Intern. J. Fuzzy Mathematical Archive Vol. 14, No. 1, 2017, 81-90 ISSN: 2320–3242 (P), 2320–3250 (online) Published on 11 December 2017 <u>www.researchmathsci.org</u> DOI: http://dx.doi.org/10.22457/ijfma.v14n1a10

International Journal of **Fuzzy Mathematical Archive**

Equitable Regular Total Semi-µ Strong (Weak) Edge Domination in Intuitionistic Fuzzy Graph

P.J.Jayalakshmi¹, C.V.R. Harinarayanan² and R.Muthuraj³

¹Department of Mathematics, Indraganesan College of Engineering and Technology, Trichy – 620 001, Tamilnadu, India.

E- mail: saijayalakshmi1977@gmail.com ²Department of Mathematics, Government Arts College,

1. (27 001 True in a line Franci CUPUNIC

Paramakudi –637 001, Tamilnadu, India. E-mail:CVRHNS@yahoo.com ³PG & Research Department of Mathematics, H.H. The Rajah's College Pudukkottai – 622 001, Tamilnadu, India. E-mail: rmr1973@yahoo.co.in

Received 5 November 2017; accepted 7 December 2017

Abstract. In this paper, the new kind of parameter Regular total semi - μ strong (weak) edge domination number in an intuitionistic fuzzy graph is defined and established the parametric conditions. Another new kind of parameter an equitable regular total semi - μ strong (weak) edge domination number is defined and established the parametric conditions. The properties of Regular total semi - μ strong (weak) edge domination number and an equitable regular total semi - μ strong (weak) edge domination number and an equitable regular total semi - μ strong (weak) edge domination number and an equitable regular total semi - μ strong (weak) edge domination number are discussed.

Keywords: Dominating set, total semi - μ strong (weak) edge domination set, Regular total semi - μ strong (weak) edge domination set, equitable regular total semi - μ strong (weak) edge domination set, equitable regular total semi - μ strong (weak) edge domination number.

AMS Mathematics Subject Classification (2010): 03E72, 05C69, 05C72, 05C76

1. Introduction

In the year 2003, Nagoor Gani and Basheer Ahamed [8] investigated Order and Size in fuzzy graph. In 2010, Nagoor Gani and Begum[10] investigated Degree, Order and Size of an Intuitionistic Fuzzy Graph. In the year 2016, Karunambigai and Bhuvaneswari [7], investigated Degree in Intuitionistic fuzzy graph. In 2010, Parvathi and Tamizhendhi [11] introduced Domination in intuitionistic fuzzy graph. In the year 2014, Dharmalingam and Rani [2,3], investigated the concepts of Equitable Domination in Fuzzy graphs. In the year 1991, Kulli and Patwari [6] investigated the concepts of on the total edge domination number of a graph In the year 2008, NagoorGani and Prasannadevi [9] proposed Edge domination and independence in fuzzy graph. In 2012, Jayalakshmi et al. [4] introduced total strong (weak) domination in fuzzy graph. In 2016, Jayalakshmi et al. [5] introduced total semi - μ strong (weak) domination in intuitionistic fuzzy graph. In this paper, we introduced Equitable Regular Total semi - μ strong (weak) domination in

intuitionistic fuzzy graph and some parametric conditions are established as a new concept.

2. Preliminaries

In this section, some basic definitions are discussed.

Definition 2.1. [7] Let G = (V, E) be an intuitionistic fuzzy graph (IFG) where $V = \{v_1, v_2, ..., v_n\}$. Then,

- i. $\mu_1 : V \to [0, 1]$ and $\gamma_1 : V \to [0, 1]$ respectively denote the degree of membership and non-membership of the element $v_i \in V$ and $0 \le \mu_1(v_i) + \gamma_1(v_i) \le 1$ for every $v_i \in V$.
- ii. $E \subset V \times V$ where $\mu_2: V \times V \to [0,1]$ and $\gamma_2: V \times V \to [0,1]$ are such that $\mu_2(v_i, v_j) \le \min\{\mu_1(v_i), \mu_1(v_j)\}, \ \gamma_2(v_i, v_j) \le \max\{\gamma_1(v_i), \gamma_1(v_j)\}$ and $0 \le \mu_2(v_i, v_j) + \gamma_2(v_i, v_j) \le 1$ for every $(v_i, v_j) \in E$.

Definition 2.2.[10] Let G = (V, E) be an IFG. Then the **cardinality of G** is defined to be $|G| = \left| \sum_{V_i \in V} \left[\frac{(1 + \mu_1(v_i) - \gamma_1(v_i))}{2} \right] + \sum_{V_i \in V} \left[\frac{(1 + \mu_2(v_i, v_j) - \gamma_2(v_i, v_j))}{2} \right] \right|$

Definition 2.3. [10] The fuzzy vertex cardinality of G is defined by

$$\mathbf{p} = |\mathbf{V}| = \left| \sum_{\mathbf{v}_i \in \mathbf{V}} \left| \frac{(1 + \mu_1(\mathbf{v}_i) - \gamma_1(\mathbf{v}_i))}{2} \right| \text{ for all } \mathbf{v}_i \in V$$

Definition 2.4. [10] The fuzzy edge cardinality of G is defined by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$\mathbf{q} = |\mathbf{E}| = \left| \sum_{\mathbf{v}_i \in \mathbf{V}} \left[\frac{(1 + \mu_2(\mathbf{v}_i, \mathbf{v}_j) - \gamma_2(\mathbf{v}_i, \mathbf{v}_j))}{2} \right] \right| \text{ for all } (v_i, v_j) \in \mathbf{E}.$$

Definition 2.5. [8]

Let G = $\langle V, E \rangle$ be an IFG. Then the **order** of G is defined to be O(G) = $(O_{\mu}(G), O_{\gamma}(G))$ where $O_{\mu}(G) = \sum_{\nu_i \in V} \mu_1(\nu_i)$ and $O_{\gamma}(G) = \sum_{\nu_i \in V} \gamma_1(\nu_i)$ **Definition 2.6. [8]** The **Size** of G is defined to be S(G) = $(S_{\mu}(G), S_{\gamma}(G))$ where $S_{\mu}(G)$

$$= \sum_{i \neq j} \mu_2(v_i, v_j) \text{ and } S_{\gamma}(G) = \sum_{i \neq j} \gamma_2(v_i, v_j)$$

Definition 2.7. [8] Let G = $((\mu_1, \gamma_1), (\mu_2, \gamma_2))$ be an IFG. The μ -degree of a vertex v_i is $d_{\mu}(v_i) = \sum_{(v_i, v_j) \in E} \mu_2(v_i, v_j)$. The γ -degree of a vertex v_i is $d_{\gamma}(v_i) = \sum_{(v_i, v_j) \in E} \gamma_2(v_i, v_j)$.

Equitable Regular Total Semi-µ Strong (Weak) Edge Domination in Intuitionistic Fuzzy Graph

The **degree of a vertex** is $d(v_i) = \left[\sum_{(v_i, v_j) \in E} \mu_2(v_i, v_j), \sum_{(v_i, v_j) \in E} \gamma_2(v_i, v_j)\right]$ and $\mu_2(v_i, v_j) = 0$.

 v_j) = $\gamma_2(v_i, v_j) = 0$ for $v_i v_j \notin E$. The **minimum degree** of G is $\delta(G) = \min\{d_{\mu}(v_i), d_{\gamma}(v_i) | v_i \in V\}$. The **maximum degree** of G is $\Delta(G) = \max\{d_{\mu}(v_i), d_{\gamma}(v_i) | v_i \in V\}$.

Definition 2.8. [8] The degree of a vertex v in an IFG G = (V, E) is defined to be sum of the weights of the strong edges incident at v. It is denoted by W(G).

Definition 2.9. [11] A subset D of V is called a **dominating set in an IFG** G if for every $v \in V-D$, there exists $u \in D$ such that $u, v \in E(G)$.

Definition 2.10. [11] A dominating set D of an IFG is said to be **minimal dominating** set if no proper subset of D is a dominating set.

Definition 2.11. [7] A strong (weak) dominating set T_{μ} of an intuitionistic fuzzy graph is said to be **semi-\mu strong (weak) dominating set** if $\mu_2(v_i, v_j) = \min(\mu_1(v_i), \mu_1(v_j))$ for every v_i and v_j .

Definition 2.12. [5] Let G be an intuitionistic fuzzy Graph. A semi - μ strong (weak) dominating set T_{μ} of an IFG is said to be **total semi - \mu strong (weak) dominating set of intuitionistic fuzzy graph G** if $d_N(u) \ge d_N(v)$ for all $u \in T_{\mu}$, $v \in V$.

Definition 2.13. [5] A total semi - μ strong (weak) dominating set T_{μ} of an intuitionistic fuzzy graph G is called **minimal total semi - \mu strong (weak) dominating set** of G if $v \in T_{\mu}$, T_{μ} - {v} is not a total semi - μ strong (weak) dominating set of G.

Definition 2.14. [5] The minimum fuzzy cardinality among all minimum total semi - μ strong (weak) intuitionistic fuzzy dominating set in G is called **total semi - \mu strong** (weak) dominating number of G is denoted by $\gamma_{T_{u}}(G)$.

Definition 2.15. The **degree of effective edge** of e_i is the sum of the membership value of the effective edge incident on e_i , denoted by $d_E(e_i)$.

Definition 2.16. Let G be an intuitionistic fuzzy graph. The edge set T_e is said to be a **total edge dominating set** if for every edge in G dominates atleast one edge of T_e .

Definition 2.17. Let G be an intuitionistic fuzzy graph. The edge set T_e is said to be **total** strong (weak) edge dominating set of G if

- i $d_N(e_i) \ge d_N(e_j)$ for all $e_i \in T_e, e_j \in E$
- ii T_{e} is a total edge dominating set.

Definition 2.18. A total strong (weak) dominating set T_e of an intuitionistic fuzzy graph G is called **minimal total strong (weak) edge dominating set** of G if $v \in T_e$, $T_{e^-} \{v\}$ is not total strong (weak) edge dominating set of G.

Theorem 2.19. In an IFG, $W_{T_e}(G) \leq O_{T_e}(G) \leq S_{T_e}(G)$

Proof: Let G be an intuitionistic fuzzy graph. Sum of fuzzy vertex cardinality of an intuitionistic fuzzy graph but need not be a minimum of weighted total strong (weak) edge domination IFG of G. Therefore, $W_{Te}(G) \leq O_{Te}(G)$. $S_{Te}(G)$ be a size of total strong (weak) edge dominating set but need not be a minimum of sum of fuzzy vertex cardinality of total strong (weak) edge dominating set, then $O_{Te}(G) \leq S_{Te}(G)$.

Hence, $W_{T_e}(G) \leq O_{T_e}(G) \leq S_{T_e}(G)$.

Theorem 2.20. In an IFG, $W_{T_e}(G) \leq \delta_{T_e}(G) \leq \Delta_{T_e}(G)$

Proof: Let G be an intuitionistic fuzzy graph. $\delta_{T_e}(G)$ is a minimum degree of total strong (weak) edge domination of IFG but need not be a minimum of weighted total strong (weak) edge domination in IFG, then $W_{T_e}(G) \leq \delta_{T_e}(G)$. $\Delta_{T_e}(G)$ is a maximum degree of total strong (weak) edge domination of IFG but need not minimum of minimum degree of total strong (weak) edge domination of IFG. Therefore, $\delta_{T_e}(G) \leq \Delta_{T_e}(G)$.

Hence, $W_{Te}(G) \le \delta_{Te}(G) \le \Delta_{Te}(G)$.

3. Main results

Regular total semi - µ strong (weak) edge dominating set of an IFG

In this section, Regular total semi - μ strong (weak) edge dominating number of an intuitionistic fuzzy graph is introduced and its parametric conditions are established. Let us consider $p \le q$ throughout the paper.

Definition 3.1. A total semi - μ strong (weak) edge dominating set eRT_{μ} of a graph G is a **regular total semi - \mu strong (weak) edge dominating set** if all the edges have same degree.

Definition 3.2. A regular total semi - μ strong (weak) edge dominating set eRT_{μ} of a intuitionistic fuzzy graph G is called **minimal regular total semi - \mu strong (weak) edge dominating set** of G, if $v \in eRT_{\mu}$, $eRT_{\mu} - \{v\}$ is not a regular total semi - μ strong (weak) edge dominating set of G.

Definition 3.3. The minimum fuzzy cardinality among all minimal regular total semi - μ strong (weak) edge dominating set is called **regular total semi - \mu strong (weak) edge dominating set** and its regular total semi - μ strong (weak) edge domination number is denoted by $\gamma_{eRT_{\mu}}(G)$.

Equitable Regular Total Semi-µ Strong (Weak) Edge Domination in Intuitionistic Fuzzy Graph

Theorem 3.4. In an IFG, $\gamma_{eRT_u}(G) \le p \le q$

Proof: Let G be an IFG. $\gamma_{eRT_{\mu}}$ be a regular total semi - μ strong (weak) edge domination number of an IFG. p be a sum of fuzzy vertex cardinality of an IFG G but need be a minimum of a regular total semi - μ strong (weak) edge domination number of an IFG. $\gamma_{eRT_{\mu}}$ be a regular total semi - μ strong (weak) edge domination number of an IFG is less than or equal to sum of fuzzy vertex cardinality of an IFG. That is, $\gamma_{eRT_{\mu}}(G) \leq p$. q

be a sum of fuzzy edge cardinality of a regular total semi - μ strong (weak) edge domination of an IFG but need not be a minimum of sum of fuzzy vertex cardinality of a regular total semi - μ strong (weak) edge domination of an IFG of G. Then, sum of fuzzy vertex cardinality is less than or equal to sum of edge cardinality of a regular total semi - μ strong (weak) edge domination of an IFG G. That is, $p \leq q$.

Hence, $\gamma_{eRT_u}(G) \le p \le q$.

Theorem 3.5. In an IFG of G, $W_{eRT_{\mu}}(G) \leq O_{eRT_{\mu}}(G) \leq S_{eRT_{\mu}}(G)$

Proof: Let G be an IFG. $\gamma_{eRT_{\mu}}$ be a regular total semi - μ strong (weak) edge domination number of an IFG.

 $O_{eRT_{\mu}}(G)$ be an order of a regular total semi - μ strong (weak) edge domination of an IFG of G but need not be a minimum of a weighted regular total semi - μ strong (weak) edge domination of an IFG. Then, weighted regular total semi - μ strong (weak) edge domination of an IFG of G is less than or equal to order of an IFG. That is, $W_{eRT_{\mu}}(G) \leq O_{eRT_{\mu}}(G)$. $S_{eRT_{\mu}}(G)$ be a size of a regular total semi - μ strong (weak) edge domination of an IFG but need not be a minimum of an order of an edge IFG of G. Then, an order of a regular total semi - μ strong (weak) edge domination of an IFG is less than or equal to size of an edge IFG. That is, $O_{eRT_{\mu}}(G) \leq S_{eRT_{\mu}}(G)$.

Hence, $W_{eRT_{\mu}}(G) \leq O_{eRT_{\mu}}(G) \leq S_{eRT_{\mu}}(G)$

Theorem 3.6. For an IFG, $\gamma_{eRT_{\mu}}(G) \ge \left|\frac{p-q}{2}\right|$

Proof: Let G be an IFG. $\gamma_{eRT_{\mu}}$ be a regular total semi - μ strong (weak) edge domination number of an IFG. Let p be a sum of fuzzy vertex cardinality of an IFG G. Let q be a sum of fuzzy edge cardinality of an IFG G.

 $\left|\frac{p-q}{2}\right|$ be a fuzzy vertices but need not be a maximum of a regular total semi - μ

strong (weak) edge domination number of an IFG of G. Then, a regular total semi - $\boldsymbol{\mu}$

strong (weak) edge domination number of an IFG of G is greater than or equal to $\left|\frac{p}{q}\right|$

fuzzy vertices. Hence, $\gamma_{eRT_{\mu}}(G) \ge \left|\frac{p-q}{2}\right|$

Example 3.7. Let G be an intuitionistic fuzzy graph. Let γ_{eR_T} be a regular total strong (weak) edge domination number of G.

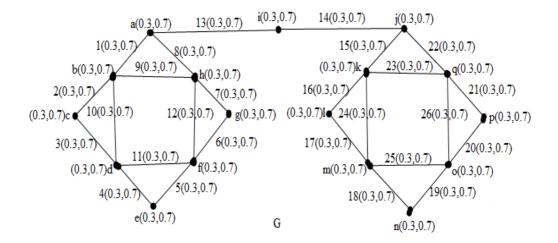


Figure 1:

$$\begin{split} R_{\text{Te}} &= \{1,3,5,7,15,17,19,21\}, E-R_{\text{Te}} = \{2,4,6,8,9,10,11,12,13,14,16,18,20,22\}, \\ p &= 4.2, \ q = 5.2, \ \gamma_{eR_{\text{T}}}(G) = 1.8 \ \Delta_{eN}(G) = 1.8, \ \delta_{eN}(G) = 1.6, \ |p-q| = |-1| = 1, \\ p - \Delta_{eN}(G) = 2.4, \ p - \delta_{eN}(G) = 2.6, \ q - \Delta_{eN}(G) = 3.4, \ q - \delta_{eN}(G) = 3.6. \end{split}$$

4. Equitable regular total semi - μ strong (weak) edge domination in an IFG

In this section, Equitable regular total semi - μ strong (weak) edge dominating number of an intuitionistic fuzzy graph is introduced and its parametric conditions are established. Let us consider $p \le q$ throughout the paper.

Definition 4.1. A regular total semi - μ strong (weak) edge dominating set $eERT_{\mu}$ of an intuitionistic fuzzy graph G is an **equitable regular total semi - \mu strong (weak) edge dominating set** if

i. $u,v \in E(G)$ and

ii. $|\deg(u) - \deg(v)| \le 1$ for all $u \in ERT_{\mu}$, $v \in V$ -ERT_{μ}

Definition 4.2. An equitable regular total semi - μ strong (weak) edge dominating set $eERT_{\mu}$ of a intuitionistic fuzzy graph G is called **minimal equitable regular total semi -**

Equitable Regular Total Semi-µ Strong (Weak) Edge Domination in Intuitionistic Fuzzy Graph

 μ strong (weak) edge dominating set of G, if $v \in eERT_{\mu}$, $eERT_{\mu} - \{v\}$ is not an equitable regular total semi - μ strong (weak) edge dominating set of G.

Definition 4.3. The minimum fuzzy cardinality among all minimal equitable regular total semi - μ strong (weak) edge dominating set is called **equitable regular total semi - \mu** strong (weak) edge dominating set and its equitable regular total semi - μ strong (weak) edge domination number is denoted by $\gamma_{eERT_{\mu}}$ (G).

Theorem 4.4. For an intuitionistic fuzzy graph, $\gamma_{eERT_{\mu}}(G) \leq p - \Delta_{e(\mu)}(G) \leq q - \delta_{e(\mu)}(G)$

Proof: Let G be an intuitionistic fuzzy graph. Let $\gamma_{eERT_{\mu}}(G)$ be an equitable regular total semi - μ strong (weak) edge domination number of G.

p - $\Delta_{e(\mu)}$ be a fuzzy vertices but need not be a minimum of an equitable regular total semi - μ strong (weak) edge domination number of G. Then, an equitable regular total semi - μ strong (weak) edge domination number of G is less than or equal to p - $\Delta_{e(\mu)}$. That is, $\gamma_{eERT_{\mu}}(G) \leq p - \Delta_{e(\mu)}(G)$. q- $\delta_{e(\mu)}$ be a fuzzy vertices but need not be a minimum of p- $\Delta_{e(\mu)}$ fuzzy vertices. p- $\Delta_{e(\mu)}$ fuzzy vertices is less than or equal to q- $\delta_{e(\mu)}$.

$$\begin{split} \text{Therefore, } p &- \Delta_{e(\mu)}\left(G\right) \leq q - \delta_{e(\mu)}\left(G\right).\\ \text{Hence, } \gamma_{eRT_{\mu}}\left(G\right) \leq p - \Delta_{e(\mu)}\left(G\right) \leq p - \delta_{e(\mu)}\left(G\right). \end{split}$$

Theorem 4.5. For an intuitionistic fuzzy graph, $\gamma_{eERT_{\mu}}(G) \le p - \Delta_{e(\gamma)}(G) \le q - \delta_{e(\gamma)}(G)$

Proof: Let G be an intuitionistic fuzzy graph. Let $\gamma_{eRT_{\mu}}(G)$ be a regular total strong (weak) edge domination number of G.

 $\begin{array}{l} q \ - \ \Delta_{_{e(\gamma)}} \text{be a fuzzy edges but need not be a minimum of regular total strong} \\ (\text{weak}) \ \text{edge domination number of } G. \\ \text{Then, a regular total strong (weak) edge domination number of } G \\ \text{is less than or equal to } q \ - \ \Delta_{_{e(\gamma)}}. \\ \text{That is,} \\ \gamma_{eRT_{\mu}}(G) \leq q \ - \ \Delta_{_{e(\gamma)}}(G) \ . \\ q \ - \ \delta_{_{e(\gamma)}} \text{be a fuzzy vertices but need not be a minimum of } \\ q \ - \ \Delta_{_{e(\gamma)}} \text{fuzzy vertices.} \\ q \ - \ \Delta_{_{e(\gamma)}} \text{fuzzy vertices.} \\ \text{s less than or equal to } q \ - \ \delta_{_{e(\gamma)}} \\ \text{Therefore,} \\ q \ - \ \Delta_{_{e(\gamma)}}(G) \leq q \ - \ \delta_{_{e(\gamma)}}(G) \ . \\ \end{array}$

Hence, $\gamma_{eERT_{\mu}}(G) \le p - \Delta_{e(\gamma)}(G) \le q - \delta_{e(\gamma)}(G)$.

Theorem 4.6. For an intuitionistic fuzzy graph, $\gamma_{eERT_{\mu}}(G) \ge \frac{p - \Delta_{e(\gamma)}(G)}{\Delta_{e(\mu)}(G) + 1}$

Proof: Let G be an intuitionistic fuzzy graph. Let $\gamma_{eERT_{\mu}}$ be an equitable regular total strong (weak) edge domination number of G. $\frac{p - \Delta_{e(\gamma)}(G)}{\Delta_{e(\mu)}(G) + 1}$ be a fuzzy vertices but need not be a maximum of an equitable regular total strong (weak) edge domination number of G. Hence, $\gamma_{eERT_{\mu}}(G) \ge \frac{p - \Delta_{e(\gamma)}(G)}{\Delta_{e(\mu)}(G) + 1}$.

Theorem 4.7. Let G be an IFG. In an IFG,

 $\frac{O_{e(\mu)}(G) - \Delta_{e(\mu)}(G)}{2} \leq \gamma_{eERT_{\mu}}(G) \leq \frac{O_{e(\gamma)}(G) - \Delta_{e(\gamma)}(G)}{2}$

Proof: Let G be an IFG. $\gamma_{eERT_{\mu}}(G)$ be an equitable regular total semi - μ strong (weak) edge domination of an IFG. $\gamma_{eERT_{\mu}}(G)$ be an equitable regular total semi - μ strong (weak) edge domination of an IFG but need not be a minimum of a $\frac{O_{e(\mu)}(G) - \Delta_{e(\mu)}(G)}{2}$

fuzzy cardinality of IFG. $\frac{O_{e(\mu)}(G) - \Delta_{e(\mu)}(G)}{2}$ fuzzy cardinality is less than or equal to an equitable regular total semi - μ strong (weak) edge domination of an IFG. That is, $\frac{O_{e(\mu)}(G) - \Delta_{e(\mu)}(G)}{2} \leq \gamma_{eERT_{\mu}}(G). \quad \frac{O_{e(\gamma)}(G) - \Delta_{e(\gamma)}(G)}{2}$ be a fuzzy vertices but need not be a minimum of an equitable regular total semi - μ strong (weak) edge domination of

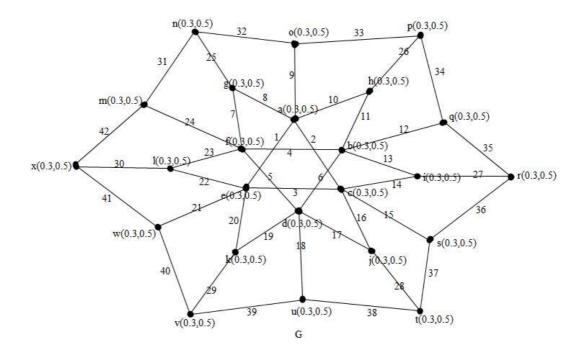
an IFG. Then, an equitable regular total semi - μ strong (weak) edge domination of an $O_{a(x)}(G) - \Delta_{a(x)}(G)$

IFG is less than or equal to a $\frac{O_{e(\gamma)}(G) - \Delta_{e(\gamma)}(G)}{2}$ fuzzy vertices. That is,

$$\begin{split} \gamma_{eERT_{\mu}}(G) &\leq \frac{O_{e(\gamma)}(G) - \Delta_{e(\gamma)}(G)}{2}.\\ \text{Hence,} \ \frac{O_{e(\mu)}(G) - \Delta_{e(\mu)}(G)}{2} &\leq \gamma_{eERT_{\mu}}(G) \leq \frac{O_{e(\gamma)}(G) - \Delta_{e(\gamma)}(G)}{2}. \end{split}$$

Example 4.8. Let G be an IFG. All the edges have (0.3, 0.5) membership values. ERT_µ={1,2,3,4,5,6,32,34,36,38,40,42},

 $\begin{aligned} & V - ERT_{\mu} = \\ & \{7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,33,35,37,39,41\}, \quad & \gamma_{eERT_{\mu}}(G) = 4.8, \ p = 9.6, \ q = 16.8, \ O(G) = (2.4,7.2), \ S(G) = (2.4,7.2), \ W(G) = \\ & (3.6,6), \ p - \Delta_{e(\gamma)}(G) = 8.1, \ q - \delta_{e(\gamma)}(G) = 15.3 \\ & p - \Delta_{e(\mu)}(G) = 8.7, \ p - \delta_{e(\mu)}(G) = 8.7, \ \Delta = \delta = (0.9,1.5) \end{aligned}$



Equitable Regular Total Semi-µ Strong (Weak) Edge Domination in Intuitionistic Fuzzy Graph

Figure 2:

5. Conclusion

In this paper, an equitable regular total semi - μ strong (weak) edge domination number is defined and established the parametric conditions. The properties of Regular total semi - μ strong (weak) edge domination number and an equitable regular total semi - μ strong (weak) edge domination number are discussed.

Acknowledgement. The authors of highly grateful to the referees for their valuable comments and suggestions for improving this paper.

REFERENCES

- 1. S.Arumugam and C.Natarajan, Strong (weak) domination in fuzzy graphs, *Intern. Journal of Computational and Mathematical Science*, 107(16) (2014) 16-18.
- 2. K.M.Dharmalingam and M.Rani, Equitable domination in fuzzy graphs, *Intern. Journal of Pure and Applied Mathematics*, 94(5) (2014) 661-667.
- 3. K.M.Dharmalingam and M.Rani, Total equitable domination in fuzzy graphs, Bulletin of the International Mathematical Virtual Institute, provide journal details
- 4. P.J. Jayalakshmi and C.V.R.Harinarayanan, Total strong (weak) domination in fuzzy graph, *Advances in Theoretical and Applied Mathematics*, 11(3) (2016) 203-212.
- 5. P.J. Jayalakshmi, C.V.R. Harinarayanan and R.Muthuraj, Total semi-µ strong (weak) Domination in IFG, *IOSR Journal of Mathematics*, 12(5) (2016) 37-43.

- V. R. Kulli and D.K. Patwari, On the total edge domination number of a graph, In A. M. Mathi, editor, *Proc. Of the Symp. On Graph Theory and Combinatorics*, Kochi, Centre Math. Sci., Trivandrum, 21 (1991) 75-81.
- 7. M.G. Karunambigai and R. Bhuvaneswari, Degrees in intuitionistic fuzzy graphs, *Annals of Fuzzy Mathematics and Informatics*, 10 (2016) 1 10.
- 8. A. NagoorGani and M. Basheer Ahamed, Order and size in fuzzy graph, *Bulletin of Pure and Applied Sciences*, 22 (2003) 145-148.
- 9. A. NagoorGani and K. Prasanna Devi, Edge domination and independence in fuzzy graphs, *Advances in Fuzzy Sets and Systems*, 15 (2013) 73-84.
- 10. A. NagoorGani and S. Shajitha Begum, Degree, order and size in intuitionistic fuzzy graphs, *International Journal of Algorithm, Computing and Mathematics*, 3 (2010) 11-16.
- 11. R. Parvathi and G. Tamizhendhi, Domination in intuitionistic fuzzy graphs, *NIFS* 16(2) (2010) 15-16.