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1. Introduction

The concept of fuzzy set was introduced by Zadeh in 1965 [9]. A fuzzy subgroup of a
group was defined by Rosenfeld in 1971 [5]. Fuzzy groups was redefined by Anthony
and H. Sherwood in 1979[1]. Malik, Mordeson and Nair introduced the notion of fuzzy
cosets of B in A with representative x; and fuzzy normal, where A and B are fuzzy
subgroups of a group G such that B [ A [3]. Rgjeshkumar analyzed Fuzzy Algebrain
1993[4]. VasanthaKandasamy studied Smarandache fuzzy semigroups in [7]. Sharma
introduced the concept of a -anti fuzzy set, @ - anti fuzzy group, a -anti fuzzy coset,
-anti fuzzy normal subsemigroups and obtained their properties in [6]. Gowri and
Rajeswari introduced the idea of S-a anti fuzzy semigroup, S-a anti fuzzy left, right
cosets and S-a anti fuzzy norma subsemigroup and analyzed their properties [2].
Vijayakumar and T. Rgjeswari introduced the concept of anti fuzzy cosets of B in A with

representative X' and anti fuzzy normal[8]. In this paper, the concepts of S- & anti fuzzy

cosets with representative X' and S-a anti fuzzy normal subsemigroups are introduced.
These ideas differ from those in [2]. It is aso proved that the set of al S-a anti fuzzy
cosets will form a semigroup under a suitable binary operation and its structura
properties are determined.

Throughout this paper, @ will always denote a member of [0, 1].
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2. Preliminaries
Definition 2.1. Let X be a non empty set. A fuzzy subset A of X is a function

A X > [O,l]

Definition 2.2. A fuzzy subset A of agroup G iscalled an anti fuzzy group of G if
(i) A(xy) = max{ A(X, A Y}
(AKX =A(X), foral x,yOG

Definition 2.3. Let A be afuzzy subset of agroup G. Let @ [J[0,1] .Then an a - anti
fuzzy subset of G (with respect to a fuzzy set A ), denoted by A, , is defined as

A, (X) =max{ A X,1-a},foral xOG.

Definition 2.4. Let A be afuzzy subset of agroup G and a [J[0,1] .Then A iscalled
an a - anti fuzzy subgroup of G if A, isan anti fuzzy group.

Definition 2.5. A semigroup S is said to be a Smarandache semigroup (S-semigroup) if
there exists a proper subset P of Swhich is a group under the same binary operation in
S.

Definition 2.6. Let G be an semigroup. Let A be afuzzy subset of G and a [J[0,]] .
A is caled a Smarandache a anti fuzzy semigroup (S-a anti fuzzy semigroup) if
there exists a proper subset P of G which is a group and the restriction of A to P is
such that A, isan anti fuzzy group. That is,

(M)A, (xy) smax{ A, (X, A (Y}
(i)A, (x™) = A, (X, foral x,yOP

Result 2.7. [2] If A:G - [0,]] isan S-a anti fuzzy semigroup of an S-semigroup G

relativeto agroup P which isaproper subset of G, then
(DA, (x) = A, (9, where e istheidentity element of P

(DA, (xy ) = A, (8= A (3= A(Y fordl x,yOP

Result 2.8.[2] Let G be an S-semigroup and P be a proper subset of G which is a
group. Then A:G - [0,]] isan S-a anti fuzzy semigroup of G relative to P iff

A, (xy')smax{ A (%, A (},foral x,yOP
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3. S a anti fuzzy cosetsand S- @ anti fuzzy normal subsemigroups

In this section, we define S- @ anti fuzzy cosets with representative X' and S-a  anti
fuzzy normal subsemigroups and obtain their characterizations.

Definition 3.1. [8] Let X be anon empty set. For any x € X and t € [0,1], afuzzy

LYY =Xt dly e x. Thatis

. . . trn
singleton, denoted by x*, isdefined asx* (y) = {1’ ify+x

xt: X - [0,1] is amapping.

Definition 3.2. [8] Let ¢ be anon empty set and let - be abinary operationon G. Let A
and B be fuzzy subsets of G. Define the fuzzy subset A B of G by (4 o B)(x) =
inf {sup{A(y),B(z)}/x = yz} fordl x € G, Thatis
A4 B= {inf{sup{A(y), B(z)}}, if x =yz
<P = .
1 , if x #yz

Remark 3.3. [8] If the operation - in G is associative, commutative respectively, then so
is

Definition 3.4. Let G bean S-semigroup. Let A and B be S-a anti fuzzy semigroups of
G relativetoagroup P in Gsuchthat B c A. Let x € P and let x* c A. Then the fuzzy
subset xt <Bp, is called the Smarandache- a anti fuzzy left coset(S-a anti fuzzy left
coset) of B in A with respresentative x°t.

Thatis, (x* (Bp,)(z) = inf {sup {x‘(u), Bp,(v)}/z = uv}foralze P

Example3.5. Let G = {e,a,b,c,d, e, f, g} which is asemigroup by the following table.
* el alb c | d f

O|T||T(O|D|D
OT|O|D(D|O|T
OT|D|D(D|T|O
olo|o|o|T|w |

Q|0 |T|o
Q|0 |T|o
— || |O|T|®|—
QO |T|o |Q |«

Let P ={e, a,b,c} whichis theklein four group. P c G. Two fuzzy subsets A and B of
G aredefined as

1, ifx=e,a 1, if x=¢,a
Alx) = {% if x=b,c andB(x)= {% if x=b,c
0, otherwise 0, otherwise
If take « = 0.85, then A and B be S-a anti fuzzy semigroups. AlsoB c Aandlett =

0.6. For x = a, Xt(y) — {0.6, lfy =X

1Lif y# x forall y € P.
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Thusxt c A and an S-a anti fuzzy left coset of B in A with respresentative x* is given
0.75, if z=e,a
t _ ’ )
by e Br )@ ={y " = e

Definition 3.6. Let G bean S-semigroup. Let A and B be S-a anti fuzzy semigroups of

G relativetoagroup P in G suchthat B c A. Let x € P and let xt < A. Then the fuzzy

subset Bp, " iscaled the Smarandache- a anti fuzzy right coset(S-a anti fuzzy right
coset) of B in A with respresentative xt.

Thatis, (Bp, «x')(z) = sup {inf{Bp,(w), x*(v)}/z = uv}foralzeP

Example 3.7. In example 3.4, for x = a, an S-a anti fuzzy right coset of B in A with
0.75, if z=¢e,a

respresentative x* isgivenby (Bp, x")(2) = {1 ifz=bc

Theorem 3.8. Let G bean S-semigroup. Let A and B be S-a anti fuzzy semigroups of G
relativeto agroup P in Gsuchthat B c A. Letx € P andlet xt ¢ A. Thenfor al z € P,

(x* Bp,)(2) = sup {t, Bp,(x *2)} and (Bp, x')(2) = sup {t,Bp (zx™1)}.

Proof: For zeP, (x* (Bp,)(z) = inf{sup{x‘(w), Bp, (v)}/z = uv,u,v € P}.1f z = uv,
thenv = u™'z. Alsoz = x(x~z). Thus (x* (Bp,)(2) = inf{sup{t, Bp (x'2)},1} =
sup {t, Bp,(x'z) }. Similarly (Bp, x*)(z) = sup {t,Bp (zx™") }.

Theorem 3.9. Let G be an S-semigroup. Let A and B be S-a anti fuzzy semigroups of G

relative to a group P in G such that B c A. Let x,y € P and let t,s € [0,1]. Let x%,
y$ c A. Then

(i) x* (Bp, =y° (Bp, iff supft,Bp (e)} =sup{s,Bp (y~*x)} and sup{s, Bp, (e)} =
sup{t, Bp, (x ')}

(i) By, X =B, oy iff sup{t B, (8} =sup{ s B( x¥)}

and sup(s, B, (8} =sup{ t B, ( Y}

Proof: (i) Suppose that x* Bp, = y° (Bp,. Then (x* Bp )(2) = (y° <Bp,(2) for all
zUUP. If we take z=X and then z=Yy, then by theorem 3.8, we have
SUp(t,B,, (9} =sup(s B, ( ¥* % and sup(s, B, (9} =sup{ t B,( X' y.Conversaly,
suppose that the conditions concerning the supremum hold. Let z[P.Then
(X B )(D=sup{t B (X" =sup{ tB(X X ¥V}

< sup{t,sup{B; (x™y), B, (y" 3}} =sup{sup{s, B, (8}, B ( y' % (by assumption)
=sup(s, B, (Y" 2} =( ¥ B )( ¥ (by theorem3.8).Thus x' B, 0 y* (B, . Similaly
it can beproved that X' B, 0 y* B, andhence X' B, =y B,

(ii) This can be proved similarly.

Corollary 3.10. Let G bean S-semigroup. Let A and B beS-a anti fuzzy
semigroups of G relativetoagroup P in G suchthat B A. Let X',y O A, where
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where X, YO P.If B, (y'X) = B, (§,then X' B, =y 4B, .
Proof: Since B, (X'y) = B, (y" 3, sup(t,B, (&)} =sup{t B, (X" y}
=sup(t, B, (y'X)}whichleadsto x' B, =y oB, , by theorem 3.9(i).

Theorem 3.11. Let G bean S-semigroup. Let A and B be S-a anti fuzzy semigroups

of G relativetoagroup P in G suchthat BO A. Let X',y O A, where x, yOOP
.Then the following conditions are equivalent

()X B, =Y oB

(i) (y'X)' B, =€ B

(iii) (x7y)' B, = € oB

Proof: X' B, =¥ oB, iff sup{t,B, (6} =sup{t B, (y" 3} and

sup{t, B, (6} =sup{t B, (X' Y} = (y'X' B, =€ ,B , by theorem 3.9(i) and
hence (i) = (ii). Similarly itiseasy to seethat (i) = (iii).

Theorem 3.12. Let G be an S-semigroup. Let A and B be S-a anti fuzzy semigroups
of G relativetoagroup P in G suchthat BO A. Let X, yO P ands, tO[ A (9,1].
Let X', y* O A.Suppose that B, (€)= A (9 .Then

(i) X' B, =y B, = t=sup{s B (¥ kands=sup{t,B, (X" y)}

(i) X B, =y B «(y'¥0B

(i) X B, =Y B, = t=52 B(X¥

(V) X' By, =¥ B, = t=s

Proof: (i) By theorem 3.9, X' B, = ¥° B, < sup{t,A, (& =sup{s B (¥ X
and sup{s, A, (§ =sup{t B (X' ¥ < t=sup{s, B, (y' 3} ad

s=sup{t, B, (X" Y}

(i) By (i), X' B, =Y oB, = t=sup{t B, (y" ¥} and t =sup{t,B, (x"y)}

iff t=B, (y'XYandt2B, (x*y) iff (y'x'0B,.

(iii) If X' B, = ¥ oB, ,thenby (i), t=sup{s, B, (X' y}and s=sup{t, B, (y* )}
whichimpliesthat t=s> B, (X" §. Conversely, assumethat t =s2 B, (X" § . This
impliesthat sup(s, B, (y" %} = t and sup{t, B, (X™y)} = sand hence

X Be = y oB -

(iv) From (iii) the result is obvious.

Corollary 3.13. Let G bean S-semigroup. Let A and B beS-a anti fuzzy
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semigroupsof G relativetoagroup P in G suchthat B[ A. Let X, yOO P and
s, tO[ A (9,1 Let X', y° O A. Suppose that B, (€ = A, (9.1f t#s, then
(X B, /X0 An{Y B/ YD A=0.

Proof: By theorem 3.12(iii), the result is obvious.

Definition 3.14. Let G be an S-semigroup. Let A and B be S-a anti fuzzy

semigroups of G relative to a group P in G such that B A. B is said to be
Smarandache-a anti fuzzy norma subsemigroup (S-a fuzzy anti norma

subsemigroup) in A if X' B, =B, X, forall x' O A, where XOP.

Example 3.15. From example 3.5and 3.7, it can beeasily seen that X' B, = B, X,
foral x' O A.

Theorem 3.16. Let G be an S-semigroup. Let A and B be S-a anti fuzzy semigroups

of G relativetoagroup P in G suchthat B[O A. Let x, yOP and X',y A. If
Bisan S-a anti fuzzy norma subsemigroupin A, then

(X' By) Y oB)=(x)" oB ,where r =supft,s} .
Proof: By remark[3.3], (X' B, ) ¥ oB,) =(X oY) 0B, .
By the definition of fuzzy singleton set X' oy® = (xy)"which leads to the result.

Theorem 3.17. Let G bean S-semigroup. Let A and B be S-a anti fuzzy semigroups
of G relativetoagroup P in G suchthat B[ A. Let

A/B={X B/ xO A and X P.
Assume that Bis S-a@ anti fuzzy normal in A. Then (A/B, ) isasemigroup with
identity. If B (€)= A, (9, then A/ B iscompletely regular. That is, A/ B isaunion
of digjoint groups.
Proof: If X' B,y B O A Bwherex', y* [ A, then by theorem 3.16,

(xy)' B, O A/ B, where r =supft,s} .It can be easily seen that €™ s the identity

of A/ B.By remark[3.3], . is associative and hence (A/ B, . ' is a semigroup with
identity €™ . For fixed tO[ A, (6,11,

define(A/B)V ={X B, / XO A and X0 P. Then (A/B)"is closed and the
identity of (A/B)® is ¢ B, - Itisaso easy to seethat (x')' B, is the inverse of
x' B, Thus (A/B)" is a group. Moreover A/B=|J (A/ B and hence

A, ()]
A/ Bis completely regular.
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Remark 3.18. Let G be an S-semigroup. Let A and B be S-a anti fuzzy semigroups
of G relative to a group P in G such thaa BO A. For tJ[0,]], we define

B, ={XOP/ B, (®< tThen it can be proved that if tOImB, , then B,' is a
subgroupof P . Since B A, ADatisaIso asubgroup of P.

Theorem 3.19. Let G bean S-semigroup. Let A and B be S-a anti fuzzy semigroups
of G relativetoagroup P in G suchthat B A. If B isS-a anti fuzzy normal in

A, thenfor all tO[B, (€),1], B, ' isnormal in A, ".

Proof: Assume that aB is Saa anti fuzzy norn:al in A. Let tO[B; (€),1]. Then
X' B, =B, stand B, 'and A, "'are subgroups of P. Let xOA," and bOB,".
Therefore (X' B, )(bX) = (B, oX)( bywhich implies that sup{t,B, (X bX} =
sup(t, B, (bxx")} =sup{ t B, (B} = tThus B, (X'bY < t.Therefore X "bx B,
whichimpliesthat B, " isnormal in A, "

Theorem 3.20. Let G be an S-semigroup. Let A and B be S-a anti fuzzy semigroups
of G relativeto agroup P in G such that B A. Assume that B, (€) < t<1 and

X OA Letl-astand t=s.Then (X° B, )," = XB," and (B, ), = B,'x
Proof: B,  ={xOP/ B, (3< 1. (X B,)p ={YOP/(X :B)p(ys}.

It yO(O¢ B, )p's then (x° B, ), (Y) < t.This implies that (X° B, )(Y) < t=
sup{s, B, (X*YI<t< B (X y< & yI xB'. Thus (x° B,)," 0 xB,". Now
let yOXB,". Then B, (X'y) < t= (X oB,), (Y < f(since s<t)

= max{(x* B, )(W.1-a} < t(sincea<t) = yO(xX B, )"

Thus (X° B, ) = XB," . Similaly, (B, &), = B," xcan be proved.

4. Conclusion

In this paper, S-a anti fuzzy normal subsemigroups, which are some specia types of
fuzzy normalsubgroups, are introduced by defining S-a anti fuzzy left and right cosets.
Also their characterizations have been developed. The characterizations of S-a anti

fuzzy norma subsemigroups may be extended to fuzzy semirings, fuzzy semi
vectorspaces and fuzzy bigroups.
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