Application of Fuzzy Matrices in Medical Diagnosis

Thangaraj Beaula1 and Mallika2

1Department of Mathematics, T.B.M.L College, Porayar – 609307, Tamilnadu, India
2Department of Mathematics, Dharmapuram Aadinam College, Mayiladurai Tamilnadu, India. E-mail: edwinbeaula@yahoo.co.in

Received 25 November 2017; accepted 5 December 2017

Abstract. In this paper we define fuzzy matrices and an algorithm is developed for medical diagnosis. Example is illustrated to verify the procedure developed.

Keywords: Fuzzy matrix, complement of fuzzy matrix, sup i-composition, relativity function, medical diagnosis and decision making.

AMS Mathematics Subject Classification (2010): 15B15

1. Introduction

In 1965 [8], Zadeh introduced the notion of fuzzy set theory. The field of medicine is one of the most fruitful and interesting areas of applications for fuzzy set theory. Sanchez [6] formulated the diagnostic models involving fuzzy matrices representing the medical knowledge between symptoms and diseases. Esogbue and Eder [3] utilized fuzzy cluster analysis to model medical diagnostic.

Meenakshi and Kaliraja [4] have extended Sanchez’s approach for medical diagnosis using representation of a interval valued fuzzy matrix. They have also introduced the arithmetic mean matrix of an interval valued fuzzy matrix and directly applied Sanchez’s method of medical diagnosis on it.

Fuzzy set theory also plays a vital role in the field of decision making. Decision making is a most important scientific, social and economic endeavour. For decision making in fuzzy environment one may refer Bellman and Zadeh [1]. Most probably the fuzzy decision model in which over all ranking or ordering of different fuzzy sets are determined by using comparison matrix introduced and developed by Shimura [7]. In 2010 Cagman et.al [2] defined fuzzy soft matrix theory and its application in decision making.

2. Preliminaries

Definition 2.1. An mxn matrix $A = (a_{ij})$ whose components are unit interval $[0,1]$ is called a fuzzy matrix.

Definition 2.2. Let $A = (a_{ij})_{mn}$ be a fuzzy matrix of order mxn then the complement of A is denoted by,

$A^c = (c_{ij})$ where $c_{ij} = 1-a_{ij}$ for all i and j.

163
Definition 2.3. Let $A = (a_{ij})$ and $B = (b_{ij})$ be the fuzzy matrices of order $m \times n$. Then the sup-i composition is defined as, $A \circ_i B = \sup_i [A(x, y)B(y, z)]$ where i is a t-norm.

Definition 2.4. Let x and y be variables defined on a universal set X. The relativity function is denoted by $f \left(\frac{x}{y} \right)$ where,

$$f \left(\frac{x}{y} \right) = \frac{\mu_x(x) - \mu_y(y)}{\max\{\mu_x(x), \mu_y(y)\}}$$

where $\mu_x(x)$ is the membership function of x with respect to y.

Definition 2.5. Let $A = \{x_1, x_2, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n\}$ be a set of n variables defined on a universal set X. Form a matrix of relativity values $f \left(\frac{x_i}{y_i} \right)$ where x_i’s (for $i=1$ to n) are n variables defined on an universe X. The matrix $R = (r_{ij})$ is a square matrix of order ‘$n’ is called the comparison matrix with $f \left(\frac{x_i}{y_i} \right) = \mu_{x_i}(x_i)$.

3. Medical diagnosis and decision making
Fuzzy matrix framework have been utilized in several different approaches to model the medical diagnostic process and decision making process.

A fuzzy decision making is a almost important scientific social and economic endeavour, there exist several major approaches within the theories of fuzzy decision making. The ranking order to deal with the vagueness in imprecise determination of preferences.

3.1. Procedure
Let S be the set of symptoms of certain diseases, D is a set of diseases and P is a set patients.

Step 1: Construct a symptom – disease fuzzy matrix $A = (a_{ij})$ of order $m \times n$.

Step 2: Construct a patient – symptom fuzzy matrix $B = (b_{ij})$ of order $m \times n$.

Step 3: Compute $C = A \circ_i B$ where \circ is sup – i composition.

Step 4: Form the complement matrix A^c and B^c of A and B of order $m \times n$.

Step 5: Computing the composition matrix $A^c \circ_i B^c$ of A^c and B^c denoted by,

$$D = A^c \circ_i B^c = \sup_i \left\{ A^c(x, y)B^c(y, z) \right\}$$

where $i = ab$. And compute $M = C \cdot D$.
Application of Fuzzy Matrices in Medical Diagnosis

where (-) denotes the min operator.

Step 6: Calculating the relativity values \(f \left(\frac{p_i}{d_i} \right) \) and form the comparison matrix

\[
R = \left(r_{ij} \right)_{max} = \left[\begin{array}{ccc}
f \left(\frac{p_i}{d_i} \right) \\
\end{array} \right]_{i=1,2,3}.
\]

Then maximum value in each of the rows of the R – matrix will have the maximum possibility for ranking purposes. This gives solution to the required problem.

3.2. Illustrative example

Suppose there are patients \(P_1, P_2 \) and \(P_3 \) in a hospital with symptoms high temperature, head ache and cough. These symptoms are represented by \(S_1, S_2 \) and \(S_3 \). Let the possible diseases relating to the above symptoms be Dengue, Viral fever and Malaria which are represented by \(d_1, d_2 \) and \(d_3 \) respectively.

Step 1: Consider a symptom – disease fuzzy matrix \(A \) of order 3x3 such that

\[
A = \begin{bmatrix}
s_1 & d_1 & d_2 & d_3 \\
0.5 & 0.6 & 0.4 \\
s_2 & 0.2 & 0.7 & 0.3 \\
s_3 & 0.6 & 0.4 & 0.7 \\
\end{bmatrix}
\]

Step 2: Consider a patient – symptom fuzzy matrix \(B \) as,

\[
B = \begin{bmatrix}
p_1 & s_1 & s_2 & s_3 \\
0.4 & 0.2 & 0.7 \\
p_2 & 0.3 & 0.6 & 0.9 \\
p_3 & 0.7 & 0.5 & 0.8 \\
\end{bmatrix}
\]

Step 3: Compute \(C = A \circ B \) where \(\circ \) is sup-i composition

\[
A \circ B = \begin{bmatrix}
0.5 & 0.6 & 0.4 \\
0.2 & 0.7 & 0.3 \\
0.6 & 0.4 & 0.7 \\
\end{bmatrix} \circ \begin{bmatrix}
0.4 & 0.2 & 0.7 \\
0.3 & 0.6 & 0.9 \\
0.7 & 0.5 & 0.8 \\
\end{bmatrix} = \begin{bmatrix}
0.3 & 0.4 & 0.5 \\
0.2 & 0.4 & 0.6 \\
0.5 & 0.4 & 0.6 \\
\end{bmatrix}
\]

165
Step 4: Form the complement matrix A^c and B^c of A and B.

$$A^c = \begin{bmatrix} 0.5 & 0.4 & 0.6 \\ 0.8 & 0.3 & 0.7 \\ 0.4 & 0.6 & 0.3 \end{bmatrix}, \quad B^c = \begin{bmatrix} 0.6 & 0.8 & 0.3 \\ 0.7 & 0.4 & 0.1 \\ 0.3 & 0.5 & 0.2 \end{bmatrix}$$

Step 5: Computing the composition matrix $A^c \circ B^c$ denoted by D.

$$D = A^c \circ B^c$$

$$D = \begin{bmatrix} 0.5 & 0.4 & 0.6 \\ 0.8 & 0.3 & 0.7 \\ 0.4 & 0.6 & 0.3 \end{bmatrix} \begin{bmatrix} 0.6 & 0.8 & 0.3 \\ 0.7 & 0.4 & 0.1 \\ 0.3 & 0.5 & 0.2 \end{bmatrix} = \begin{bmatrix} 0.3 & 0.4 & 0.2 \\ 0.5 & 0.6 & 0.2 \\ 0.4 & 0.3 & 0.1 \end{bmatrix}$$

and $M = C (\cdot) D$

$$M = C \begin{bmatrix} 0.3 & 0.4 & 0.5 \\ 0.2 & 0.4 & 0.6 \\ 0.5 & 0.4 & 0.6 \end{bmatrix} \begin{bmatrix} 0.3 & 0.4 & 0.2 \\ 0.5 & 0.6 & 0.2 \\ 0.4 & 0.3 & 0.1 \end{bmatrix} = \begin{bmatrix} p_1 & d_1 \\ p_2 & d_2 \\ p_3 & d_3 \end{bmatrix}$$

represents the relation between the patients and the diseases.

Step 6: Calculate the relativity values of $f \left(\frac{p_i}{d_j} \right)$ and form the comparison matrix $R = \left(r_{ij} \right)$.
Application of Fuzzy Matrices in Medical Diagnosis

\[
f\left(\frac{p_i}{d_i}\right) = \frac{\mu_{d_i}(p_i) - \mu_{p_i}(d_i)}{\max\{\mu_{d_i}(p_i), \mu_{p_i}(d_i)\}}
\]

\[
f\left(\frac{p_1}{d_1}\right) = \frac{\mu_{d_1}(p_1) - \mu_{p_1}(d_1)}{\max\{\mu_{d_1}(p_1), \mu_{p_1}(d_1)\}} = \frac{0.3 - 0.3}{\max(0.3, 0.3)} = \frac{0}{0.3} = 0.
\]

\[
f\left(\frac{p_1}{d_2}\right) = \frac{\mu_{d_2}(p_1) - \mu_{p_1}(d_2)}{\max\{\mu_{d_2}(p_1), \mu_{p_1}(d_2)\}}
\]

\[
= \frac{0.4 - 0.2}{\max\{0.4, 0.2\}} = \frac{0.2}{0.4} = 0.5
\]

\[
f\left(\frac{p_1}{d_3}\right) = \frac{\mu_{d_3}(p_1) - \mu_{p_1}(d_3)}{\max\{\mu_{d_3}(p_1), \mu_{p_1}(d_3)\}}
\]

\[
= \frac{0.2 - 0.4}{\max\{0.2, 0.4\}} = \frac{-0.2}{0.4} = -0.5
\]

\[
f\left(\frac{p_2}{d_1}\right) = \frac{\mu_{d_1}(p_2) - \mu_{p_2}(d_1)}{\max\{\mu_{d_1}(p_2), \mu_{p_2}(d_1)\}}
\]

\[
= \frac{0.2 - 0.4}{\max\{0.2, 0.4\}} = \frac{-0.2}{0.4} = -0.5
\]

\[
f\left(\frac{p_2}{d_2}\right) = \frac{\mu_{d_2}(p_2) - \mu_{p_2}(d_2)}{\max\{\mu_{d_2}(p_2), \mu_{p_2}(d_2)\}}
\]

\[
= \frac{0.4 - 0.4}{\max\{0.4, 0.4\}} = \frac{0}{0.4} = 0
\]
\[
\begin{align*}
\frac{d_2}{p_3} &= \frac{\mu_{d_2}(p_3) - \mu_{p_3}(d_2)}{\max\{\mu_{d_2}(p_3), \mu_{p_3}(d_2)\}} \\
&= \frac{0.3 - 0.2}{\max\{0.3, 0.2\}} = \frac{0.1}{0.3} = 0.3
\end{align*}
\]

\[
\begin{align*}
\frac{d_3}{p_3} &= \frac{\mu_{d_3}(p_3) - \mu_{p_3}(d_3)}{\max\{\mu_{d_3}(p_3), \mu_{p_3}(d_3)\}} \\
&= \frac{0.1 - 0.1}{\max\{0.1, 0.1\}} = 0
\end{align*}
\]

\[
\begin{align*}
\therefore \text{The comparison matrix } R &= \begin{bmatrix} 0 & 0.5 & -0.5 \\ -0.5 & 0 & -0.6 \\ 0.5 & 0.3 & 0 \end{bmatrix} \\
\text{Maximum of } i^{th} \text{ row } &= \begin{bmatrix} 0.5 \\ 0 \\ 0.5 \end{bmatrix}
\end{align*}
\]

From the ranking of the problem, conclude that patient P₁ is easily affected by Viral fever, P₂ is also affected by Viral fever and patient P₃ is affected by Dengue.
Application of Fuzzy Matrices in Medical Diagnosis

REFERENCES

6. E. Sanchez, Inverse of fuzzy relations, application to possibility distribution and medical diagnosis, Fuzzy Sets and Systems, 2(1) (1979) 75 – 86.