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Abstract. Let(N,<) be a non-empty, bounded, linearly ordered satab=max a p
,al0b=mi{ab for ablN.A fuzzy neutrosophic soft vector (FNSV)
(x",x", X} is said to be al -fuzzy neutrosophic soft eigenvector (FNSEV) shaare
fuzzy neutrosophic soft matrix (FNSMA if A x=A 0 x for someA N . Agiven

FNSM A is called (strongly) -robust if for everyx the FNSV A [ X is a (greatest )
FNSEv of A for some natural number k. We presedharacterization ofl -robust and
strongly A -robust FNSMs. Building on this, an efficient aligom for checking the/ -
robustness and stromy-robustness of a given FNSM is introduced.
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1. Introduction
In dealing with uncertainties many theories havenbeecently developed, the theory of
probability, theory of fuzzy sets, Zadeh [38], theoof intuitionistic fuzzy sets,
Atanaasov [2] and theory of rough sets and so dimoAgh many new techniques have
been developed as a result of these theories, iffetuties are still there. The major
difficulties arise due to inadequacy of indeterngnand inconsistent information which
exists in the belief system. Smarandache [33] éhiced the concept of Neutrosophic set
(NS) which is a mathematical tool for handling fdesbs involving imprecise,
indeterminacy and inconsistent data. In our regeNaryday life we face situations which
require procedures allowing certain flexibility éammation processing capacity. Matrices
play a vital role in various areas of Science andiBeering. The classical matrix theory
cannot solve the problems involving various typdsuncertainties. These types of
problems are solved by using Fuzzy matrix (FM)[34].

Practical application of graph theory, schedylikmpwledge engineering, cluster
analysis, fuzzy systems and many other researchs aren be formulated using the
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language of fuzzy algebras in which the additiod #me multiplication of the vectors
(Fuzzy vector, Intuitionistic Fuzzy vector) and nads (Fuzzy matrices, Intuitionistic
Fuzzy Matrix) are formally replaced by operatiafsthe taking the maximum and
minimum. In [29], the following question was posejive a fuzzy relationR between
medical symptoms expressing the action of a drugatients in a given therapy, what
are the greatest invariants of the system?. Thetigueleads to the problem of finding
the greatest eigenvector of the matkixwith elements of fuzzy algebra corresponding to
the fuzzy relatiorR. The eigenproblem in fuzzy algebra and its conaedb paths in
digraphs were investigated in [7,18,19,20,21,37he Teigenproblem in distributive
lattices was studied in [10,22]. The interpretatiarf fuzzy eigenproblem of a matrix in
cluster analysis and the generalized results opribidem can be found in [20]. Relations
in fuzzy algebra are often studied using matrixrapiens. Convergence and periodicity
of matrix powers and the relations between the imatrd orbit periods in fuzzy algebra
have been studied in [8,9,14,15,23,30,31].
Soft set theory was initiated by Russesearcher Molodtov [26], he proposed soft

set as a completely generic mathematical tool fodefing uncertainties. Maji et al., [27]
applied this theory to several directions for deghvith the problems in uncertainty and
imprecision. Yong et. al, [36] introduced a matr@presentation of a fuzzy soft set and
applied it in decision making problems. Borah éf.[6] extended fuzzy soft matrix
theory and its application. Chetia et.al, [12] pepd Intuitionistic fuzzy soft matrix
theory, then Rajarajeswari and Dhanalakshmi [28pppsed new definition for
Intuitionistic fuzzy soft matrices and its typeSumathi and Arokiarani [1] introduced
new operation on fuzzy neutrosophic soft matrid@sar et.al,[13] have also defined
neutrosophic fuzzy matrices and studied squarerosaphic fuzzy matrices. Uma et.al,
[35] introduced two types of fuzzy neutrosophict soétrices.

The aim of this paper is to describe FNSkh@ed by\/) for which the (grestest)
FNSEvs are reached with any start FN&/ , x', X ) these kinds of FNSMs are called

(strongly) robust. The questions considered in plaiger are analogous to those in [4,5],
where robust FNSMs in a max-plus algebra are studie

2. Preliminaries

In this section the basic definition of neutrdsiopset (NS), fuzzy neutrosophic soft set
(FNSS), fuzzy neutrosophic soft matrix (FNSM) andZy neutrosophic soft matrixces of
type-1 are provided.

Definition 2.1. [33] A neutrosophic seA on the universe of discours€ is defined as
A={({x T( R, (RN F(R), XT % whereT,I,F:X - ]70,I[and

0ST,(X)+ 1,()+ F(x)< 3. (2.1
From philosophical point of view the neutrosopheét takes the value from real standard
or non-standard subsets $f0,1°[. But in real life application especially in Sciiat
and Engineering problems it is difficult to use wmesophic set with value from real

standard or non-standard subset]o®,1'[. Hence we consider the neutrosophic set
which takes the value from the subset of [0, 1]
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Therefore we can rewrite equation (2.1)&s T,(X)+ [ ,(X)+ F,(X) < 3.. In short an
element a in the neutrosophic s&t can be written agTex translation failec where

a' denotes degree of trutlh' denotes degree of indetermina@f, denotes degree of
falsity such thaO<a' +a' +a < 3.

Example 2.2. Assume that the universe of discour¥e={ X, X, X} where x;,X, and
X; characterize the quality, reliability, and thecgpriof the objects. It may be further

assumed that the values Pk, x,, X} are in [0,1] and they are obtained from some

investigations of some experts. The experts mayogaptheir opinion in three
components viz; the degree of goodness, the dejrieeleterminacy and the degree of
poorness to explain the characteristics of theathjeSuppose A is a Neutrosophic Set
(NS) of X such that

A={(x,0.4,0.5,0.3¢x, ,0.7,0.2,0.4% ,0.80.4 }where for x, the degree of

goodness of quality is 0.4, degree of indetermira@fayuality is 0.5 and degree of falsity
of quality is 0.3 etc,.

Definition 2.3. [26] Let U be the initial universe set and be a set of parameter.
Consider a non-empty sé&, A] E. Let P(U) denotes the set of all fuzzy neutrosophic

sets ofU . The collection(F, A) is termed to the fuzzy neutrosophic soft set (FNSS
overU , whereF is a mapping given by : A —» P(U). Here after we simply consider
A as FNSS oved instead of(F, A).

Definition 2.4. [1] Let U ={c, C, ...G,} be the universal set anE be the set of
parameters given b¥e ={eg, e, ...e}. Let AJ E. A pair (F, A) be a FNSS oveU .
Then the subset ob) x E is defined byR, ={(u ¢; €] AW K B whichis called a
relation form of (F,,E). The membership function, indeterminacy membership
function and non membership function are written by

Tg, tUXE - [0,1], 15 :UxE - [0,1] and F; :U XE - [0,1]
where T (u,€0[0,1], I (u,9U[0,1] and F (u,€)lJ[0,1] are the membership
value, indeterminacy value and non membership vedspectively ofuJU for each
ed E If [(Ty, ;. F)I=[T (u, e),l (u,e),;F(u, e)] we define a matrix

<T11’ I11’|:11> <T]:| 7| h 'F 11>
T21’|21’F21 Tzwlszm
(T, 1 F ) = < ) | ( : a2
<Tml’ Iml’le> <Tmn’I mn’F m)u
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This is called atmx n FNSM of the FNSS(F,,E) overU
FNSMs of Type-I

Definition 2.5. [35] Let A=((a/,§,d)),B=((P .p ,6))IA; , - The component
wise addition and component wise multiplicationléined as

Al B=(sug %7 i5}1 Sl{pijlaijb ihfij'jaij'}b

ADB=(inf(g, §}, in{ & B sup,2,D

Definition 2.6. Let AON,,BON, , the composition ofA and B is defined as
A°B=(i_(a1 o). > @08). [] @08 )j
= (S o, S o), [0y

equivalently we can write tkame a

The productA®B is defined if and only if the number of columrisA is same as
the number of rows oB. Then A and B are said to be conformable for multiplication.

We shall use A B instead of°B. WhereZ(a,{ Dl:fj) means max-min operation and
n

“ (a; 0h}) means min-max operation.
=1

3.1. Background of the problem
In this section, we discuss about some definitibndigraph notion, then FNSV,
FNSEVs, Fuzzy Neutrosophic soft eigenspace andyNeutrosophic soft eigenvalue.

By a fuzzy Neutrosophic soft algebt= (N ,00,00) we understand a bounded
linearly ordered se{\N',<) with the binary operations of taking the maximunda

minimum, denoted byl, 1.

FNSM operations ovel8 are defined with respect tol and (1, formally in the
same manner as Fuzzy Neutrosophic soft matrixatipes over any field. The least

element in A/ will be 0 denoted by0,0,2 the greatest one by 1 denoted{@yl,Q .

By N* we denote the set of all positive natural numbEng greatest common divisor of
a setSO N* is denoted by gcd S. For a given natumdl N*, we use the notation
N ={1,2,...,n}, and the notation/\/(n),/\/( for the set of all n-dimensional column
FNSVs (square FNSM) ovds$ .

Let (X7, X' X) =((X[, X, X)X X, X)) DNy and (YT y'Y)
= (Y1 Y Vo) el Y Yoy YR D) O N, be FNSVs.
We write (X", X', X)) < (YL, Y, YO X, X, 30<C Y, b 9)
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it (X, %, )<Y, YL DX, X% < Y, Y. §)) holds for each ON .
If ADN,,, is a square FNSM ang is a permutation oiN , then A, N, »

denotes the result of applying the permutatiorio the rows and to the columns of the
FNSM A. We say that FNSMs A, A' are equivalent if they@ ipermutatiornrr such that

A=A, ie (&,8.d)=dm)T()), & ry Bong)) Tor everyi,jON. A
FNSM ALl /\/'(n,n) is called upper triangular if its entries below tinain diagonal and on
the main diagonal are equal to 0. F&l] ./\f(,m),AS stands for the iterated product
AD...0 A in which the symbolA appearss times. An ordered paitc =(N, E) is
called adigraph if N is non-empty (set of nodes) affl[1 Nx N (set of arcs). A
path in a digraptG = (N, E) is sequence of nodgs = (i, ...,i, ) such that(i i ,,) UE
for j =1,...Kk— 1 A path is elementary if all its nodes are mutudiistinct. It is a cycle
if i, =i,; its length isk =1 and it is denoted by(p). A digraphG = (N, E) that does
not contain any cycle is calledcyclic. The symbol G(A) =(N, E) stands for a
complete, arc-weighted digraph associated withRIKEM A. The node set o6G(A)is
N, and the capacity of any aft, j) is (a],8',§ ).

The capacitye(p) of a pathp = (i, ...,i, ) in the digraphG(A) = (N, E) is equal to

k-1

o(p) =008, &, &

JJ+1, JI]+1’ i+l

).

By a strongly connected componekit of G(A) =(N, E) we means a sub
graph I generated by a non-empty subs€tld N such that any two distinct nodes
u,vd K are contained in a common cycle akKd is a maximal subset with this
property. Astrongly connected componekit of a digraph is called non-trivial if there is
a cycle of positive length irkC. For any strongly connected componét the period
per K is defined as the gcd of the lengths of all cyate&” . By K(G) we denote the

set of all strongly connected components=of There is well-known connection between
the entries in powers of FNSMs and paths in assmtidigraphs: the(i, )" entry

(a/,8',g )" in A“is equal to the maximum capacity of a path frg, (i, j) . where
PG“(A)(i, j) is the set of all paths i®(A) of lengthk beginning at nodé and ending at
node j . If 75, (i,]) denotes the set of all paths frarto j, then

(ajg.,q) = (g, d, )"
k=1
is the maximum capacity of a path frofy » (i,]) and (a,a',g")" is the maximum

capacity of a cycle containing nodg. For given AD./\/'(nyn),hD./\/', the threshold
digraphG( A h) is the digraphG(A) = (N, E), with the node set N and with the arc set
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E={(i )i, ] DN,(aJ,qj',ajF)2<hT, h',h)}. For a given the FNSM
AON ,mAON and an n-tuplgx™, x', X'y DN, are called an FNSE value &

and an FNSEv ofA, respectively, ifAO (X", X', XY =A0( X, %, X).

in that case/ is the associated FNSE value. Note that some euthquire the FNSEvs
to be non-zero. In the case the results presentaddwbe a little bit different. The
structure of the set of all FNSEvs of a FNSM wiltneents of B has not been completely
described.

Let AO N,

(n,n
A and the sequence,, ALl g, A0 e,..., where e, =(4,....1 ), converges to an
FNSEv with associated FNSE valuk in at most n steps. The eigenspa¢é&\ A) is
defined as the set of all FNSEv &f with associated FNSE valug, i.e.

V(AN ={(X, X, X)ON,; ADCK, % 0=A0(% % %}.

The next assertion describes the relationshipsgrtiee eigenspaces of the powersfof

)and AON , that eachd O N is an FNSE value of a given FNSM

Lemma3.1.1. Let AON,, andAON . Then

LV(A)OV(A N DO .0 V(A )0 ...

2. 1f A> m:amx<a"iT ,a].' ,:;}F> , thenV(AA)=V(A .

Proof:

1. Suppose (X',x',XYOV(AA). Then we have A?O(X,X,X)
= AO(AO(X, X, X))= ADAOCX, X, X))=A0( A % % %) because
of the distributivity of 0 with respect tdd and of the idempotency af .

2. Note that fork DN we have (AO(X", X, X)), < W%K g .d,d). Now, let us

suppose that an FNSE value satisfiesA > rntallux(aﬂT 3 .3 ) and let(x",x', X') bea
1]

corresponding FNSEv of A; then we havAO(X, X, X)=A0(x",x",xX)

=(x",x',X).

Lemma3.1.2. Let AON,, yandAON . If (X', X', YOV, D,

then A O (X", X', XY O V( AA).

3.2. A -robust fuzzy neutrosophic soft matrices

In this section we shows that -robust fuzzy neutrosophic soft matrices with some
examples.

Let A=(<311-T,ajl’§£>)D/\/m),/1 DNand(xT,x',xF>DN(n).
The orbit O(A(X,X,X)) of a FNSM A with starting FNSV
(X", X', XYy =(X X, X))@ s the sequence
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(XN X YO K X, DO X %, 0@ % %, %0
where(x",x", XY = A0 xforr=12,...Let

T(AA)={(X, X, XYON i A A X, % 3))n CA)# g

it follows from the definitions o (AA) and T(AA) that (x',x', X YOV(AA)
implies AO(X", X, X)OV(AA) and V(AA)OT(AA)ON,, is fulfilled for
every FNSM AOWN,,, , and ADN . It may be happen thaf(AA)=V(AA). For

instance, considet\" =[0,1]0 R,A =1 and the FNSMAON,,,, in the following
form:

002 (119

(110 (001

then

[<001> <11@]D(<aﬂ al aF>j=1D
(110 (001 (b" b" )

(@’ a' ) T oAl FN T
{(bT X bF>]«=»<a a a)=(g BB
and we have

V(AD={a0(11,0 (11,0 ) a0 [0,1]}
Since

AO(AO(a d d)y(B B B)))= A(a ad(bbhHHe=

[<11o <oo>L] ((aT al aF>J_(<001> <11§)j ((aT al aF>J
0 = 0

002 (11p) (' b 1)) (@10 (00y |(b" b 1)

$$we obtainAD ((a” a &) (F B B)j0 V(AL

ifand only if (a" a' & )=( B B) thatis AO(X", X, X)OV( Al) if and only

if (x",x', X )YOV(AL).HenceT(A1l)=V(AL).
The result that we shall now formulate for a fuakyebra, as well as the method used to
prove it, where the max-plus algebra was considered

Lemma 321 Let A=(a/,q,q )0N,,,, A0N. Then T(AA)=V(AA) if and
only if for every x DN/, : AD(X, X, XVOV(AL) = (X, X, 0 V A).

Proof: Let us notice first thatx™, x', X YOV(AA)= AJ( X, x, )0 V Al)and
V(AA)OT(AA) holds true for every FNSM A and every. Suppose now that
V(AA)=T(AA)and AO(X, X, X)OV(AA). Then (X", x', X YO T(AA) and
hence (X', x', X YOV(AA). For the converse implication, let us assume that
AOX, X, XH)OV(A)= (X, x, X)O Y M) holds for every (x",x',x)
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ONmandx", x', X )OT(AA). Then A“O(X", x',X)OV(AA) for some k
implies
AT, X, XENOV(AL), KOk, X, 0 W M),...{ X, %x %0 ( A)
In general, T(AA)#V(AA)and T(AA)# N, . Let us considet\ =[0,1],4 =1
and the FNSM.

(0.10.204 (010.204¢( 0.10.2Y04¢

A={(0.10204 (010204( 0.20.3

(0.10.204 (0.20.30.3¢( 0.10.2)0.
FNSV (x",x', X )=((0.5 0.6 01( 0.50.6 0.4 0.%5®M.}) does not belong to
V(A1) but
AD(X, X, ¥)=((0.10.2 04( 0.20.30.3 0.2@.3 )0V (A,1)which
means thall (A1) # V(AL).
Moreover, if (y',y,y)=(0.10.20%¢( 010204 02@3) then
ATy, Y, Yy is(y',y', y) fork evenand
((0.1 0.2 0.%( 0.2 0.3 0.3 0.1 @2 )for k odd showing that

(yhy', y)H)OT(AD

Definition 3.2.2. Let A=((&], 3,4 ))0N,,, /0N . A FNSM A is called /-
robust if T(AA) = /\/'(n).Let us call thed -robust FNSM withA =1 the robust FNSM.
Leta FNSMA=((&/,q,d ))dN,,,. The FNSM A is ultimately periodic if there is
a natural numberp such that the following holds for some[J A" and natural number
R:

AP =20 AI(for all k2 Rjf p is the minimal natural number with this propettgn
we call p the period of A, denoted byper( AA). The leastR with this property is
called the defect of A denoted ldef( AA).

Let us call a FNSM A withper( A 1) =1 the stationary FNSM. By the linearity

of B, any element of any power of the FNSM A is @&qto some element of A.
Therefore, the sequence of powers of A containg @nltely many different FNSMs

with entries of A. It is easy to see thatAf=((g], ', § )) is ultimately periodic, then
the inequality A > mEaNx((aﬁT 3 @ )") holds for allk > def( AJ), i.e. if the equality
]

AP =210 A" is fulfilled for all k > def( A1), then all elements oA P have to be
T Al AF\ : T 4l 4F\K
less than or equal td. Moreover, A = m&x(aﬁ g g ) implies A = m&x(aﬂ 3 3 )

and AP = A0 A= A
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These relations allow us to formulate the next riissefor A > max(a; ' ,§ ) using
i,jCN

the known results on the ultimately periodic FNSMs.

Lemma323. A=((a/,q,d ) 0N, A2 mgx d ,d ,A). Then A is A-robust if
and only if per( A1) =1.

Proof: First let us suppose thater(AA) =1,(X , X, X)ON,, is an arbitrary FNSV
andr2R. Then A O(X', X, X)=A0 (A0 X, X, X))

implies A'0(X,x,X)OV(AA). Hence A is A-robust. For the converse

implication let us suppose th# is a A -robust FNSM andx is an arbitrary element of
N, - Then there exists a natural numbressuch thatA” 0 (X", X, X ) V( AA). In

particular, for(x", X', X"y = A (the j"™ column of A) there exists a natural numiser

such that A O A =A0(A 0O A)=(A0 A)O A. For R=maxr, we, obtain
J
A"=10A forall r=R.

— T | .
Theorem 3.24. Let A=(g/,q, g )0N,,, 12 mﬁ%)( d ,d ,A). Then there exists
an algorithmA which for a given FNSMAO N, and A0N decides whetheA is
a A -robust FNSM inO(n®) time.
. — T | T | F
Proof: Let us suppose thad=((g;, g , <’;}F>)D/\/}1 oy and A = m&x(qj g ,§ ) holds

true. Then we get that the inequalify> m%x(aﬂT 3 ,d ) is fulfilled for each natural
1]

numberk ; henced 0 A = A“ and per{ AA) = pel A I). Now, it suffices to use the
known O(n®) algorithm for computingper( A 1) and the assertion follows.

Theorem 325. Let A=(a/,q,q )0N,,,A2 [P&X d.d.,4) Then Ais al-

robust FNSM if and only i/ (A A) = V( A, A) foreachl ON ™.
Proof: Let us assume thaf\ is a A -robust FNSM, i.e.per(AA) =1 by Lemma 4.3

and A > mcall\‘x(aﬂT 3 ,@ ). Then there is a natural numbRr such that for alk = R we
]

have A“* = A0 A = A‘. We shall prove that the s8t( A, 1) is a subset of the set
V(AT A) for 1 =2,...R.

Let x be an arbitrary element & (A, 1) andls > R for some natural number
s. Then we have
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AsO(xX, X, X¥)y= A'O(AD(K, %, k)= A
OADX, X, X)) =A0 (A" 0(X, %, X))=4

OAS? O(A O(X, X, X)) =..=A0 (AO( X, X, k))=4
OADX, X', X)) =A0(X, X, %)

and

AEO(K, X, )= ATO(K, X, 5= KPO(ADCk % %)= B
OAOX, X' N =A0(A0O(X, X, X))=4

OAS2 O (A O(X, X, X)) =...=A0 (A*

O, X, XN =(A0 AHO(K, %, %)= K'OCk, % %

because of the idempotency Bf and A > mta'hx<a1]T 3, ). From the above equalities
1]

we obtain A7TO(X,X,¥)=A0(X, %, X) and moreover we get
V(A,A) OV(A™, ). Now, the implication is a consequence of Lemma 4.3

For a converse implication let us suppose t4tAA)=V(A,A) holds for each
ION"and per{ AA)= p=1, i.e. there is a natural numbBr such that for alK = R

we haveAk+p =A0A = Ak. Without loss of generality we can assume the edmse
R= p (in the opposite case we pB:= R+ ). From number theory it is well known

that for everyR, p0 N, R> [, there exists a natural numbstl{0,1,..., p— 1} such
that p divides R+ s, i.e. R+ s= vp for somevON" . Then for the power of the
FNSM A®*® we have

(AR+S)2 - (Avp)Z - A2vp= Avp Vp— AR*S VR A+R

because of the periodicity of the FNSM A. As theSAiN AT s idempotent, each of its
columns is an eigenvector, or equivalently,

A¥0 A¥ = AR =210 AF for every jON,

WhereA;R+S is the jth column of A¥™® In view of the assumption that
V(AT®,2)=V(A,A) for eachl ON", we get A¥°OV(A,A). Then the equality
A0 A= A% *implies A" = A™ *for eachl DN " and henceper( A1) = p=1

3.3. Strongly A -robust FNSM's
In this section we discuss about the strongiyrobust fuzzy neutrosophic soft matrices

and Algorithm of strong robust.
let a FNSM A=(a’,g,d)0N,,and AON . Let us suppose that

(X, X XYL Y, Y)YOV(AL). Then AO(X, X, X)=A0(X",x',X) and
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ADGYLY YD =A0G Yo 9D imply AD(OE, X6 OCY L YL )
= (A0, X, X)) O (AD(Y, Y, ¥))=

ADX, X, XEN0AOCY, ¥, ¥y))=A0(X, X, xX)yO(Y, ¥, ¥))

using the distributivity of ] with respect tol]. Let a FNSMA=(a/, g, )0ON,,
and A O\ .Let us define the greatedt-FNSEW X', X', X )" (AA) corresponding to a
FNSM Aand A (x", X', X ) (AA)= [] (X, %, X).

(XX xEHOV( AN
That for given eigenvaluel of A the greatestd -FNSEv exists, and the greatest I-

FNSEW X", x', X' ) (A |) exists for every FNSM A and its entries are giiBnthe
formula (x", x', X"); (A )=[](g ,d,da) 0(a,a,a) . The greatest I-FNSEv
j

XXX (A
can be computed by the following iterative progediiet us defingx", x', X ) ( A
=&/ .4, )foreachi ON and(x",x',x )" (A= AD(X", X, X)*( A forall

JjON
KO, 2,....}.
Then (X", X', XY (A < (X7, X', X (Aand (x", X', X ) (A ) =(X, X, X)" (A
For every FNSMAOWV,, , definec(A) =[] (g .§, &)

andc (A) = (A A,....( AY DN, .

Theorem 33.1. Let AON, andA =1. Every constant vectox =(a,...,a) with

a <c(A) isan FNSEv oA, and no constant vector with entriegs> c(A) is FNSEv of
A.

Example 5.2;
(030405 (010207¢( 0.80.9

.
A={(0.20305H (010207¢( 0.7 0.80:
(0.20.30.p5 (030405( 0.80.9)0.
The greatest I-eigenvector is equal({®.8 0.9 0.1( 0.7 0.8 0.2, 0.8 0.9)¢) and
it is easy to see that(x,x,X)(A(040502=((110(11)0
(0.4 0.50.29

Lemma3.3.2 Let AON,  andd = m&x{a{ 3 @ ). Then
(XX X)) (AA)=(X, %, X) (AD.
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Proof: The assertion follows from Lemma 3.1.
. + _ - T | . ..
Define ¢c*(A) = mz'r?Ka"’ g, :ﬁf>,< ﬁ ir’i, ".5> > ¢ M. We assume that the minimum

of the empty set is equal to I.

Theorem 333 AON, ,and ADN, A >c(A). Then(x",x',X) (AA)= c(A if
and only if G(A ¢ ( A) is an acyclic digraph.

Proof: Let us suppose thdx", X', X' ) (AA)= d A hold for alli ON and

G(A c'(A) contains a cycler = (i,,i,,...J, ), i.e. the capacitg(o) of the cycle is
greater tharc(A). By the definition of the greatdr-FNSEv

(X", X XN (AA)=( ] (X, %, X)) = ¢ Awe have

(X" X' x5Hov(AL)
(X", X', X)), < o A forevery(x",x', X') OV(AA). Hence, for
(X', X', X)) =A0(X, X, X) (A DO V(A1) we have
XXX, =A00Kg,d,§) 0(d,a,,a )> ¢ Aforeveryi O{i,....i },
j

a contradiction with the maximality dfx’, X', X ); (AA).

Conversely, ifG(A ¢ (A) is acyclic, ¢ (AOV(AA) is implied directly by
Theorem 5.1. Inequalityx”, X', X ), < o A for each(x", x', X' YO V( A1) and each
i, can be shown as follows. Suppose that thereseaigiNSV (x", x', X YO V( AA)
and each such thatx',x', X ). = ¢ ( A.

Then, sinceD((aiI,qj',qF)DOJ(T,X, f)):A O( X, X, X), there must exist an
J

index j such that(a;, g, )= ¢ (A and(xj,x/,X )= ¢ (A. Let us denotd by
i, and j by i, and repeat this argument fo=i,. After a finite number of steps a

repetition in the sequende,i,,... must occur, that defines a cycle @(A c'(A), a
contradiction.

Lemma 3.3.4. Let AD/\/(n,n),<xT,x',>f>DJ\/( hON kO N i, jO N.Then
()-(aj,8 @) = he R, (i, )2 9.
(i) (X", x', P = he @ON)(X, X, X); 2 HOR, (T )7 0).

Let us denote the vecte = (g, ..., e ) [ N, as follows:

n)?

I, fori=j
0, otherwise

@ d.6)=|
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Lemma335. Let AON, .
(i) (0l ON)(TE ONT)(Ok 2 £)(8° 2 € ( A).
(i) G(A o A)is strongly connected with period equal to 1.
Proof: (ii) » (i). Let us suppose thdB(A o A) is strongly connected with period
equal to 1, i.e.G(A o A) contains cyclesc,,...,c,, with lengthsl,,...| = such that
gcd(l,...,l,)=1. By the known facts from number theory, there exiat natural

Then the following conditions are equivalent:

m

number k, such that each integd¢ > k, can be expressed as a linear combination of
l,,...l,, with non-negative coefficients. Therefore, fobiaary but fixed i ON and
each j[ON there exists a numbey [N " such that for eaclk >,

pOG(A  A) from jtoi of length k containing cyclesc,,...,G, (each of them is

there exists a path

used a suitable number of times). By Lemma 5.8{#&)assertion follows for, = mmﬂxrji
J

(i) - (ii) To prove the converse implication, let uswass that for each(JN there is
rON™ such that the inequalitg > C (A is fulfilled for all k>r. Now take an

arbitrary indexsld N and apply Lemma 5.5(ii) for the vectei'k) . The equivalence
e > o A = (OON, j= sinthe casefel) =  A) OP »¢ »(i 9% 9)

holds for eachiON and eachs[O N and it implies the strong connectivity of
G(A d A). In contrast, suppose that the gcd of all cyclegiles in G(A o A) is

| >1. Then for € > o A there exists a cycle ¢ from i to i B(A o A) of length

k>r and| divides k. It is easily seen th&” > o A only for k a multiple of

which is a contradiction.
From now, we will suppose that > c( A).

Let T'(AA) ={(X, X, XD)ON,;i (X, X, X)'( M)T @ & % X %)}

The setT (A A) allows us to describe FNSMs for which the greatésENSEv is
reached with any start FNSV. It is easily seen thd, x', X' ) (AA)= ¢( A holds
and(x", x', X' )" (AA) cannot be reached with a FNSV

(XN X XY ON (XX X)) < €(A.

Let us denote the following set B (A) ={(X', X, X)ON,;( X, X, X)< ¢ #.
It follows from the definitions off (A A1) and M (A) thatT" (A A) O N ! M(A is
fulfilled for every FNSM AL /\f(n’n). It may happen that (A A) # N ! M(A). For

instance considetV' =[0,1]0 R,A =1 and the FNSMADN,;; in the following
from:
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002 (0 0N (08090
A={(002 (0 OX ( 070.80.

0O 02 (050603 ( 001
FNSV (x",x',X')=((0.50.6 0.8, 0 0)X¥, 0 0"
does not belong ta (A1) since A“O(x",x',¥)=(0 0 2(0 0), 0 0)1
for eachk , showing thatx", x', X" O T ( A1) but (X", x', X ) DN, / M(A which
means thall (A1) # N, / M(A).

Definition 3.3.6. Let AON,, ,andAON . A FNSM A is called a stronglyl -robust
it T'(AA)= N, | M(A.

Lemma3.3.7. Let A >c(A) and A be a strongly - robust FNSM.

Then X (AA)=C¢(A.

Proof: Let us suppose tha is a stronglyA -robust FNSM. In contrast we assume that
(X", X', XY (AA)2 C(A, ie. there existsiON such that (X", x',X) (AA)
>c(A). Then for(x",x', X ) = ¢ (AON, / M( A we have
AOC(A=A0C(A=c(Az(X,X, XY (A1) for all integer k=1, a

contradiction with the strong -robustness of A.
From the above result a characterization of trengly A -robust FNSMs follows.

Theorem 33.8. Let AON,, and A be greater tha(A) . Then A is a strongly/ -

robust FNSM if and only i x", x', X' ) (AA)= ¢ (A and G(A o A) is a strongly
connected digraph with period equal to 1.
Proof: For the only if direction suppose that A is a sgly A -robust FNSM, i.e. for

each  xON,, /M(A there is  number kKON such  that
AOX, X, X =(X, %, X)) (M) and X (AA)=CE(A by Lemma 5.8. In
particular, for each FNSWx",x', X") = e N,/ M( A there existsk OON" such
that equalitiesA’ 0 g = € = ¢( A andc’ (A) = A0 ¢( A hold for all s>k, i.e.

the strong/] -robustness of A implies that conditions(i) of Lemr.5 holds and the
assertion follows. Conversely, let us suppose thet, x', X ) (AA)=¢c(A and

G(A o A) is a strongly connected digraph with period edoal. We shall consider
two cases.

case-1: (x', x', X')ON, / M(A and (x",x,X )2 c(A. By Theorem 5.4 the
condition (x",x', X" ) (AA)= ¢(A implies that G(A c'(A) is acyclic digraph.
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Notice that a threshold digragB( A ¢ ( A) = (N, B is acyclic if and only if its nodes
can be relabeled such that (i, ])JE then i < j. That means that without loss of
generality it can be assumed titftA) = [(a;, &, § ) andif(aj,a', g ) > o Athen

ioN

i <j. For arbitrary FNSV(x",x', X' ON,, / M(A and (x",x',X)2 c(A we
have to prove thatA" O (X", x', X) = ¢( A. For this purpose we shall construct the
sequence of FNSV(X',x', X )P ..(X X ,X)™ in the following way. Put
(XX OO =X, X, D0, (X %, %0P)  and  define  the FNSVs
(X7, XN X R0 ™ as follows:
AO(X, X, X0 =( X, %, X)™for all i0{L,...,n—-1}. We aim to obtain the
equality A" O (X", X', X) = ¢(A.
Let us defineM , ={r}, M, = @ and recursively define seld _, as follows:

k-1
M =N M, O )< oA

j=0 jDN\DkM‘,f_J.
j=0

for k=1,...,n— 1. Let s be the first index from the, s8...,n—1} such thatM__, # @
for  k=1,..sandM .y =@. Then  AD(X,x,x)®=(x",x,xX)&,
XX O where(x", X', X)) = o A for iOM,
A O, X 0P = AD(ADCK, %, )= A% % 2.0 % %32,
=7 X0, (X KDY
where(x", x', X )® = ( A for iOM,_,, a.s.0., and fos we get
AT X P = AD(RO(XK, %, X)P)= A % Xk %Y,
X E)ED)) = (O, XD, XX, DY,
where(X", X', X')&? = ( A for i OM ___,
Let D denotes the FNSM which arises from the FNSMnfomitting thei™ row

S S
and the corresponding column for aIIDUMn_J.. If N/U M, #@ then
j=0

=0
c(A) = d D) and the digraptG(D, ¢’ ( A) is again acyclic. Using the above procedure
at most n times we obtaiA” O (X", X', XY= c(A=( X, X, X) ( M).
Case 2:(x',x',X'YON, /M(Aand (x",x,X)2 c(A,e. there are indices
i,j ON such thatx = c(A and({x",x', xF)J. < d A. Itis easily seen that an arbitrary
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FNSV (X", X', Xy = (( X, X, XY, X, %, %), ) 0N, can be written as a linear
(with respect tol], [J ) combination of the FNS\g ,

e (X', x',X)= E]i:1< X, X, X), 0 € Let us note that the digrapB(A o A) is
under our assumption strongly connected with pegquehl to 1. Then by Lemma 5.6 we
get (DI ON)(T, ON*)(Ok21) (AOe=¢"2 ¢(A)

and hence

(X', X 5 = A0, x, k)= ADﬁiﬂ( X, % %, 0 i@ﬁi:1< x'x ¥ O("A )
>[4, X E) O E(A= &( A

forr = r%ﬁlxri- Now , case 1 can be used for the FNSV
I

(X, x0T = A O, X, X )ON,, I M(A and the assertion follows.

We can us the results to derive an algorithm forc&ing that a given FNSM

AON,, is stronglyA -robust.

(n,n

Algorithm Strong Robust

Input. A= (g, g, d))0ON,,, A0B

Output. yes in variable sr if A is strombrrobust; no sr otherwise.

begin

1. If A <c(A) thensr:= no; go to end;

2. Compute(X", X', X' )" (AA), ¢ ( A;

3. Check the strongly connectivity &(A o A);

4. Compute the period &B(A A A);

5.1 (X", X', X ) (AA), ¢ (A andG(A o A) is strongly connected with period equal
to 1 thensr .= yes, else sr:=no:

Theorem 3.3.9. Let AD/\f(n’n)and/l D/\f(n). The algorithm strong robust correctly
decides whether a FNSM A is stronglyrobust inO(n*) arithmetic operations.

Proof: To determine a complexity of the algorithm, recfifst that to compute

(X", x", X'y (AA) and c (A we need O(n’logn) operations. The number of
operations for checking of strongly connectivity daromputing the period of

G(A A A)is O(n*) + O( ) = Q). Thus, the complexity of the whole algorithm is
o(nd).
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Corollary 3.3.10. Let AOWN,,,andAON,A>c(A)=0. Then A is a stronglyl -
robust FNSM if and only i x", x', X )" (AA)=((0,0,2 ,..{ 0,0)1'. Let us suppose
that AON,, ., A0ON,A>c(A)= 0. Itis easily seen that

(X", X', XY (AA)=((0,0,3,..{ 0,01" holds if and only if the FNSM A is
equivalent to an upper triangular FNSM. Then tlet flaat a power of an upper triangular

FNSM is again an upper triangular one allows upresent a result which is similar to
that of theorem 3.6 of [4].

Corollary 33.11. Let AN, andA 0N ,A>c(A)=0. Then A is a strongly/ -
robus if and only ¥/ (A1) =V(X&,A) =,..= V(A A)={(0,0,2,..{ 0,01 }}

3.4. A possible application of robust FNSMs-a realization of fuzzy discrete dynamic
systems
Suppose that the fuzzy discrete-event dynamic systarts at time O in state

(X", X' x5O =, 8, 8)
and its states at the following time points are
(XT,x', X0 = AKX, X, 0% %, x, %= AC X, % R0 X, %,
= AO(X, X, X)) ...
We know only the scalar output of the system in ftlen g, =c' O(X, X, X),,
where ¢’ =(c,...,G,) is the observation FNSV. The sequed@} .., is called the

sequence of Markov parameters of the system wihotiservation FNS\V(c',c', c")
and staring FNSV(b",b', 7). The triple (A(b",b',0)(d,¢,€)) is called a
realization of the sequence of Markov parametens. fsk is: to find a FNSM A and the
FNSV (c",c',c"),(J,d,15) such that triple(A(b",b ,F),(c,¢, €)) realizes
the sequencég} “,_, . The sequencgg} “,_, is called stabilized if there exists a natural

number m such thatg,,, = g, for all k= mThe next lemma provides a method for
finding a simple realization of any stabilized sexce of Markov parameters

Lemma 3.4.1. Any stabilized sequenc€g} “,_, has afA(b",b,0),(cd,c,¢&))
realization with an I-robust FNSM A.
Proof: Suppose that the sequerda@} “,_, is stabilized, i.eg,,, = g, for all k= m for

some natural m, putc’,c',¢ ) = ((1,1,0 { 0,0,1 ,..{, 0,0 PN .y
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001) (1L,1,0) (0,01) .. (0,01) (0,01)
001) (0,01) (110) .. (0,01) (0,01)
001) (0,01) (0,01) .. (0,01) (0,01)
A=| - : ' : ON (m+1,m+1),
0,01) (001) (0,01) .. (0,01) (1,1,0) )
(0,0,1) (0,0,1) (0,0,1) .. (0,0,1) (1,1,0)
(9o G o)
(9 9 o)
b=

(Om 9n 9 [LA/0n+1)
It is easily seen thag, = ' [J A0 b for everyk and
(0,01) (0,01) (0,0,1) .. (0,01) (1,1,0)

(0,01) (0,01) (1,1,0) .. (0,01) (1,1,0)
| (0,01) (0,01) (0,0,1) .. (0,01) (1,1,0) |

A" = Am+5=| IDN(m+1,m+1)
| ﬁ L .
(0,01) (0,01) (0,01) .. (0,071) (0,0,1)
(0,01) (0,01) (0,01) .. (0,01) (1,1,0)

for every natural s. Hencper( A 1) =1 and A is I-robus.

4. Conclusion

In this paper, the authors presented backgrounth@fproblem, A -robust FNSMs,
Strongly A -robust FNSMs, and a possible application of roltléSMs-realization of
fuzzy discrete dynamic systems.
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