Intern. J. Fuzzy Mathematical Archive Vol. 14, No. 2, 2017, 339-346 ISSN: 2320 –3242 (P), 2320 –3250 (online) Published on 11 December 2017 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/ijfma.v14n2a16

International Journal of **Fuzzy Mathematical Archive**

S-α Anti Fuzzy Normal Subsemigroups in S-α Anti Fuzzy Semigroups

T. Rajeswari¹ and R. Viajayakumar²

¹Department of Mathematics MASS College of Arts and Science, Kumbakonam, India e-mail: rajeswari.mrt24@gmail.com ²Department of Mathematics Government Arts College (Autonomous), Kumbakonam, India e-mail: viji_rd07@yahoo.com

Received 11 November 2017; accepted 9 December 2017

Abstract. The notion of S- α anti fuzzy cosets with representative x^t and S- α anti fuzzy normal subsemi groups are introduced and their characterizations are obtained. It is also proved that the set of all S- α anti fuzzy cosets will form a semigroup under a suitable binary operation and its structural properties are determined. A necessary condition for an S- α anti fuzzy semigroup to be S- α anti fuzzy normal is also proved.

Keywords: S-semigroup, anti-fuzzy group, α -anti fuzzy set, α -anti fuzzy group, S- anti fuzzy semigroup, S- α anti fuzzy semigroup.

AMS Mathematics Subject Classification (2010): 03E72, 08A72, 20N25

1. Introduction

The concept of fuzzy set was introduced by Zadeh in 1965 [9]. A fuzzy subgroup of a group was defined by Rosenfeld in 1971 [5]. Fuzzy groups was redefined by Anthony and H. Sherwood in 1979[1]. Malik, Mordeson and Nair introduced the notion of fuzzy cosets of B in A with representative x_t and fuzzy normal, where A and B are fuzzy subgroups of a group G such that $B \subset A$ [3]. Rajeshkumar analyzed Fuzzy Algebra in 1993[4]. VasanthaKandasamy studied Smarandache fuzzy semigroups in [7]. Sharma introduced the concept of α -anti fuzzy set, α - anti fuzzy group, α -anti fuzzy coset, α -anti fuzzy normal subsemigroups and obtained their properties in [6]. Gowri and Rajeswari introduced the idea of S- α anti fuzzy semigroup, S- α anti fuzzy left, right cosets and S- α anti fuzzy normal subsemigroup and analyzed their properties [2]. Vijayakumar and T. Rajeswari introduced the concept of anti fuzzy cosets of B in A with representative x^{t} and anti fuzzy normal[8]. In this paper, the concepts of S- α anti fuzzy cosets with representative x^t and S- α anti fuzzy normal subsemigroups are introduced. These ideas differ from those in [2]. It is also proved that the set of all S- α anti fuzzy cosets will form a semigroup under a suitable binary operation and its structural properties are determined.

Throughout this paper, α will always denote a member of [0, 1].

2. Preliminaries

Definition 2.1. Let X be a non empty set. A fuzzy subset A of X is a function $A: X \to [0,1]$

Definition 2.2. A fuzzy subset *A* of a group *G* is called an anti fuzzy group of *G* if $(i) A(xy) \le \max\{A(x), A(y)\}$ $(ii) A(x^{-1}) = A(x)$, for all $x, y \in G$

Definition 2.3. Let A be a fuzzy subset of a group G. Let $\alpha \in [0,1]$. Then an α - anti fuzzy subset of G (with respect to a fuzzy set A), denoted by A_{α} , is defined as $A_{\alpha}(x) = \max\{A(x), 1-\alpha\}$, for all $x \in G$.

Definition 2.4. Let A be a fuzzy subset of a group G and $\alpha \in [0,1]$. Then A is called an α - anti fuzzy subgroup of G if A_{α} is an anti fuzzy group.

Definition 2.5. A semigroup S is said to be a Smarandache semigroup (S-semigroup) if there exists a proper subset P of S which is a group under the same binary operation in S.

Definition 2.6. Let G be an semigroup. Let A be a fuzzy subset of G and $\alpha \in [0,1]$. A is called a Smarandache α anti fuzzy semigroup (S- α anti fuzzy semigroup) if there exists a proper subset P of G which is a group and the restriction of A to P is such that $A_{P_{\alpha}}$ is an anti fuzzy group. That is,

(i) $A_{P_{\alpha}}(xy) \le \max\{A_{P_{\alpha}}(x), A_{P_{\alpha}}(y)\}$ (ii) $A_{P_{\alpha}}(x^{-1}) = A_{P_{\alpha}}(x)$, for all $x, y \in P$

Result 2.7. [2] If $A: G \to [0,1]$ is an S- α anti fuzzy semigroup of an S-semigroup G relative to a group P which is a proper subset of G, then $(i)A_{P_{\alpha}}(x) \ge A_{P_{\alpha}}(e)$, where e is the identity element of P $(ii)A_{P_{\alpha}}(xy^{-1}) = A_{P_{\alpha}}(e) \Rightarrow A_{P_{\alpha}}(x) = A_{P_{\alpha}}(y)$, for all $x, y \in P$

Result 2.8. [2] Let G be an S-semigroup and P be a proper subset of G which is a group. Then $A: G \to [0,1]$ is an S- α anti fuzzy semigroup of G relative to P iff $A_{P_{\alpha}}(xy^{-1}) \leq \max\{A_{P_{\alpha}}(x), A_{P_{\alpha}}(y)\}$, for all $x, y \in P$

S-α Anti Fuzzy Normal Subsemigroups in S-α Anti Fuzzy Semigroups

3. S- α anti fuzzy cosets and S- α anti fuzzy normal subsemigroups

In this section, we define S- α anti fuzzy cosets with representative x^t and S- α anti fuzzy normal subsemigroups and obtain their characterizations.

Definition 3.1. [8] Let X be a non empty set. For any $x \in X$ and $t \in [0,1]$, a fuzzy singleton, denoted by x^t , is defined as $x^t(y) = \begin{cases} t, if \ y = x \\ 1, if \ y \neq x \end{cases}$ for all $y \in X$. That is $x^t: X \to [0,1]$ is a mapping.

Definition 3.2. [8] Let *G* be a non empty set and let \cdot be a binary operation on *G*. Let *A* and *B* be fuzzy subsets of *G*. Define the fuzzy subset $A _{\Diamond}B$ of *G* by $(A \diamond B)(x) = \inf \{ \sup\{A(y), B(z)\}/x = yz \}$ for all $x \in G$. That is $A _{\Diamond}B = \begin{cases} \inf\{\sup\{A(y), B(z)\}\}, & if \ x = yz \\ 1 & , & if \ x \neq yz \end{cases}$

Remark 3.3. [8] If the operation \cdot in *G* is associative, commutative respectively, then so is

Definition 3.4. Let *G* be an *S*-semigroup. Let *A* and *B* be *S*- α anti fuzzy semigroups of *G* relative to a group *P* in *G* such that $B \subset A$. Let $x \in P$ and let $x^t \subset A$. Then the fuzzy subset $x^t _{CB_{P_{\alpha}}}$ is called the Smarandache- α anti fuzzy left coset(*S*- α anti fuzzy left coset) of *B* in *A* with respresentative x^t .

That is,
$$(x^t \otimes B_{P_\alpha})(z) = \inf \{ \sup \{ x^t(u), B_{P_\alpha}(v) \} / z = uv \}$$
 for all $z \in P$

Example 3.5. Let $G = \{e, a, b, c, d, e, f, g\}$ which is a semigroup by the following table.

*	e	а	b	с	d	f	g
e	e	а	b	с	d	f	g
a	а	e	с	b	а	а	а
b	b	с	e	а	b	b	b
c	с	b	а	e	с	с	с
d	d	а	а	а	d	f	ър
f	f	b	b	b	d	f	g
g	g	с	с	с	d	f	g

Let $P = \{e, a, b, c\}$ which is the klein four group. $P \subset G$. Two fuzzy subsets A and B of G are defined as

$$A(x) = \begin{cases} 1, & \text{if } x = e, a \\ \frac{3}{4}, & \text{if } x = b, c \\ 0, & \text{otherwise} \end{cases} \text{ and } B(x) = \begin{cases} 1, & \text{if } x = e, a \\ \frac{1}{2}, & \text{if } x = b, c \\ 0, & \text{otherwise} \end{cases}$$

If take $\alpha = 0.85$, then A and B be S- α anti fuzzy semigroups. Also $B \subset A$ and let t = 0.6. For x = a, $x^t(y) = \begin{cases} 0.6, if \ y = x \\ 1, if \ y \neq x \end{cases}$ for all $y \in P$.

Thus $x^t \subset A$ and an *S*- α anti fuzzy left coset of *B* in *A* with respresentative x^t is given by $(x^t \otimes B_{P_{\alpha}})(z) = \begin{cases} 0.75, & \text{if } z = e, a \\ 1, & \text{if } z = b, c \end{cases}$

Definition 3.6. Let *G* be an *S*-semigroup. Let *A* and *B* be *S*- α anti fuzzy semigroups of *G* relative to a group *P* in *G* such that $B \subset A$. Let $x \in P$ and let $x^t \subset A$. Then the fuzzy subset $B_{P_{\alpha}} \curvearrowright x^t$ is called the Smarandache- α anti fuzzy right coset(*S*- α anti fuzzy right coset) of *B* in *A* with respresentative x^t .

That is, $(B_{P_{\alpha}} \diamond x^{t})(z) = \sup \{\inf \{B_{P_{\alpha}}(u), x^{t}(v)\}/z = uv\}$ for all $z \in P$

Example 3.7. In example 3.4, for x = a, an *S*- α anti fuzzy right coset of *B* in *A* with respresentative x^t is given by $(B_{P_{\alpha}} x^t)(z) = \begin{cases} 0.75, & \text{if } z = e, a \\ 1, & \text{if } z = b, c \end{cases}$

Theorem 3.8. Let *G* be an *S*-semigroup. Let *A* and *B* be *S*- α anti fuzzy semigroups of *G* relative to a group *P* in *G* such that $B \subset A$. Let $x \in P$ and let $x^t \subset A$. Then for all $z \in P$, $(x^t \triangleleft B_{P_{\alpha}})(z) = \sup\{t, B_{P_{\alpha}}(x^{-1}z)\}$ and $(B_{P_{\alpha}} \triangleleft x^t)(z) = \sup\{t, B_{P_{\alpha}}(zx^{-1})\}$. **Proof:** For $z \in P$, $(x^t \triangleleft B_{P_{\alpha}})(z) = \inf\{\sup\{x^t(u), B_{P_{\alpha}}(v)\}/z = uv, u, v \in P\}$. If z = uv, then $v = u^{-1}z$. Also $z = x(x^{-1}z)$. Thus $(x^t \triangleleft B_{P_{\alpha}})(z) = \inf\{\sup\{t, B_{P_{\alpha}}(x^{-1}z)\}, 1\} = \sup\{t, B_{P_{\alpha}}(x^{-1}z)\}$. Similarly $(B_{P_{\alpha}} \triangleleft x^t)(z) = \sup\{t, B_{P_{\alpha}}(zx^{-1})\}$.

Theorem 3.9. Let G be an S-semigroup. Let A and B be S- α anti fuzzy semigroups of G relative to a group P in G such that $B \subset A$. Let $x, y \in P$ and let $t, s \in [0,1]$. Let x^t , $y^s \subset A$. Then

(i) $x^t \diamond B_{P_{\alpha}} = y^s \diamond B_{P_{\alpha}}$ iff $\sup\{t, B_{P_{\alpha}}(e)\} = \sup\{s, B_{P_{\alpha}}(y^{-1}x)\}$ and $\sup\{s, B_{P_{\alpha}}(e)\} = \sup\{t, B_{P_{\alpha}}(x^{-1}y)\}$.

(ii) $B_{P_{\alpha}} \otimes^{t} = B_{P_{\alpha}} \otimes^{s} iff \sup\{t, B_{P_{\alpha}}(e)\} = \sup\{s, B_{P_{\alpha}}(xy^{-1})\}$

and $\sup\{s, B_{P_{\alpha}}(e)\} = \sup\{t, B_{P_{\alpha}}(yx^{-1})\}$

Proof: (i) Suppose that $x^t {}_{\diamond}B_{P_{\alpha}} = y^s {}_{\diamond}B_{P_{\alpha}}$. Then $(x^t {}_{\diamond}B_{P_{\alpha}})(z) = (y^s {}_{\diamond}B_{P_{\alpha}}(z)$ for all $z \in P$. If we take z = x and then z = y, then by theorem 3.8, we have $\sup\{t, B_{P_{\alpha}}(e)\} = \sup\{s, B_{P_{\alpha}}(y^{-1}x)\}$ and $\sup\{s, B_{P_{\alpha}}(e)\} = \sup\{t, B_{P_{\alpha}}(x^{-1}y)$. Conversely, suppose that the conditions concerning the supremum hold. Let $z \in P$. Then $(x^t {}_{\diamond}B_{P_{\alpha}})(z) = \sup\{t, B_{P_{\alpha}}(x^{-1}z)\} = \sup\{t, B_{P_{\alpha}}(x^{-1}y)(y^{-1}z)\}$

 $\leq \sup\{t, \sup\{B_{P_{\alpha}}(x^{-1}y), B_{P_{\alpha}}(y^{-1}z)\}\} = \sup\{\sup\{s, B_{P_{\alpha}}(e)\}, B_{P_{\alpha}}(y^{-1}z)\} \text{ (by assumption)} \\ = \sup\{s, B_{P_{\alpha}}(y^{-1}z)\} = (y^{s} \ \mathcal{B}_{P_{\alpha}})(z) \text{ (by theorem 3.8).Thus } x^{t} \ \mathcal{B}_{P_{\alpha}} \subset y^{s} \ \mathcal{B}_{P_{\alpha}} \text{. Similarly} \\ \text{it can be proved that } x^{t} \ \mathcal{B}_{P_{\alpha}} \supset y^{s} \ \mathcal{B}_{P_{\alpha}} \text{ and hence } x^{t} \ \mathcal{B}_{P_{\alpha}} = y^{s} \ \mathcal{B}_{P_{\alpha}} \\ \text{(ii) This can be proved similarly.} \end{cases}$

Corollary 3.10. Let G be an S-semigroup. Let A and B be S- α anti fuzzy semigroups of G relative to a group P in G such that $B \subset A$. Let $x^t, y^t \subset A$, where

S-α Anti Fuzzy Normal Subsemigroups in S-α Anti Fuzzy Semigroups

where $x, y \in P$. If $B_{P_{\alpha}}(y^{-1}x) = B_{P_{\alpha}}(e)$, then $x^{t} \mathscr{B}_{P_{\alpha}} = y^{t} \mathscr{B}_{P_{\alpha}}$. **Proof:** Since $B_{P_{\alpha}}(x^{-1}y) = B_{P_{\alpha}}(y^{-1}x)$, $\sup\{t, B_{P_{\alpha}}(e)\} = \sup\{t, B_{P_{\alpha}}(x^{-1}y)\}$ $= \sup\{t, B_{P_{\alpha}}(y^{-1}x)\}$ which leads to $x^{t} \mathscr{B}_{P_{\alpha}} = y^{t} \mathscr{B}_{P_{\alpha}}$, by theorem 3.9(i).

Theorem 3.11. Let *G* be an S-semigroup. Let *A* and *B* be S- α anti fuzzy semigroups of *G* relative to a group *P* in *G* such that $B \subset A$. Let $x^t, y^t \subset A$, where $x, y \in P$. Then the following conditions are equivalent (i) $x^t \mathscr{B}_{P_{\alpha}} = y^t \mathscr{B}_{P_{\alpha}}$ (ii) $(y^{-1}x)^t \mathscr{B}_{P_{\alpha}} = e^t \mathscr{B}_{P_{\alpha}}$ (iii) $(x^{-1}y)^t \mathscr{B}_{P_{\alpha}} = e^t \mathscr{B}_{P_{\alpha}}$ **Proof:** $x^t \mathscr{B}_{P_{\alpha}} = y^t \mathscr{B}_{P_{\alpha}}$ iff $\sup\{t, B_{P_{\alpha}}(e)\} = \sup\{t, B_{P_{\alpha}}(y^{-1}x)\}$ and $\sup\{t, B_{P_{\alpha}}(e)\} = \sup\{t, B_{P_{\alpha}}(x^{-1}y)\} \Leftrightarrow (y^{-1}x)^t \mathscr{B}_{P_{\alpha}} = e^t \mathscr{B}_{P_{\alpha}}$, by theorem 3.9(i) and hence (i) \Leftrightarrow (ii). Similarly it is easy to see that (i) \Leftrightarrow (iii).

Theorem 3.12. Let G be an S-semigroup. Let A and B be S- α anti fuzzy semigroups of G relative to a group P in G such that $B \subset A$. Let $x, y \in P$ and $s, t \in [A_{P_{\alpha}}(e), 1]$.

Let $x^{t}, y^{s} \subset A$. Suppose that $B_{P_{\alpha}}(e) = A_{P_{\alpha}}(e)$. Then (i) $x^{t} \ \mathcal{B}_{P_{\alpha}} = y^{s} \ \mathcal{B}_{P_{\alpha}} \Leftrightarrow t = \sup\{s, B_{P_{\alpha}}(y^{-1}x) \text{ and } s = \sup\{t, B_{P_{\alpha}}(x^{-1}y)\}$ (ii) $x^{t} \ \mathcal{B}_{P_{\alpha}} = y^{t} \ \mathcal{B}_{P_{\alpha}} \Leftrightarrow (y^{-1}x)^{t} \supseteq B_{P_{\alpha}}$ (iii) $x^{t} \ \mathcal{B}_{P_{\alpha}} = y^{s} \ \mathcal{B}_{P_{\alpha}} \Leftrightarrow t = s \ge B_{P_{\alpha}}(x^{-1}y)$ (iv) $x^{t} \ \mathcal{B}_{P_{\alpha}} = y^{s} \ \mathcal{B}_{P_{\alpha}} \Leftrightarrow t = s$ **Proof:** (i) By theorem 3.9, $x^{t} \ \mathcal{B}_{P_{\alpha}} = y^{s} \ \mathcal{B}_{P_{\alpha}} \Leftrightarrow \sup\{t, A_{P_{\alpha}}(e)\} = \sup\{s, B_{P_{\alpha}}(y^{-1}x)\}$ and $\sup\{s, A_{P_{\alpha}}(e)\} = \sup\{t, B_{P_{\alpha}}(x^{-1}y)\} \Leftrightarrow t = \sup\{s, B_{P_{\alpha}}(y^{-1}x)\}$ and $s = \sup\{t, B_{P_{\alpha}}(x^{-1}y)\}$. (ii) By (i), $x^{t} \ \mathcal{B}_{P_{\alpha}} = y^{t} \ \mathcal{B}_{P_{\alpha}} \Leftrightarrow t = \sup\{t, B_{P_{\alpha}}(y^{-1}x)\}$ and $t = \sup\{t, B_{P_{\alpha}}(x^{-1}y)\}$ iff $t \ge B_{P_{\alpha}}(y^{-1}x)$ and $t \ge B_{P_{\alpha}}(x^{-1}y)$ iff $(y^{-1}x)^{t} \supseteq B_{P_{\alpha}}$. (iii) If $x^{t} \ \mathcal{B}_{P_{\alpha}} = y^{s} \ \mathcal{B}_{P_{\alpha}}$, then by (i), $t = \sup\{s, B_{P_{\alpha}}(x^{-1}y)\}$ and $s = \sup\{t, B_{P_{\alpha}}(y^{-1}x)\}$ which implies that $t = s \ge B_{P_{\alpha}}(x^{-1}y)$. Conversely, assume that $t = s \ge B_{P_{\alpha}}(x^{-1}y)$. This implies that $\sup\{s, B_{P_{\alpha}}(y^{-1}x)\} = t$ and $\sup\{t, B_{P_{\alpha}}(x^{-1}y)\} = s$ and hence $x^{t} \ \mathcal{B}_{P_{\alpha}} = y^{s} \ \mathcal{B}_{P_{\alpha}}$. (iv) From (iii) the result is obvious.

Corollary 3.13. Let G be an S-semigroup. Let A and B be S- α anti fuzzy

semigroups of *G* relative to a group *P* in *G* such that $B \subset A$. Let $x, y \in P$ and $s, t \in [A_{P_{\alpha}}(e), 1]$. Let $x^{t}, y^{s} \subset A$. Suppose that $B_{P_{\alpha}}(e) = A_{P_{\alpha}}(e)$. If $t \neq s$, then $\{x^{t} \ \mathcal{B}_{P_{\alpha}} / x^{t} \subset A\} \cap \{y^{s} \ \mathcal{B}_{P_{\alpha}} / y^{s} \subset A\} = \Phi$. **Proof:** By theorem 3.12(iii), the result is obvious.

Definition 3.14. Let G be an S-semigroup. Let A and B be S- α anti fuzzy semigroups of G relative to a group P in G such that $B \subset A$. B is said to be Smarandache- α anti fuzzy normal subsemigroup (S- α fuzzy anti normal subsemigroup) in A if $x^t \, \mathcal{B}_{P_{\alpha}} = \mathcal{B}_{P_{\alpha}} \, \mathfrak{s}^t$, for all $x^t \subset A$, where $x \in P$.

Example 3.15. From example 3.5 and 3.7, it can be easily seen that $x^t \, {}_{\mathcal{B}_{P_{\alpha}}} = B_{P_{\alpha}} \, {}_{\mathcal{A}}^t$, for all $x^t \subset A$.

Theorem 3.16. Let G be an S-semigroup. Let A and B be S- α anti fuzzy semigroups of G relative to a group P in G such that $B \subset A$. Let $x, y \in P$ and $x^t, y^s \subset A$. If B is an S- α anti fuzzy normal subsemigroup in A, then

 $(x^t \mathscr{B}_{P_{\alpha}}) \langle y^s \mathscr{B}_{P_{\alpha}} \rangle = (xy)^r \mathscr{B}_{P_{\alpha}}, \text{ where } r = \sup\{t, s\}.$

Proof: By remark[3.3], $(x^t \mathcal{B}_{P_x}) \langle y^s \mathcal{B}_{P_x} \rangle = (x^t \mathcal{A}^s) \mathcal{B}_{P_x}$.

By the definition of fuzzy singleton set $x^t \otimes^s = (xy)^r$ which leads to the result.

Theorem 3.17. Let G be an S-semigroup. Let A and B be S- α anti fuzzy semigroups of G relative to a group P in G such that $B \subset A$. Let

 $A/B = \{x^t \, \langle B_{P_x} / x^t \subset A \text{ and } x \in P\}$.

Assume that B is S- α anti fuzzy normal in A. Then (A/B, a) is a semigroup with identity. If $B_{P_{\alpha}}(e) = A_{P_{\alpha}}(e)$, then A/B is completely regular. That is, A/B is a union of disjoint groups.

Proof: If $x^t \mathscr{B}_{P_x}, y^s \mathscr{B}_{P_x} \in A/B$, where $x^t, y^s \subset A$, then by theorem 3.16,

 $(xy)^r \ \mathcal{B}_{P_{\alpha}} \in A/B$, where $r = \sup\{t, s\}$. It can be easily seen that $e^{A_{P_{\alpha}}(e)}$ is the identity of A/B. By remark[3.3], \diamond is associative and hence $(A/B, \diamond)$ is a semigroup with identity $e^{A_{P_{\alpha}}(e)}$. For fixed $t \in [A_{P_{\alpha}}(e), 1]$,

define $(A/B)^{(t)} = \{x^t \ \mathcal{B}_{P_{\alpha}} / x^t \subset A \text{ and } x \in P\}$. Then $(A/B)^{(t)}$ is closed and the identity of $(A/B)^{(t)}$ is $e^t \ \mathcal{B}_{P_{\alpha}}$. It is also easy to see that $(x^{-1})^t \ \mathcal{B}_{P_{\alpha}}$ is the inverse of $x^t \ \mathcal{B}_{P_{\alpha}}$. Thus $(A/B)^{(t)}$ is a group. Moreover $A/B = \bigcup_{t \in [A_{P_{\alpha}}(e),1]} (A/B)^{(t)}$ and hence A/B is completely regular.

S-α Anti Fuzzy Normal Subsemigroups in S-α Anti Fuzzy Semigroups

Remark 3.18. Let G be an S-semigroup. Let A and B be S- α anti fuzzy semigroups of G relative to a group P in G such that $B \subset A$. For $t \in [0,1]$, we define $B_{P_{\alpha}}^{t} = \{x \in P/B_{P_{\alpha}}(x) \le t$. Then it can be proved that if $t \in \text{Im } B_{P_{\alpha}}$, then $B_{P_{\alpha}}^{t}$ is a subgroup of P. Since $B \subset A$, $A_{P_{\alpha}}^{t}$ is also a subgroup of P.

Theorem 3.19. Let G be an S-semigroup. Let A and B be S- α anti fuzzy semigroups of G relative to a group P in G such that $B \subset A$. If B is S- α anti fuzzy normal in A, then for all $t \in [B_{P_{\alpha}}(e), 1]$, $B_{P_{\alpha}}^{t}$ is normal in $A_{P_{\alpha}}^{t}$.

Proof: Assume that B is S- α anti fuzzy normal in A. Let $t \in [B_{P_{\alpha}}(e), 1]$. Then $x^{t} \mathscr{B}_{P_{\alpha}} = B_{P_{\alpha}} \mathscr{A}^{t}$ and $B_{P_{\alpha}}^{t}$ and $A_{P_{\alpha}}^{t}$ are subgroups of P. Let $x \in A_{P_{\alpha}}^{t}$ and $b \in B_{P_{\alpha}}^{t}$. Therefore $(x^{t} \mathscr{B}_{P_{\alpha}})(bx) = (B_{P_{\alpha}} \mathscr{A}^{t})(bx)$ which implies that $\sup\{t, B_{P_{\alpha}}(x^{-1}bx)\} = \sup\{t, B_{P_{\alpha}}(bxx^{-1})\} = \sup\{t, B_{P_{\alpha}}(b)\} = t$. Thus $B_{P_{\alpha}}(x^{-1}bx) \leq t$. Therefore $x^{-1}bx \in B_{P_{\alpha}}^{t}$ which implies that $B_{P_{\alpha}}^{t}$ is normal in $A_{P_{\alpha}}^{t}$.

Theorem 3.20. Let G be an S-semigroup. Let A and B be S- α anti fuzzy semigroups of G relative to a group P in G such that $B \subset A$. Assume that $B_{P_{\alpha}}(e) \leq t \leq 1$ and $x^{s} \subset A$. Let $1 - \alpha \leq t$ and $t \geq s$. Then $(x^{s} \not B_{P_{\alpha}})_{P_{\alpha}}^{t} = xB_{P_{\alpha}}^{t}$ and $(B_{P_{\alpha}} \not S^{s})_{P_{\alpha}}^{t} = B_{P_{\alpha}}^{t} x$. **Proof:** $B_{P_{\alpha}}^{t} = \{x \in P / B_{P_{\alpha}}(x) \leq t . (x^{s} \not B_{P_{\alpha}})_{P_{\alpha}}^{t} = \{y \in P / (x^{s} \not B_{P_{\alpha}})_{P_{\alpha}}(y) \leq t\}$. If $y \in (x^{s} \not B_{P_{\alpha}})_{P_{\alpha}}^{t}$, then $(x^{s} \not B_{P_{\alpha}})_{P_{\alpha}}(y) \leq t$. This implies that $(x^{s} \not B_{P_{\alpha}})(y) \leq t \Rightarrow$ $\sup\{s, B_{P_{\alpha}}(x^{-1}y)\} \leq t \leq B_{P_{\alpha}}(x^{-1}y) \leq t \Rightarrow y \in xB_{P_{\alpha}}^{t}$. Thus $(x^{s} \not B_{P_{\alpha}})_{P_{\alpha}}^{t} \subset xB_{P_{\alpha}}^{t}$. Now let $y \in xB_{P_{\alpha}}^{t}$. Then $B_{P_{\alpha}}(x^{-1}y) \leq t \Rightarrow (x^{s} \not B_{P_{\alpha}})_{P_{\alpha}}(y) \leq t$ (since $s \leq t$) $\Rightarrow \max\{(x^{s} \not B_{P_{\alpha}})_{P_{\alpha}}^{t} = xB_{P_{\alpha}}^{t}$. Similarly, $(B_{P_{\alpha}} \not S^{s})_{P_{\alpha}}^{t} = B_{P_{\alpha}}^{t} x$ can be proved.

4. Conclusion

In this paper, S- α anti fuzzy normal subsemigroups, which are some special types of fuzzy normalsubgroups, are introduced by defining S- α anti fuzzy left and right cosets. Also their characterizations have been developed. The characterizations of S- α anti fuzzy normal subsemigroups may be extended to fuzzy semirings, fuzzy semi vectorspaces and fuzzy bigroups.

REFERENCES

- 1. J.M.Anthony and H.Sherwood, Fuzzy groups redefined, J. Math.Anal. Appl., 69 (1979) 124-130.
- 2. R.Gowri and T.Rajeswari, S- α anti fuzzy semigroups, *International Journal of*
- 3. Engineering Science and Innovative Technology Applications, 4(6) (2015) 108-118.
- 4. D.S.Malik, J.N.Mordeson and P.S.Nair, Fuzzy normal subgroups in fuzzy groups, *J. Korean Math. Soc.*, 29(1) (1992) 1-8.
- 5. Rajeshkumar, Fuzzy algebra, University of Delhi Publication Division, (1993).
- 6. A.Rosenfeld, Fuzzy groups, *Journal of Mathematical analysis and application*, 35 (1971) 512-517.
- P.K.Sharma, α -Fuzzy subgroups, International Review of Fuzzy Mathematics, 17(2) (2012) 47-58.
- 8. V.Kandhasamy, Smarandache Fuzzy Algebra, American Research Press, Rehoboth, (2003).
- 9. R.Vijayakumar and T.Rajeswari, Anti fuzzy normal subgroups in anti fuzzy groups, Communicated.
- 10. L.A.Zadeh, Fuzzy sets, Information and Control, 8 (1965) 338-353.