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Abstract. The main goal of this  paper is to found the generalized Ulam-Hyers stability of 
a radical reciprocal quadratic functional equation originating from 3 dimensional 
Pythagorean means   
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in Fuzzy Banach space using classical Hyers method. 
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1.  Introduction 
The revision of stability problems for functional equations is linked to a query of Ulam 
[29] regarding the stability of group homomorphisms and assenting counter given by 
D.H. Hyers [12] for Banach spaces. It was further generalized and excellent results 
obtained by number of authors   [2, 10, 24, 25, 27].  

Motived by Ger [11] and Pinales [22], in this paper we found the generalized 
Ulam-Hyers stability of a radical reciprocal quadratic functional equation originating 
from 3 dimensional Pythagorean means   

 ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 2 2 2 2 2 f x f y f y f z f x f z
f x y f y z f x z

f x f y f y f z f x f z
+ + + + + = + +

+ + +   (1.1) 

in Fuzzy Banach space using classical Hyers method. It is easy to verify that ( ) 2

a
f x

x
=  is 

the solution of the functional equation (1.1). We demonstrate the stability results in two 
different ways. 
 
2. Definitions in fuzzy Banach spaces 
In this section, the authors present vital definitions and notations in Fuzzy Banach space. 
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Katsaras [16] defined a fuzzy norm on a vector space to construct a fuzzy vector 
topological structure on the space.  A quiet number of mathematicians have defined fuzzy 
norms on a vector space from different positions of  their vision in [8, 18, 30]. In 
particular,  Bag and Samanta [4, 5] subsequentally Cheng and Mordeson [6], gave an 
inspiration of fuzzy norm in such a manner that the analogous fuzzy metric is of  
Kramosil and Michalek type [17]. They established a decomposition theorem of a fuzzy 
norm into a family of crisp norms and investigated some properties of fuzzy normed 
spaces [6]. 

We use the definition of fuzzy normed spaces given in [6,20,21,28].  
 
Definition 2.1. Let X  be a real linear space. A function [0,1]: →×RXN  is said to be 

a fuzzy norm on X  if for all Xyx ∈,  and all R∈ts, , 

( 1) ( , ) = 0FNS N x c  for 0;≤c   

( 2) = 0FNS x  if and only if 1=),( cxN  for all 0;>c  

( 3) ( , ) = ,
| |

t
FNS N x t N xρ

ρ
 
 
 

 if 0;≠c  

( 4) ( , ) { ( , ), ( , )};FNS N x y s t min N x s N y t+ + ≥  

( 5) ( , )FNS N x⋅  is a non-decreasing function on R  and 1;=),( txNlimt ∞→  

( 6)FNS    for ),(0, ⋅≠ xNx  is (upper semi) continuous on R . 

The pair ),( NX  is called a fuzzy normed linear space. 
 
Example 2.2. Let ( )||||, ⋅X  be a normed linear space. Then  

( )
, > 0, ,

, =

0, 0,

t
t x X

t xN x t

t x X

 ∈ +
 ≤ ∈

 

is a fuzzy norm on X .  
 
Definition 2.3. Let ),( NX  be a fuzzy normed linear space. Let }{ nx  be a sequence in 

X . Then nx  is said to be convergent if there exists Xx∈  such that 

1=),(lim txxN n
n

−
∞→  

 for all 0>t . In that case, x  is called the limit of the sequence nx  

and we denote it by .=lim xxN n
n ∞→

−   

 
Definition 2.4. A sequence { }nx  in X  is called Cauchy if for each 0>ε  and each 

0>t  there exists 0n  such that for all 0nn ≥  and all 0>p , we have 

.1>),( ε−−+ txxN npn   

 
Definition 2.5. Every convergent sequence in a fuzzy normed space is Cauchy. If each 
Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy 
normed space is called a fuzzy Banach space.  
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Definition 2.6. A mapping YXf →:  between fuzzy normed spaces X  and Y  is 

continuous at a point 0x  if for each sequence }{ nx  covering to 0x  in X , the sequence 

}{ nxf  converges to )( 0xf  . If f  is continuous at each point of Xx ∈0  then f  is said 

to be continuous on .X   
 
The stability of a quiet number of  functional equations in fuzzy normed spaces were 
investigated in [21, 22, 29].  
 
3. Hyers type  fuzzy stability results 
In this section, the authors investigate the generalized Ulam-Hyers stability of the 
functional equation (1.1).  To discuss the stability results, let as assume that ),(, NZX ′  

and ),( NY ′  are linear space, fuzzy normed space and fuzzy Banach space, respectively.   

Now, define a function YXf →:  by  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 2 2 2 2 2, ,RQ

f x f y f y f z f x f z
F x y z f x y f y z f x z

f x f y f y f z f x f z
= + + + + + − − −

+ + +  
for all , ,x y z X∈ .

  
Theorem 3.1.  If  a function YXf →:  satisfies the functional inequality  

 ( )( ) ( ), , , ( , , ),RQN F x y z r N x y z r′≥ Φ  (3.1) 

for all Xzyx ∈,,  and all 0>r .  Let 3: X ZΦ →  be a mapping with ( )0 < 2 < 1d
µ

  

 ( ) ( ) ( ) ( )( )2 , 2 , 2 , , , ,n n n nN x x x r N d x x x r
µ µ µ

µ  ′ ′Φ ≥ Φ  
  

 (3.2) 

for all Xx∈  and  all 0>r   with 0>d  filling the condition  

 ( ) ( ) ( )2 , 2 , 2 ,2 1lim
n n n n

n
N x x x r

µ µ µ
µ

→∞

  ′ Φ =  
  

 (3.3) 

for all Xzyx ∈,,  and all 0>r  where 1µ = ± . Then there exists one and only 

reciprocal quadratic mapping :Q X Y→  which satisfying (1.1) and  

 ( ) 3 |1 2 |
( ) ( ), ( , , ),

4

d r
N Q x f x r N x x x

− ′− ≥ Φ 
 

 (3.4) 

and   

 ( )( ) = 2 2lim
n n

n
Q x N f x

µ
µ

→∞

 −  
 

 (3.5) 

for all Xx∈  and all 0>r .  
Proof: First assume = 1β . Changing ),,( zyx  by ( , , )x x x  in (3.1), we get  

 ( ) ( )( )
3 2 3 , ( , , ),

2

f x
N f x r N x x x r
   ′− ≥ Φ  

  
 (3.6) 

for all Xx∈  and all 0>r .  Using ( 3)FNS  in the above inequality, we arrive 
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 ( ) ( ) ( )2
2 2 , ( , , ),

3

r
N f x f x N x x x r
  ′− ≥ Φ 
 

 (3.7) 

for all Xx∈  and all 0>r . Replacing x  by 2n x  in (3.6), we obtain  

 ( ) ( ) ( )( )1 2
2 2 2 , 2 , 2 , 2 ,

3
n n n n nr

N f x f x N x x x r+  ′− ≥ Φ 
 

 (3.8) 

for all Xx∈  and all 0>r .  It follows from (3.8) and  (3.2), ( 3)FNS  in (3.8), we have   

 ( ) ( ) ( )( 1) 1 2 2
2 2 2 2 , , , ,

3

n
n n n n

n

r r
N f x f x N x x x

d
+ + ⋅  ′− ≥ Φ   

  
 (3.9) 

holds for all Xx∈  and all 0>r . Replacing r  by nd r  in (3.9), we get  

 ( ) ( ) ( ) ( )( )( 1) 1 2
2 2 2 2 , 2 , , ,

3
nn n n nN f x f x d r N x x x r+ +  ′− ≥ Φ 

 
 (3.10) 

for all Xx∈  and all 0>r . It is easy to see that  

 ( ) ( ) ( )1
( 1) 1 ( 1) 1

=0

2 2 ( ) = 2 2 2 2
n

n n i i i i

i

f x f x f x f x
−

+ + + +− −∑  (3.11) 

for all Xx∈ . From equations (3.10), (3.11) and using ( 3)FNS , we have 

 ( ) ( ) ( ) ( ) ( ) ( )
11

( 1) 1

=0 =0

2 2
2 2 , 2 min 2 2 2 2 , 2

3 3

nn
i in n i i i i

i i

N f x f x d r N f x f x d r
−−

+ +    − ≥ −   
    

∑ ∪
                                    

                

                                     ( )( ){ } ( )( )
1

=0

, , , , , ,
n

i

min N x x x r N x x x r
−

′ ′≥ Φ ≥ Φ∪  (3.12) 

for all Xx∈  and all 0>r .  Thus the sequence ( ){ }2 2n nf x  is a Cauchy sequence. 

Indeed, replacing x  by xm2  in (3.12) and using (3.2), ( 3)FNS , we obtain  

 ( ) ( ) ( )
1

=0

2
2 2 2 2 , 2 2 ( , , ),

3

n
in m n m m m m

m
i

r
N f x f x d r N x x x

d

−
+ +   ′− ≥ Φ  

  
∑ (3.13) 

for all Xx∈  and all 0>r  and all 0, ≥nm . Replacing r  by md r  in (3.13), we arrive 

     ( ) ( ) ( ) ( )
1

=0

2
2 2 2 2 , 2 ( , , ),

3

n
i mn m n m m m

i

N f x f x d r N x x x r
−

++ +  ′− ≥ Φ 
 

∑    or  

                     ( ) ( ) ( ) ( )
1

=

2
2 2 2 2 , 2 ( , , ),

3

m n
in m n m m m

i m

N f x f x d r N x x x r
+ −

+ +  ′− ≥ Φ 
 

∑  (3.14) 

for all Xx∈  and all 0>r  and all 0, ≥nm . Using ( 3)FNS  in (3.14), we obtain  

 ( ) ( )( )
( )

1

=

2 2 2 2 , ( , , ),
2

2
3

n m n m m m
m n

i

i m

r
N f x f x r N x x x

d

+ +
+ −

 
 
 ′− ≥ Φ
 
 
 

∑
(3.15) 

for all Xx∈  and all 0>r  and all 0, ≥nm . Since 0 < 2 <1d  and   ( )
=0

2 < ,
n

i

i

d ∞∑
 
the  
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Cauchy criterion for convergence and ( 5)FNS  implies that ( ){ }2 2n nf x  is a Cauchy 

sequence in ),( NY . Since ),( NY  is a fuzzy Banach space, this sequence converges to 

some point ( )Q x Y∈ . So one can define the mapping :Q X Y→  by  

( )( ) = 2 2lim
n n

n
Q x N f x

→∞
−  

for all .Xx∈  Letting 0=m  in (3.15), we get  

                            ( ) ( )( )
( )

1

=0

2 2 , ( , , ),
2

2
3

n n
n

i

i

r
N f x f x r N x x x

d
−

 
 
 ′− ≥ Φ
 
 
 

∑
 (3.16) 

for all Xx∈  and all 0>r . Letting ∞→n  in (3.16)  and using ( 6)FNS , we arrive  

( ) ( )3 1 2
( ) ( ), ( , , ),

4

d r
N Q x f x r N x x x

− 
′− ≥ Φ 
 

 

for all Xx∈  and all 0>r .  

To prove Q  satisfies the (1.1), replacing ),,( zyx  by ( )2 , 2 , 2n n nx y z  in (3.1), we 

obtain  

 ( )( ) ( )( )2 2 , 2 , 2 , 2 , 2 , 2 ,2n n n n n n n n
RQN F x y z r N x y z r′≥ Φ (3.17) 

for all 0>r  and all Xzyx ∈,, . Now,  

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2

,

min 2 2 , , 2 2 , ,
7 7

2 2
2 2 , , 2 , ,

7 72 2

n n n n

n n

n n n

n n

Q x Q y Q y Q z Q x Q z
N Q x y Q y z Q x z r

Q x Q y Q y Q z Q x Q z

r r
N Q x y f x y N Q y z f y z

f x f yQ x Q yr r
N Q x z f x z N

Q x Q y f x f y

Q
N

 
+ + + + + − − −  + + + 

    ≥ + − + + − +    
   

 
   + − + − +   +  + 

 

−
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( )( ( ) ( )
( ) ( )

2 2 2 2 2 2

2 2 2 2
2 , , 2 , ,

7 72 2 2 2

2 2
2 2 2 2 2 2 2

2 2

n n n n

n n

n n n n

n n

n n n n n n n

n n

f y f z f x f zy Q z Q x Q zr r
N

Q y Q z Q x Q zf y f z f x f z

f x f y
N f x y f y z f x z

f x f y

   
   + − +   + ++ +   
   

+ + + + + −
+

                  
( ) ( )

( ) ( )
( ) ( )

( ) ( )
2 2 2 2

2 2 ,
72 2 2 2

n n n n

n n

n n n n

f y f z f x f z r

f y f z f x f z


− − 

+ + 


 (3.18) 

for all Xzyx ∈,,  and all 0>r . Using (3.17) and ( 5)FNS  in (3.18), we arrive  
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( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 2 2 2 2 2 ,
Q x Q y Q y Q z Q x Q z

N Q x y Q y z Q x z r
Q x Q y Q y Q z Q x Q z

 
+ + + + + − − −  + + + 

( )( ){ } ( )( )min 1,1,1,1,1,1, 2 , 2 , 2 ,2 2 , 2 , 2 ,2n n n n n n n nN x y z r N x y z r′ ′≥ Φ ≥ Φ    (3.19) 

for all Xzyx ∈,,  and all 0>r . Letting ∞→n  in (3.19) and using (3.3), we see that 

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 2 2 2 2 2 , = 1
Q x Q y Q y Q z Q x Q z

N Q x y Q y z Q x z r
Q x Q y Q y Q z Q x Q z

 
+ + + + + − − −  + + + 

 for all Xzyx ∈,,  and all 0>r . Using ( 2)FNS  in the above inequality gives  

 ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 2 2 2 2 2 Q x Q y Q y Q z Q x Q z
Q x y Q y z Q x z

Q x Q y Q y Q z Q x Q z
+ + + + + = + +

+ + +
 

for all Xzyx ∈,, . Hence Q  satisfies the reciprocal quadratic functional equation (1.1).  
In order to prove the existance of ( )Q x  is unique, we let ( )R x  be another reciprocal 
quadratic  functional equation satisfying (1.1) and (3.4). Hence,  

( ) ( )( )
( ) ( ) ( ) ( )

( )

( ( ) ( ), ) = 2 2 2 2 ,

min 2 2 2 2 , , 2 2 2 2 ,
2 2

3 (1 2 ) 3(1 2 )
2 , 2 , 2 , ( , , ),

4 2 4 2

n n n n

n n n n n n n n

n n n
n

N Q x R x r N Q x R x r

r r
N Q x R x N Q x R x

d d
N x x x r N x x x r

d

− −

    ≥ − −    
    

− −   ′ ′≥ Φ ≥ Φ   ⋅ ⋅   

 

for all Xx∈  and all 0>r . Since, 
3(1 2 )

= ,lim
4 2 n

n

d
r

d→∞

− ∞
⋅  

we obtain  

3(1 2 )
( , , ), = 1.lim

4 2 n
n

d
N x x x r

d→∞

− ′ Φ ⋅ 
 

Thus  
( ( ) ( ), ) = 1N Q x R x r−  

for all Xx∈  and all 0>r . Hence ( ) = ( )Q x R x . Therefore ( )Q x  is unique.  

Assume  = 1µ − . Replacing x  by 
2

x
  in (3.6) and using ( 3)FNS , we arrive 

 ( ) 1
, , , ,

2 32 2 2 2

x r x x x
N f x f N r
      ′− ≥ Φ      

      
   (3.20) 

for all Xx∈  and all 0>r . The rest of the proof is similar to that of = 1µ .  This 
completes the proof of the theorem.  
  
From Theorem 3.1, we prove the next corollary pertaining to the stabilities for the 
functional equation (1.1).  
 
Corollary 3.2.  Suppose that a function YXf →:  satisfies the inequality 
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 ( )
( )
( )
( )

, ,

, , {| | | | | | }, ,

| | | | | | ,

RQ

N r

F x y z N x y z r

N x y z r

α α α

α α α

 ′ ∆

 ′≥ ∆ + +


′ ∆

 (3.21) 

for all 0>r  and all Xzyx ∈,, , where ,α∆  are constants. Then there exists one and 

only reciprocal quadratic mapping :Q X Y→  which satisfying (1.1) and  

 ( )
1

2

3
1

2
3

3 |1|
, ;

4

3 |1 2 |
( ) ( ), | | , ; 2

4

3 |1 2 |
| | , ; 3 2

4

r
N

r
N f x Q x r N x

r
N x

α

α

α

α

α

α

+

+




  ′ ∆   


  −  ′− ≥ ∆ ≠ −  
 
 

  
−  ′ ∆ ≠ −  

   

 (3.22) 

for all Xx∈  and all 0>r .  
Proof: If we take  

( )
( )
( )
( )

, ,

( , , ), = {|| || || || || || }, ,

|| || || || || || ,

p p p

p p p

N r

N x y z r N x y z r

N x y z r

 ′ ∆

′ ′Φ ∆ + +


′ ∆

 

then the corollary is followed from Theorem 3.1 by defining 
0

3

2 ;

= 2 ;

2 ;

p

p

d









 

we arrive our result. 

The next Theorem gives an  another type of stability result for the functional equation 

(1.1). 
 
Theorem 3.3.  If  a function YXf →:  satisfies the functional inequality  

 ( )( ) ( ), , , ( , , ),RQN F x y z r N x y z r′≥ Φ  (3.23) 

for all Xzyx ∈,,  and all 0>r .  Let 3: X ZΦ →  be a mapping with 
2

0 < < 1
d

µ
 
 
 

  

 ( ) ( ) ( ) ( )( )2 , 2 , 2 , , , ,n n n nN x x x r N d x x x r
µ µ µ

µ−  ′ ′Φ ≥ Φ  
  

 (3.24) 

for all Xx∈  and  all 0>r   with 0>d  filling the condition  
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 ( ) ( ) ( )2 , 2 , 2 , 1lim
2

n n n
n

n

r
N x x x

µ µ µ

µ→∞

  ′ Φ =  
  

 (3.25) 

for all Xzyx ∈,,  and all 0>r  where 1µ = ± . Then there exists one and only 
reciprocal quadratic mapping :Q X Y→  which satisfying (1.1) and  

 ( ) 3 | 2 |
( ) ( ), ( , , ),

4

d r
N Q x f x r N x x x

− ′− ≥ Φ 
 

 (3.26) 

and   

 ( )( ) = 2 2lim
n n

n
Q x N f x

µ
µ

→∞

 −  
 

 (3.27) 

for all Xx∈  and all 0>r .  
Proof: First assume = 1µ . Changing ),,( zyx  by ( , , )x x x  in (3.24), we get  

 ( ) ( )( )
3 2 3 , ( , , ),

2

f x
N f x r N x x x r
   ′− ≥ Φ  

  
 (3.28) 

for all Xx∈  and all 0>r .  Using ( 3)FNS  in the above inequality, we arrive 

 ( ) ( ) ( )2
2 2 , ( , , ),

3

r
N f x f x N x x x r
  ′− ≥ Φ 
 

 (3.29) 

for all Xx∈  and all 0>r . Replacing x  by 2n x  in (3.29), we obtain  

 ( ) ( ) ( )( )1 2
2 2 2 , 2 , 2 , 2 ,

3
n n n n nr

N f x f x N x x x r+  ′− ≥ Φ 
 

 (3.30) 

for all Xx∈  and all 0>r .  It follows from (3.30) and  (3.24), ( 3)FNS , we have   

 ( ) ( ) ( )( )( 1) 1 2 2
2 2 2 2 , , , ,

3

n
n n n n nr

N f x f x N x x x d r+ + ⋅ ′− ≥ Φ 
 

 (3.31) 

holds for all Xx∈  and all 0>r . Replacing r  by 
n

r

d
 in (3.31), we get  

 ( ) ( ) ( )( )( 1) 1 2 2
2 2 2 2 , , , ,

3

n
n n n nN f x f x r N x x x r

d
+ +

   ′− ≥ Φ     
 (3.32) 

for all Xx∈  and all 0>r . The rest of the proof is similar tothat of Theorem 3.1. 
 
From Theorem 3.3, we prove the next corollary pertaining to the stabilities for the 
functional equation (1.1).  
 
Corollary 3.4.  If a function YXf →:  satisfies the inequality 

 ( )
( )
( )
( )

, ,

, , {| | | | | | }, ,

| | | | | | ,

RQ

N r

F x y z N x y z r

N x y z r

α α α

α α α

 ′ ∆

 ′≥ ∆ + +


′ ∆

 (3.33) 

for all 0>r  and all Xzyx ∈,, , where ,α∆  are constants. Then there exists one and 
only reciprocal quadratic mapping :Q X Y→  which satisfying (1.1) and  
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 ( )

3

3

3 | 2 1 |
, ;

4

3 | 2 2 |
( ) ( ), 3 | | , ; 2

4

3 | 2 2 |
| | , ; 3 2

4

r
N

r
N f x Q x r N x

r
N x

α
α

α
α

α

α

  − ′ ∆    
  −  ′− ≥ ∆ ≠

   


  −
 ′ ∆ ≠
   

 (3.34) 

for all Xx∈  and all 0>r .

  
4. Application of functional equation (1.1) 
Let O be the center and X,Y,Z be any point on the three perpendicular axises.  Also, 
assume that OX = b, OY= a, OZ = c. 

 
From the Triangle XOY, YOZ and XOZ, we have by Pythagoras Theorem 

 2 2 2 2 2 2 2YX   = OY +OX  = a +b YX = a +b ;⇒  (4.1) 

 2 2 2 2 2 2 2ZY   = OY +OZ  = a +c Y = a +c ;Z⇒  (4.2) 

 2 2 2 2 2 2 2XZ   = OZ +OX  = a +c XZ = +b .c⇒  (4.3) 
Adding (4.1), (4.2) and (4.3), we obtain  

 2 2 2 2 2 2YX + ZY + XZ  = a +b a +c +b .c+ +  (4.4) 
The above equation can be transformed into a radical reciprocal quadratic functional 
equation of the following form  

 ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 2 2 2 2 2 f x f y f y f z f x f z
f x y f y z f x z

f x f y f y f z f x f z
+ + + + + = + +

+ + +
 (4.5) 
having solution  

 ( ) 2

a
f x

x
=  (4.6) 

for any constant a. 
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