,t), N(Ax, Ty, t),} >0
¢ N(Sx, By, t), N(Ty, By, t) =
{N(Ax, By,t),N(Ax, By, t), N(Ax, Ax, t), N(Ax, By, t),} > 0
¢ N(Ax, By, t),N(By, By, t) =

>0

ie.,

ie.,
@{N(Ax, By, t),N(Ax, By, t),1,N(Ax, By, t),N(Ax, By, t),1} = 0
In view of @ we get Ax = By.
That is,Ax = Sx = By = Ty.
Suppose that there is another poin€ X such thatAw = Sw.
Then we havedw = Sw = By = Ty.
So0Ax = Aw andw = Ax = Sx is the unique point of coincidence Afands.
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Therefore w is a common fixed point of ands.
Suppose that there is another peirg X such thatBu = Tu.
Thus we havedx = Sx = Bu = Tu.
So0,By = Bu andu = By = Ty is the unique point of coincidence BfandT.
Thereforeu is a common fixed point & andT.
Assume thaiw # wu.
Then we have,
{N(Aw, Bu,t), N(Sw, Tu,t), N(Sw, Aw, t), N(Tu, Bu, t),} >0

¢ N(Aw, Tu, t), N(Sw, Bu, t) =
That is,p{N(w,u,t), N(w,u,t), N(w,w,t), N(u,u,t), Nw,u,t), N(w,u,t)} = 0
That is,p{N(w,u,t),N(w,u,t),1,1, N(w,u,t), N(w,u, t)} = 0
In view of @ we getw = u.
Therefore, z is a common fixed point o, B, S andT.

Uniqueness:
Let w; andw, be two common fixed points d@f B, S andT.
Assume thaty; # w,
N(Awy, Bw,,t), N(Swy, Tw,, t), N(Swy, Awy, t), N(Twy, Bw,, t), N(Aw,, Twy, t),
(p{ N(Swy, Bw,, t) }
>0
ie.,
<P{N(W1' Wy, t)' N(Wlt Wy, t), N(WI' w1, t)' N(WZ' Wy, t), N(Wlt Wy, t)' N(WI' Wy, t)} = 0
i.e., {N(wy,wy, t), N(wy,wy, t), 1,1, N(wy,wy, t), N(wy,wy, t)} = 0
Therefore,w; = w,.
Hence, the fixed point is unique.

Theorem 3.3. Let (X, N,*) be a fuzzy 2-Banach space anddetnd Bbe continuous self
mappings ofX, S andT satisfying the following conditions:
() AX) cT(X) and B(X) c S(X)
(i) N(Ax,By,t) =
min{N(Sx, Ty, t), N(Ax,Sx,t),N(By,Ty,t),N(Ax,Ty,t), N(By, Sx,t)}
If the pairs(4, T) and(B, S) are compatible mappings of type (P), for any,z € X and
t > 0, there exists point € X such that u is a coincidence point4pB, S andT.
Proof: Letx, be any arbitrary point iX.
Define a sequende,} in X by ry,, = Txony1 = AXan, Tons1 = BXons1 = SXopta
ThenN(Axan BX2n+1, t) = N(anl 2n+1s t)

> min {N(SxZn' Tx2n41,6), N(AX2p, Sx20, 1), N(BXopn 41, TX2n 41, t)'}

N N(Axzpn, TX2n41,t), N(BXopn41, SXon, t)
N(12n-1,T2m ), N(Ton, Ton—1, ), N(Ton41, Tons t),}

N(T’zl\r,u(Tan t), N(Tz)n-ll-\}r(TZn—lv t) NG )
. Ton—-1T2n £)y N (120, Ton—1, £), N(12pn41, T2 £),

ThUS,N(TZn, Ton+1 t) = mln{ N(an' Tons t)' N(T2n+1t Ton-1, t) }

= min{
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_ . {N(an—ll Tons t), N(anl T2n-1, t), N(T2n+1, T2ns t),}
= min
11 N(r2n+1' T2n-1, t)
2 N(an—ll Tan, t)
= N(AxZn—ll Bxan t)
That is,N(Axyp, Bxyp41,t) = N(AXyp_1, Bxyp, t).
But {4Ax,} and{Bx,,,} are Cauchy sequences in X.
Therefore, lim,,_,, N(AXx5y,_1, Bxy,, t) = 1.
Hencelim,,_, o N(Ax,,, Bxy,41,t) = 1.
Since the paif4, T) is compatible mapping of type (P),
1 =1lim N(AAXZn, TTX2n+1, t)

n—-oo
= limy, 0 N(ATop, TTons1,t) = N(Au, Ty, t)
That is,Au = Tu.
Also, the pair(B, S) is compatible mapping of type (P),
1 nigm N(BBxX2n41,S5%2n42,t)

= limy, 0 N(BT2041, ST2n41, )
= N(Bu, Su, t)

So that, Bu = Su.

Hence,Au = Bu = Tu = Su.

Therefore, u is a coincidence pointoHB, S andT.

Theorem 3.4. Let A, B, P, Q, S andT be six self-maps of a fuzzy 2-Banach sp@tev,*)
with continuous t-norm defined by« t >t for all t € [0,1]. If the pairs(4B,S) and
(PQ,T) are sub compatible of type A having the same cderaie point andB = BA,
BS = SB,AS = SA,PQ = QP,TQ = QT,PT = TP, then for all,y € X,k € (0,1),t > 0
N(Sx, Ty, kt) = {N(Sx, PQy,t) * N(Sx,ABx,t) * N(PQy,Ty,t) * N(ABx, PQy, t) *
N(ABx,Ty,t)}. Then4,B,P,Q,S andT have a unique common fixed pointXn
Proof: Since the pairs (AB,S) and (PQ,T) are sub comjgatibtype A, then there exist
two sequence$x,}, {y,,} in X such thatlim,,_,., ABx, = lim,_. Sx, = a,a € X and
satisfylim,,_,,, N(ABSx,,S$Sx,,t) = 1 andlim,,_,, N(SABx,,, ABABx,,t) = 1.
Thus we havdjm,,_,., N(ABa, Sa,t) = 1 andlim,,_,,, N(Sa, ABa,t) = 1.
Also, lim,,_,, PQy, = lim,,_, Ty, = b,b € X and satisf}tim,,_,.o N(PQTy,, TTy,, t) =
1 and lim,,_,, N(TPQy,, PQPQy,,t) = 1.
Thus we havdjm,,_,., N(PQb,Th,t) = 1 andlim,,_,., N(Th, TQb,t) = 1.
ThereforeABa = Sa and PQb = Tb.
Thus we havéa’ is coincidence point ddB andS and‘b’ is coincidence point d?Q and
T.
Now we prove a = b.
For this, take x = x,, andy = y,,.
N(Sx,, PQyy, t) * N(Sx,, ABxp, t) * N(PQxy, Tyn, t) *

NSxn Ty k) = { N(ABxp, PQyp, t) * N(ABxy, Ty, t) }

Take the limit asn — oo, we get

N(a,b,kt) = {N(a,b,t) * N(a,a,t) * N(b,b,t) * N(a,b,t) * N(a, b, t)}
This implies N(a, b, kt) = N(a, b,t) forallt > 0.
Thus by Lemma (3.1 = b.
ThusAB, S, PQ andT have the same coincidence point.
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Now we proveda = Ba = Pa=Qa=Sa=Ta = a.

Case (i) Takex = aandy = y,.
N(Sa, PQy,,t) * N(Sa,ABa, t) * N(PQy,, Ty, t) *}
>
N(Sa, Tyn kt) 2 { N(ABa, PQy,, t) * N(ABa, Ty, )
Take the limit ag - oo, we get

N(Sa,a, kt) = {N(Sa,b,t) * N(Sa,a,t) * N(b,b,t) * N(a,b,t) * N(a, b, t)}
As a=b,we getN(Sa,a, kt) = N(Sa,a,t)
which gives Sa = a.

Case (ii) Takex = x,andy = a
N(Sx,, PQa,t) * N(Sx,, ABx,,t) » N(PQa,Ta,t) *}
>
N(Sxn Ta kt) = { N(4Bx,, PQa, t) * N(ABx,, Ta, t)
Take the limit asn — oo, we get

N(a,Ta, kt) = {N(a,Ta,t) * N(a,a,t) * N(Ta,Ta,t) * N(a,Ta,t) * N(a,Ta, t)}
We get,
N(a,Ta, kt) = N(a,Ta,t)
which gives Ta = a.
Next we prove Aa = Ba=a

Case (iii) Putx = Ba andy =y,
N(SBa, PQyy,,t) * N(SBa,ABBa,t) * N(PQyy, Tyn, t) *}
>
N(SBa,Tyn, kt) = { N(ABBa, PQy,, t) * N(ABBa, Ty, t)
As A, B andS commuteABBa = BABa = BSa = Ba andSBa = BSa = a.
N(Ba,a, kt) > {N(Ba, a,t) * N(Ba,Ba,t) « N(a,a,t) *}

N(Ba,a,t) * N(Ba,a,t)
That is,N(Ba,a, kt) = N(Ba,a,t)
Therefore,Ba = a.

Case (iv) Now putx = Aa andy =y,
N(SAa, PQyy,t) * N(SAa, ABAa, t) * N(PQyy, Ty, t) *}
>
N(SAa, Tyn, kt) = { N(ABAa, PQy,, t) * N(ABAa, Ty, )
As A, B andS commuteABAa = ASa = Aa andSA4a = ASa = Aa.
N(Aa, a, kt) {N(Aa, a,t) * N(Aa,Aa,t) * N(a,a,t) *}

N(Aa,a,t) * N(Aa,a,t)
That is,N(Aa,a, kt) = N(Aa,a,t)
Thereforeda = a.
Thus Aa = Ba = Sa = a.
Next we provePa = Qa = a.

Case (v) Now putx = x,, andy = Qa
N(Sx,,PQQa,t) * N(Sx,, ABx,,t) * N(PQQa,TQa,t) *}
N(Sxn, TQa kt) = { N(ABx,, PQQa,t) * N(ABx,, TQa,t)
As P, Q,S andT commute,PQQa = QPQa = Qa and TQr = QTa = Qa.
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N(a,Qa,t) * N(a,a,t) * N(Qa, Qa,t) *
N(a, Qa, kt) 2{ N(a,Qa,t) * N(a,Qa,t) }
That is,N(a,Qa, kt) = N(a,Qa,t)

ThereforeQa = a.

Case (vi) Takex = x,, andy = Pa
N(Sx,,PQPa,t) * N(Sx,,, ABPa,t) * N(PQPa,TPa,t) *}
>
N(Sxn TPa kt) = { N(4Bx,, PQPa, t) * N(ABx,, TPa, t)
As P,Q andT commutePQPa = TPa = PTa = Pa and TRt = PTa = Pa.
N(a Pa,kt) = {N(a, Pa,t) * N(a,a,t) * N(Pa, Pa,t) *}

N(a,Pa,t) * N(a,Pa,t)
That is,N(a, Pa, kt) = N(a,Pa,t)
ThereforePa = a.
This implies Aa = Ba =Pa=Qa =Sa=Ta=a.
Thus,4, B, P, Q,S andT have a unique common fixed pointin

4. Conclusions
In this paper, we have adapted the concepts ofyfRzganach space. Many fixed point
theorems holds good for 2-Banach space are extenditzzy 2-Banach space. As a
result this paper paves way to extend the theoteriszzy n-Banach spaces using fuzzy
Banach space.
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