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Abstract. In this paper, we formulate a transportation problem in which sources, 
destinations and costs are different types of fuzzy numbers. We used real, fuzzy and 
intuitionistic fuzzy numbers are employed to get the optimal solution. Mixed intuitionistic 
fuzzy BCM is used to find the optimal solution in terms of triangular intuitionistic fuzzy 
numbers. The method is illustrated by a numerical examples.  
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1. Introduction 
The theory of fuzzy set introduced by Zadeh [6] in 1965 has achived good real life 
applications in many fields. Atanassov [3] proposed the concept of intuitionistic fuzzy sets 
in 1986. He found that it is useful in vague concept. Degree of membership 
(belongingness) and the degree of non membership (belongigness) of an element in the set 
has separated by intuitionistic fuzzy set.This is a first advantage of intuitionistic fuzzy set. 
Klir [2] has proved theory based applications in fuzzy environment.  
     Gani and Abbas [1] solved intutionistic fuzzy transportation problems using zero 
suffix method. Hussain and Kumar [8] solved intuitionistic fuzzy transportation problems 
using a newly defined ranking function. They allote a algorithmic approach to illustrate 
example. Shashi Aggarwal and Chavi Gupta [11] introduced a new ranking method for 
generalized trapezoidal intuitionistic fuzzy number and proposed a new method.This new 
method based on the new ranking method for solving generalized intuitionistic fuzzy 
transportation problems. Balanced transportation problems are necessary part for applying 
methods to solve a numerical examples. Ghadle and Pathade [4] solved hexagonal fuzzy 
numbers by balanced and unbalanced numerical examples and gives a comparative 
discussion. Kumar and Hussain [9] used mixed intutionistic fuzzy numbers and solve the 
example systematically. Biswas and Alam [10] developed a method to search for an 
intutionistic fuzzy shortest path from a source to destination. They used dijkstras algorithm 
to find out shortest path and used fuzzy numbers as a crisp values to improve the accuracy. 
Many researchers used fuzzy numbers but somewhere crisp values are important to verify 
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the different types of number. Ranking process is different for different fuzzy numbers [12, 
13,14]. Ghadle and Pathade [7] recently used octagonal fuzzy numbers.They solved the 
numerical example by BCM and find out the nearer optimal solution.  
 
2. Preliminary 
In this section, we collect some basic definitions that will be important to us in the sequel.  
 
Definition 2.1. A fuzzy set is characterized by a membership function mapping element of a 
domain, space, or the universe of discourse X  to the unit interval [0,1] i.e 

)});({(= XxxA A ∈µ . Here [0,1]:)( →XxAµ  is a mapping called the degree of 

membership value of inXx  in the fuzzy set A . These membership grades are often 

represented by real numbers ranking from [0,1].  
  

Definition 2.2. A fuzzy number f in the real line R is a fuzzy set f: R→ [0,1] that satisfies 
the following properties.   
    • f is piecewise continuous.  
    • There exists an x ε  R such that 1=)(xf .  

    • f is convex i.e if 1x , ∈2x  and [0,1]∈a  then )()()(1)( 2121 xfxfxxf ∧≥−+ λλ   
  

Definition 2.3. A fuzzy number A  is defined to be a traingular fuzzy number if its 
membership function [0,1]: →RAµ  is equal to  
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 where .321 aaa ≤≤   

This fuzzy number is denoted by )( 321 aaa ≤≤ .  

 

Definition 2.4. A Triangular Intutionistic Fuzzy Number ( IA
~

 is an intuitionistic fuzzy set 
in R with the following membership function )()(( xandx AA υµ  :)  
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where 3321 aaaa ′≤≤≤′  and ),(xAµ  0.5)( ≤xAυ  for )(=)( xx AA υµ ,for all x ∈ R. 

This TrIFN is denoted by IA
~

=( 321 ,, aaa )( 321 ,, aaa ′′ ).  

 

Particular Cases: Let b IA
~

=( 321 ,, aaa )( 321 ,, aaa ′′ ) be a TrIFN. Then the following cases 

arise 

Case 1: If ,=,= 3311 aaaa ′′  then IA
~

 represent Triangular Fuzzy Number (TFN). It is 

denoted by ),,(= 321 aaaA  

Case 2: If maaaaa ===== 33211 ′′ , then IA
~

 represent a real number m.  

 
Ranking of triangular intuitionistic fuzzy numbers 
The ranking of a triagular intuitionistic fuzzy number 
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If )(xAυ = )(1 xaµ− ,then TrIFN IA
~

 = ),,)(,,( 321321 aaaaaa ′′  will become the 

TrFN ),,( 321 aaa . 

Then 11 = aa′  and 33 = aa′  )
~

( IAR = .)/3( 321 aaa ++  The Rank of TrIFN A
~

 

= ),,)(,,( 321321 aaaaaa ′′  is defined by )
~

( IAR = 23122 = aaaifaa −−  and 

232 =1 aaaa −′′− . Let IA
~

=(8,10,12)(6,10,14) be a TrIFN, then its rank is defined by 

)
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( IAR =10.  
 

Definition 2.5. Let IA
~

 and IB
~

 be two TrIFNs. The ranking of IA
~

 and IB
~

 by the R(.) 

on E, the set of TrIFN is defined as follows: (i) II BA
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Definition 2.6. The ordering II BA
~~ ≈ ≥ and ≤ between any two TrIFNs II BandA

~~
are 

defined as follows(i) II BA
~~ ≥ iff II BA

~~
≻ or II BA

~~ ≈ , (ii) II BA
~~ ≤ iff II BA

~~
≺ or

.
~~ II BA ≈  
 

Arithmetic operation: 

Let IA
~

 = ),,( 321 aaa ),,( 321 aaa ′′  and IB
~

 = ),,( 321 bbb ),,( 321 bbb ′′  be any two TrIFN 

then the arithmetic operation as follows, 

Addition: IA
~ IB

~⊕  = ),,( 332211 bababa +++ ),,( 332211 bababa ′+′+′+′ . 

Subtraction: IA
~

 IB
~

! = ),,( 132231 bababa −−− ),,( 132231 bababa ′−′−′−′ . 

Multiplication: If )
~

( IAR , )
~

( IBR 0≥ , then 
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Scalar Addition: )
~

( IAKR + = )
~

( IARK + . 
Scalar Multiplication: 

i. k IA
~

 = ),,)(,,( 321321 akkaakkakaka ′′ , for 0≥k  

ii. k IA
~

 = ),,( 123 akkaka ′ , for <  0 

 
3. Intuitionistic fuzzy transportation problem 

Consider a transportation with m origins (rows) and n destinations (columns). Let 
I

ijc~  be 

the cost of transporting one unit of the product from thi  origin to thj  destination. Let 
I

ia~  be the quality of commodity available at origin i. Let 
I

jb
~

 be the quantity of 

commodity needed at destination j and I
i jx

~~  is the quantity transported from thi  origin to 
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thj  destination, so as to minimize the Intuitionistic Fuzzy Transportation Cost [IFTC]. 

(IFTP) Minimize IZ
~

 = ∑
m

i 1=
 ∑

n

j 1=
 

I
ijc~  ⊗  

I
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∑
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I
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~
, for i=1,2,...,m and j=1,2,...n 

where m= the number of supply points, n= the number of demand points 
I

ijc~ = ),,( 321
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ijijij ccc ,
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4. Numerical example 
Consider the 33×  MIFTP 
 
   1D    2D    1D    supply  

 1O    
(8,10,12)(6,10,14)  

 4   (10,15,20)   (4,6,8)(8,6,9) 

 2O    3   (6,12,18)   
(4,6,8)(2,6,10)  

 8  

 1O    (4,8,12)   (3,4,5)(2,4,6)   6   (2,5,8)  

 demand   (3,4,5)   
(2,6,10)(1,6,11)  

9   

  
   The corresponding balanced intuitionistic fuzzy transportation table (BIFTT) is 
!  

   1D    2D    1D    supply  

 1O    
(8,10,12)(6,10,1
4)  

 (4,4,4)(4,4,4)   
(10,15,20)(10,15,
20)  

 (4,6,8)(8,6,9) 

 2O    (3,3,3)(3,3,3)   
(6,12,18)(6,12,1
8)  

 (4,6,8)(2,6,10)   (8,8,8)(8,8,8)  

 1O    
(4,8,12)(4,8,12)  

 (3,4,5)(2,4,6)   (6,6,6)(6,6,6)   (2,5,8)(2,5,8)  

 
demand
  

 (3,4,5)(3,4,5)   
(2,6,10)(1,6,11)  

(9,9,9)(9,9,9)  
(14,19,24)(13,19,
25) 
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Since 
I

j

m

i
a~

1=∑ =
I

j

n

i
b
~

1=∑ =(14,19,24)(13,19,24), the problem is BIFTP. Now, 

using the Best Candidate Method[5] 
!  

   1D    2D    1D    supply  

 1O    10 4  15 (4,6,8)(8,6,9) 

 2O    3  12 6  (8,8,8)(8,8,8)  

 1O    8  4  6  (2,5,8)(2,5,8)  

 demand   
(3,4,5)(3,4,5)  

 
(2,6,10)(1,6,11)  

(9,9,9)(9,9,9)  
(14,19,24)(13,19,25) 

  
   

   1D    2D    1D    supply  

 1O    10 (-2,6,14)(-3,6,15)  15 (4,6,8)(8,6,9) 

 2O    
(3,4,5)(3,4,5) 

 12 (3,4,5)(3,4,5)  (8,8,8)(8,8,8)  

 1O    8  (-4,0,4)(-4,0,4)  
(4,5,6)(4,5,6) 

 (2,5,8)(2,5,8)  

 demand   
(3,4,5)(3,4,5)  

 (2,6,10)(1,6,11)  (9,9,9)(9,9,9)  
(14,19,24)(13,19,25) 

  
   

Optimal Solution of an Intuitionistic Fuzzy Transportation Problem 

Min Z
~

=4(-2,6,4)(-3,6,15)+3(3,4,5)(3,4,5)+6(3,4,5)(3,4,5)+4(-4,0,4)(-4,0,4)  
+ 6(4,5,6)(4,5,6) 
= (-8,24,16)(-12,24,60)+(9,12,15)(9,12,15)+(18,24,30)(18,24,30)+(-16,0,16)(-16,0,16) + 
(24,30,36)(24,30,36) 
=(-8,24,16;-12,24,60)+(9,12,15;9,12,15)+(18,24,30;18,24,30)+(-16,0,16;-16,0,16) 
+ (24,30,30;24,30,36) 

Hence, the minimum total intutionistic fuzzy transportation cost is MinZ
~

=(27,90,107;23,90,157) 
 
5. Conclusion 
Intutionistic fuzzy transportation problem and procedure for finding an intutionistic fuzzy 
optimal solution of BIFTP are discussed with numerical example. In this paper we used 
mixed Intutionistic fuzzy numbers solved by new BCM method.This is a new concept to 
find a nearer optimal solution. New concepts are helpful to solve the upcoming 
transportation problems in the real world.  
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