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Abstract. In this paper, the new kind of parameter Regular total semi - µ strong (weak) 
edge domination number in an intuitionistic fuzzy graph is defined and established the 
parametric conditions. Another new kind of parameter an equitable regular total semi - µ 
strong (weak) edge domination number is defined and established the parametric 
conditions. The properties of Regular total semi - µ strong (weak) edge domination 
number and an equitable regular total semi - µ strong (weak) edge domination number 
domination number are discussed. 
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1. Introduction  
In the year 2003, Nagoor Gani and Basheer Ahamed [8] investigated Order and Size in 
fuzzy graph. In 2010, Nagoor Gani and Begum[10] investigated Degree, Order and Size 
of an Intuitionistic Fuzzy Graph.  In the year 2016, Karunambigai and Bhuvaneswari [7], 
investigated Degree in Intuitionistic fuzzy graph. In 2010, Parvathi and Tamizhendhi [11] 
introduced Domination in intuitionistic fuzzy graph. In the year 2014, Dharmalingam and 
Rani [2,3], investigated the concepts of Equitable Domination in Fuzzy graphs.  In the 
year 1991, Kulli and Patwari [6] investigated the concepts of on the total edge 
domination number of a graph  In the year 2008, NagoorGani and Prasannadevi [9] 
proposed Edge domination and independence in fuzzy graph.  In 2012, Jayalakshmi et al. 
[4] introduced total strong (weak) domination in fuzzy graph.   In 2016, Jayalakshmi et 
al. [5] introduced total semi - µ strong (weak) domination in intuitionistic fuzzy graph.  In 
this paper, we introduced Equitable Regular Total semi - µ strong (weak) domination in 
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intuitionistic fuzzy graph and some parametric conditions are established as a new 
concept. 
 
2. Preliminaries 
In this section, some basic definitions are discussed. 
 
Definition 2.1. [7] Let G = (V, E) be an intuitionistic fuzzy graph (IFG) where 
V={v 1,v2,…,vn}. Then, 

i. µ1 : V → [ 0 , 1 ] and  γ1 : V → [ 0 , 1 ] respectively denote the degree of 
membership and non-membership of the element vi∈V and 

1)()(0 11 ≤+≤ ii vv γµ  for every vi∈V. 

ii. E ⊂ V ×V where µ2:V × V → [0,1] and γ2:V × V → [0,1] are such that                     
)}(),(max{),()},(),(min{),( 112112 jijijiji vvvvvvvv γγγµµµ ≤≤ and 

1),(),(0 22 ≤+≤ jiji vvvv γµ  for every (vi,vj)∈E. 

 
Definition 2.2.[10] Let G = (V, E) be an IFG,  Then the cardinality of G is defined to be 
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Definition 2.3. [10] The  fuzzy vertex cardinality of G is defined by   

p = ∑ 
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Definition 2.4. [10] The fuzzy edge cardinality of G is defined by   

q = ∑ 
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=

∈VV
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|E|  for all (vi, vj) ∈ E.  

 
Definition 2.5. [8] 
Let G = <V,E> be an IFG. Then the order of G is defined to be O(G) = 

))(),(( GOGO γµ where )(GOµ  = ∑
∈Vv

i
i

v )(1µ  and )(GOγ  = ∑
∈Vv

i
i

v )(1γ
 

Definition 2.6. [8] The Size of G is defined to be S(G) = ))(),(( GSGS γµ where )(GSµ  

= ∑
≠ ji

ji vv ),(2µ  and )(GSγ  = ∑
≠ ji

ji vv ),(2γ  

 
Definition 2.7. [8] Let G = )),(),,(( 2211 γµγµ be an IFG. The µ -degree of a vertex vi is 

dµ(vi) = ∑
∈Evv ji )(

ji2

,

) v,(v µ . The �-degree of a vertex vi is dγ(vi) = ∑
∈Evv ji )(

ji2

,

) v,(v γ . 
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 The degree of a vertex is d(vi) = [ ∑
∈Evv ji )(

ji2

,

) v,(v µ , ∑
∈Evv ji )(

ji2

,

) v,(v γ ] and µ2(vi, 

vj) = γ2(vi, vj) = 0 for vivj∉E. 
The minimum degree of G is δ(G) = min{dµ(vi), dγ(vi)|vi∈V}. 
The maximum degree of G is ∆(G) = max {dµ(vi), dγ(vi)|vi∈V} 
 
Definition 2.8. [8] The degree of a vertex v in an IFG G = (V, E) is defined to be sum of 
the weights of the strong edges incident at v.  It is denoted by W(G). 
 
Definition 2.9. [11] A subset D of V is called a dominating set in an IFG G if for every 
v ∈V  ̶D, there exists u∈D such that u,v∈E(G).  
 
Definition 2.10. [11] A dominating set D of an IFG is said to be minimal dominating 
set if no proper subset of D is a dominating set. 
 
Definition 2.11. [7] A strong (weak) dominating set Tµ of an intuitionistic fuzzy graph is 
said to be semi-µ strong (weak) dominating set if ( ))(),(min),( 112 jiji vvvv µµµ =  for 

every vi and vj. 
 
Definition 2.12. [5] Let G be an intuitionistic fuzzy Graph.  A semi - µ strong (weak) 
dominating set Tµ of an IFG is said to be total semi - µ strong (weak) dominating set of 
intuitionistic fuzzy graph G if (v)d(u)d NN ≥  for all u ∈ Tµ ,  v ∈V . 

 
Definition 2.13. [5] A total semi - µ strong (weak) dominating set Tµ of an intuitionistic 
fuzzy graph G is called minimal total semi - µ strong (weak) dominating set of G if  
v∈ Tµ , Tµ - {v} is not a total semi - µ strong (weak) dominating set of G. 
 
Definition 2.14. [5] The minimum fuzzy cardinality among all minimum total semi - µ 
strong (weak) intuitionistic fuzzy dominating set in G is called total semi - µ strong 
(weak) dominating number of G is denoted by (G)γTµ

. 

 
Definition 2.15. The degree of effective edge of ei is the sum of the membership value of 
the effective edge incident on ei, denoted by dE(ei). 
 
Definition 2.16. Let G be an intuitionistic fuzzy graph.  The edge set Te is said to be a 
total edge dominating set if for every edge in G dominates atleast one edge of Te. 
 
Definition 2.17. Let G be an intuitionistic fuzzy graph.  The edge set Te is said to be total 
strong (weak) edge dominating set of G if  
 i )(ed)(ed jNiN ≥  for all ei∈Te, ej∈ E 

 ii Teis a total edge dominating set.  
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Definition 2.18. A total strong (weak) dominating set Te of an intuitionistic fuzzy graph 
G is called minimal total strong (weak) edge dominating set of G if v ∈Te, Te- {v} is 
not total strong (weak) edge dominating set of G. 
 
Theorem 2.19. In an IFG, )()()( GSGOGW TeTeTe ≤≤  
Proof: Let G be an intuitionistic fuzzy graph.  Sum of fuzzy vertex cardinality of an 
intuitionistic fuzzy graph but need not be a minimum of weighted total strong (weak) 
edge domination IFG of G.   Therefore, )()( GOGW TeTe ≤ .  )(GSTe be a  size of total 

strong (weak) edge dominating set but need not be a minimum of sum of fuzzy vertex 
cardinality of total strong (weak) edge dominating set, then )()( GSGO TeTe ≤ . 

Hence , )()()( GSGOGW TeTeTe ≤≤ . 

 
Theorem 2.20. In an IFG, )()()( GGGW TeTeTe ∆≤≤ δ  

Proof: Let G be an intuitionistic fuzzy graph.  )(GTeδ is a minimum degree of total 

strong (weak) edge domination of IFG but need not be a minimum of weighted total 
strong (weak) edge domination in IFG, then  (G)δ(G)W TeTe ≤ .  (G)∆Te is a maximum 

degree of total strong (weak) edge domination of IFG but need not minimum of minimum 
degree of total strong (weak) edge domination of IFG.  Therefore, (G)∆(G)δ TeTe ≤ .   

Hence , (G)∆(G)δ(G)W TeTeTe ≤≤ . 

 
3. Main results 
Regular total semi - µ strong (weak) edge dominating set of an IFG 
In this section, Regular total semi - µ strong (weak) edge dominating number of an 
intuitionistic fuzzy graph is introduced and its parametric conditions are established.  Let 
us consider p ≤ q throughout the paper. 
 
Definition 3.1. A total semi - µ strong (weak) edge dominating set µeRT of a graph G is a 

regular total semi - µ strong (weak) edge dominating set if all the edges have same 
degree. 
 
Definition 3.2. A regular total semi - µ strong (weak) edge dominating set µeRT  of a 

intuitionistic fuzzy graph G is called minimal regular total semi - µ strong (weak) edge 
dominating set of G, if v ∈eRTµ, eRTµ - {v} is not a regular total semi - µ strong (weak) 
edge dominating set of G.  
 
Definition 3.3. The minimum fuzzy cardinality among all minimal regular total semi - µ 
strong (weak)  edge dominating set is called regular total semi - µ strong (weak)  edge 
dominating set and its regular total semi - µ strong (weak) edge domination number is 
denoted by (G)γeRTµ

. 
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Theorem 3.4. In an IFG, qpG ≤≤)(γeRTµ
 

Proof: Let G be an IFG.  
µeRTγ be a regular total semi - µ strong (weak) edge domination 

number of an IFG.  p be a sum of fuzzy vertex cardinality of an IFG G but need be a 
minimum of a regular total semi - µ strong (weak) edge domination number of an IFG.  

µeRTγ be a regular total semi - µ strong (weak) edge domination number of an IFG is less 

than or equal to sum of fuzzy vertex cardinality of an IFG.  That is,  pG ≤)(γeRTµ
.  q 

be a sum of fuzzy edge cardinality of a regular total semi - µ strong (weak) edge 
domination of an IFG but need not be a minimum of sum of fuzzy vertex cardinality of a 
regular total semi - µ strong (weak) edge domination of an IFG of G.  Then, sum of fuzzy 
vertex cardinality is less than or equal to sum of edge cardinality of a regular total semi - 
µ strong (weak) edge domination of an IFG G.  That is, qp ≤ .    

Hence, qpG ≤≤)(γeRTµ
. 

 
Theorem 3.5. In an IFG of G, )()()( GSGOGW eRTeRTeRT µµµ

≤≤  

Proof: Let G be an IFG.  
µeRTγ be a regular total semi - µ strong (weak) edge domination 

number of an IFG.   
 )(GOeRTµ

be an order of a regular total semi - µ strong (weak) edge domination 

of an IFG of G but need not be a minimum of a weighted regular total semi - µ strong 
(weak) edge domination of an IFG.  Then, weighted regular total semi - µ strong (weak) 
edge domination of an IFG of G is less than or equal to order of an IFG.  That is, 

)()( GOGW eRTeRT µµ
≤ .  )(GSeRTµ

be a size of a regular total semi - µ strong (weak) edge 

domination of an IFG but need not be a minimum of an order of an edge IFG of G.  Then, 
an order of a regular total semi - µ strong (weak) edge domination of an IFG is less than 
or equal to size of an edge IFG.  That is, )()( GSGO eRTeRT µµ

≤ .   

Hence, )()()( GSGOGW eRTeRTeRT µµµ
≤≤  

 

Theorem 3.6. For an IFG,
2

)(
qp

GeRT

−≥
µ

γ  

Proof: Let G be an IFG.  
µeRTγ be a regular total semi - µ strong (weak) edge domination 

number of an IFG.  Let p be a sum of fuzzy vertex cardinality of an IFG G. Let q be a 
sum of fuzzy edge cardinality of an IFG G.   

2

qp−
be a fuzzy vertices but need not be a maximum of a regular total semi - µ 

strong (weak) edge domination number of an IFG of G.  Then, a regular total semi - µ 
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strong (weak) edge domination number of an IFG of G is greater than or equal to 
2

qp−

fuzzy vertices.  Hence, 
2

)(
qp

GeRT

−≥
µ

γ  

Example 3.7. Let G be an intuitionistic fuzzy graph.  Let 
TeRγ  be a regular total strong 

(weak) edge domination number of G. 

 
Figure 1: 

 
RTe = {1,3,5,7,15,17,19,21}, E – RTe = {2,4,6,8,9,10,11,12,13,14,16,18,20,22},  
p = 4.2, q = 5.2, 1.8(G)γ

TeR = 1.6 (G)δ,8.1(G)∆ eNeN == , |p–q| = |-1| = 1, 

2.6,(G)δp,4.2(G)∆p eNeN =−=− 3.6.(G)δq,4.3(G)∆q eNeN =−=−  

 
4. Equitable regular total semi - µ strong (weak) edge domination in an IFG 
In this section, Equitable regular total semi - µ strong (weak) edge dominating number of 
an intuitionistic fuzzy graph is introduced and its parametric conditions are established.  
Let us consider p ≤ q throughout the paper. 
 
Definition 4.1. A  regular total semi - µ strong (weak) edge dominating set µeERT of an 

intuitionistic fuzzy graph G is an equitable regular total semi - µ strong (weak) edge 
dominating set if    

i.   u,v∈ E(G) and 
      ii. | deg(u) – deg(v) | ≤  1  for all u ∈ ERTµ , v ∈ V-ERTµ 

 
Definition 4.2. An equitable regular total semi - µ strong (weak) edge dominating set 

µeERT of a intuitionistic fuzzy graph G is called minimal equitable regular total semi - 
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µ strong (weak) edge dominating set of G, if v ∈eERTµ , eERTµ - {v} is not an 
equitable regular total semi - µ strong (weak) edge dominating set of G. 
 
Definition 4.3. The minimum fuzzy cardinality among all minimal equitable regular total 
semi - µ strong (weak)  edge dominating set is called equitable regular total semi - µ 
strong (weak)  edge dominating set and its equitable regular total semi - µ strong 
(weak) edge domination number is denoted by (G)γeERTµ

. 

 
Theorem 4.4. For an intuitionistic fuzzy graph,  

(G)δq(G)∆p(G)γ )e()e(eERT µµµ
−≤−≤  

Proof: Let G be an intuitionistic fuzzy graph. Let (G)γeERTµ
 be an equitable regular 

total semi - µ strong (weak) edge domination number of G. 
 p - )e(∆ µ be a fuzzy vertices but need not be a minimum of an equitable regular 

total semi - µ strong (weak) edge domination number of G.  Then, an equitable regular 
total semi - µ strong (weak) edge domination number of G is less than or equal to p - 

)e(∆ µ . That is, (G)∆p(G)γ )e(eERT µµ
−≤ . q- )e(µδ be a fuzzy vertices but need not be 

a minimum of p- )e(∆ µ fuzzy vertices. p- )e(∆ µ fuzzy vertices is less than or equal to q-

)e(µδ .  

Therefore, (G)δq(G)∆p )e()e( µµ −≤− .  

Hence, (G)δp(G)∆p(G)γ )e()e(eRT µµµ
−≤−≤ . 

 
Theorem 4.5. For an intuitionistic fuzzy graph,  

(G)δq(G)∆p(G)γ )e()e(eERT γγµ
−≤−≤  

Proof: Let G be an intuitionistic fuzzy graph. Let (G)γeRTµ
 be a regular total strong 

(weak) edge domination number of G. 
 q - )e(∆ γ be a fuzzy edges but need not be a minimum of regular total strong 

(weak) edge domination number of G.  Then, a regular total strong (weak) edge 
domination number of G is less than or equal to q - )e(∆ γ . That is, 

(G)∆q(G)γ )e(eRT γµ
−≤ .  q - )e(δ γ be a fuzzy vertices but need not be a minimum of  

q - )e(∆ γ fuzzy vertices. q - )e(∆ γ fuzzy vertices is less than or equal to q - )e(δ γ

Therefore, (G)δq(G)∆q )e()e( γγ −≤− . 

Hence, (G)δq(G)∆p(G)γ )e()e(eERT γγµ
−≤−≤ . 

Theorem 4.6. For an intuitionistic fuzzy graph, 
1(G)∆

(G)∆p
(G)γ

)e(

)e(
eERT +

−
≥

µ

γ
µ
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Proof: Let G be an intuitionistic fuzzy graph.  Let 
µeERTγ  be an equitable regular total 

strong (weak) edge domination number of G. 
1(G)∆

(G)∆p

)e(

)e(

+
−

µ

γ be a fuzzy vertices but need 

not be a maximum of an equitable regular total strong (weak) edge domination number of 

G.  Hence, 
1(G)∆

(G)∆p
(G)γ

)e(

)e(
eERT +

−
≥

µ

γ
µ

. 

 
Theorem 4.7. Let G be an IFG.  In an IFG,  

2

)()(
)(

2

)()( )()()()( GGO
G

GGO ee
eERT

ee γγµµ
µ

γ
∆−

≤≤
∆−

 

Proof: Let G be an IFG.  )(GeERTµ
γ be an equitable regular total semi - µ strong (weak) 

edge domination of an IFG.  )(GeERTµ
γ be an equitable regular total semi - µ strong 

(weak) edge domination of an IFG but need not be a minimum of a 
2

)()( )()( GGO ee µµ ∆−

fuzzy cardinality of IFG.  
2

)()( )()( GGO ee µµ ∆−
fuzzy cardinality is less than or equal to 

an equitable regular total semi - µ strong (weak) edge domination of an IFG.  That is, 

)(
2

)()( )()( G
GGO

eERT
ee

µ
γµµ ≤

∆−
.  

2

)()( )()( GGO ee γγ ∆−
be a fuzzy vertices but need 

not be a minimum of an equitable regular total semi - µ strong (weak) edge domination of 
an IFG.  Then, an equitable regular total semi - µ strong (weak) edge domination of an 

IFG is less than or equal to a  
2

)()( )()( GGO ee γγ ∆−
fuzzy vertices.  That is, 

2

)()(
)( )()( GGO

G ee
eERT

γγ
µ

γ
∆−

≤ .   

Hence, 
2

)()(
)(

2

)()( )()()()( GGO
G

GGO ee
eERT

ee γγµµ
µ

γ
∆−

≤≤
∆−

. 

 
Example 4.8. Let G be an IFG.  All the edges have (0.3,0.5) membership values. 
ERTµ={1,2,3,4,5,6,32,34,36,38,40,42},  
V - ERTµ = 
{7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,33,35,37,39,4
1},  ,8.4)( =GeERTµ

γ  p = 9.6, q = 16.8, O(G) = (2.4,7.2), S(G) = (2.4,7.2), W(G) = 

(3.6,6), 15.3(G)δq,1.8(G)∆p )e()e( =−=− γγ

8.7(G)δp,7.8(G)∆p )e()e( =−=− µµ , )5.1,9.0(==∆ δ  
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Figure 2: 

5. Conclusion 
In this paper, an equitable regular total semi - µ strong (weak) edge domination number is 
defined and established the parametric conditions. The properties of Regular total semi - 
µ strong (weak) edge domination number and an equitable regular total semi - µ strong 
(weak) edge domination number domination number are discussed. 
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