Intern. J. Fuzzy Mathematical Archive Vol. 15, No. 2, 2018, 197-204 ISSN: 2320 – 3242 (P), 2320 – 3250 (online) Published on 30 April 2018 <u>www.researchmathsci.org</u> *DOI: http://dx.doi.org/10.22457/ijfma.v15n2a10*

Face Sum Divisor Cordial Graphs

M. Mohamed Sheriff¹ and G. Vijayalakshmi²

¹P.G. and Research Department of Mathematics, Hajee Karutha Rowther Howdia College Uthamapalayam - 625533, Tamil Nadu, India. E-mail: <u>sheriffhodmaths@gmail.com</u> ²School of Mathematics, Madurai Kamaraj University Madurai - 625 021, Tamil Nadu, India. E-mail:<u>gviji365@gmail.com</u>

Received 17 March 2018; accepted 21 April 2018

Abstract. In this paper, we investigate the face sum divisor cordial labeling of switching of any vertex in cycle C_n , switching of a pendent vertex in path P_n and $S'(K_{1,n})$.

Keywords: Sum divisor cordial labeling, face sum divisor cordial labeling, switching of a vertex.

AMS Mathematics Subject Classification (2010): 05C78

1. Introduction

We begin with simple, finite, planar, undirected graph. A (p,q) planar graph G means a graph G = (V,E), where V is the set of vertices with |V| = p, E is the set of edges with |E|= q and F is the set of interior faces of G with |F| = number of interior faces of G. For standard terminology and notations related to graph theory we refer to Harary [4] while for number theory we refer to Burton [2]. A graph labeling is the assignment of unique identifiers to the edges and vertices of a graph. For a dynamic survey on various graph labeling problems along with an extensive bibliography we refer to Gallian [3]. In [1], Cahit introduced the concept of cordial labeling of graph. Varatharajan et al. [7] introduced the concept of divisor cordial labeling of graphs. The concept of sum divisor cordial labeling was introduced by Lourdusamy et al. [6]. Lawrence et al. introduced the concept of face product cordial labeling of graphs in [5]. Motivated by the concept of face product cordial labeling and sum divisor cordial labeling, we introduce new type of labeling which is called a face sum divisor cordial labeling of graph. The present work is focused on some new families of face sum divisor cordial labeling of switching of a pendent vertex in path P_n , switching of any vertex in cycle C_n and S'(K_{1,n}). We will provide brief summary of definitions and other information which are necessary for the present investigations.

2. Basic definitions

Definition 2.1. Let a and b be two integers. If a divides b means that there is a positive integer k such that b = ka. It is denoted by a|b. If a does not divide b, then we denote $a \nmid b$.

Definition 2.2. Let G = (V(G), E(G)) be a simple graph and $f : V(G) \rightarrow \{1, 2, ..., |V(G)|\}$ be a bijection. For each edge uv, assign the label 1 if f(u)|f(v) or f(v)|f(u) and the label 0

otherwise. The function f is called a divisor cordial labeling if $|e_f(0)-e_f(1)| \le 1$. A graph with a divisor cordial labeling is called a divisor cordial graph.

Definition 2.3. Let G = (V(G), E(G)) be a simple graph and $f : V(G) \rightarrow \{1, 2, ..., |V(G)|\}$ be a bijection. For each edge uv, assign the label 1 if 2|(f(u)+f(v)) and the label 0 otherwise. The function f is called a sum divisor cordial labeling if $|e_f(0) - e_f(1)| \le 1$. A graph which admits a sum divisor cordial labeling is called a sum divisor cordial graph.

Definition 2.4. A vertex switching G_v of a graph G is obtained by taking a vertex v of G, removing the entire edges incident with v and adding edges joining v to every vertex which are not adjacent to v in G.

Definition 2.5. For a graph G, the splitting graph S'(G) of a graph G is obtained by adding a new vertex v' corresponding to each vertex v of G such that N(v) = N(v').

Definition 2.6. A complete bipartite graph $K_{1,n}$ is called a star and it has n+1 vertices and n edges.

Definition 2.7. A face sum divisor cordial labeling of a graph G with vertex set V is a bijection f from V(G) to $\{1,2,..., |V(G)|\}$ such that an edge uv is assigned the label 1 if 2 divides f(u)+f(v) and 0 otherwise and for face f is assigned the label 1 if 2 divides $f(u_1)+f(u_2)+...+f(u_k)$ and 0 otherwise, where $u_1,u_2,...,u_k$ are vertices corresponding to the face. Also the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1 and the number of faces labeled with 0 and the number of faces labeled with 1 differ by at most 1. A graph with a face sum divisor cordial labeling is called a face sum divisor cordial graph.

3. Main theorems

Theorem 3.1. Switching of any vertex in cycle C_n admits face sum divisor cordial labeling for $n \ge 5$.

Proof: Let $v_1, v_2, ..., v_n$ be the successive vertices of C_n . G_v denotes the graph, which is obtained by switching of a vertex v of C_n . Without loss of generality let the switched vertex be v_1 . Let G be a graph G_{v_1} . Then $v_1, v_2, ..., v_n$ are vertices, $e_1, e_2, ..., e_{2n-5}$ are edges and $f_1, f_2, ..., f_{n-4}$ are the interior faces of G. $e_i = v_1 v_{i+2}$, for $1 \le i \le n-3$, $e_{n-3+i} = v_{i+1} v_{i+2}$, for $1 \le i \le n-2$ and $f_i = v_1 v_{i+2} v_{i+3} v_1$ for $1 \le i \le n-4$. Then |V(G)| = n, |E(G)| = 2n-5 and |F(G)| = n-4. Define g : $V(G) \rightarrow \{1, 2, 3, ..., n\}$ as follows **Case 1 :** n = 5.

 $g(v_1) = 1, g(v_2) = 2, g(v_3) = 4, g(v_4) = 3 \text{ and } g(v_5) = 5.$ Then induced edge labels are $g^*(e_1) = 0, g^*(e_2) = 1, g^*(e_3) = 1, g^*(e_4) = 0 \text{ and } g^*(e_5) = 1.$ Also the induced face label is $g^{**}(f_1) = 1.$

In view of the above defined labeling pattern we have $e_f(0)+1 = e_f(1) = 3$ and $f_g(0)+1 = f_g(1) = 1$.

Face Sum Divisor Cordial Graphs

Then $|e_g(0) - e_g(1)| \le 1$ and $|f_g(0) - f_g(1)| \le 1$, Thus switching of any one vertex in cycle C_n is face sum divisor cordial graph for n = 5.

Case 2: n = 6.

 $g(v_1) = 1$, $g(v_2) = 2$, $g(v_3) = 4$, $g(v_4) = 3$ and $g(v_{i+4}) = g(v_i)+4$, for $1 \le i \le n-4$. Then induced edge labels are

 $g^{*}(e_{1}) = 0$, $g^{*}(e_{2}) = 1$, $g^{*}(e_{3}) = 1$, $g^{*}(e_{4}) = 1$, $g^{*}(e_{5}) = 0$, $g^{*}(e_{6}) = 1$ and $g^{*}(e_{7}) = 0$. Also the induced face labels are

 $g^{**}(f_1) = 1$ and $g^{**}(f_2) = 0$.

In view of the above defined labeling pattern we have

 $e_f(0)+1 = e_f(1) = 4$ and $f_g(0) = f_g(1) = 1$.

Then $|e_g(0) - e_g(1)| \le 1$ and $|f_g(0) - f_g(1)| \le 1$,

Thus switching of any one vertex in cycle C_n is face sum divisor cordial graph for n = 6.

Case 3: n > 6.

Sub Case 3.1: $n \equiv 0, 1, 2 \pmod{4}$

 $g(v_1) = 1$, $g(v_2) = 2$, $g(v_3) = 4$, $g(v_4) = 3$ and $g(v_{i+4}) = g(v_i)+4$, for $1 \le i \le n-4$. Then induced edge labels are

$$g^{*}(e_{1}) = g^{*}(e_{4}) = 0, g^{*}(e_{2}) = g^{*}(e_{3}) = 1 \text{ and } g^{*}(e_{i+4}) = g^{*}(e_{i}), \text{ for } 1 \le i \le n-7.$$

 $g^{*}(e_{2i+n-4}) = 1 \text{ and } g^{*}(e_{2i+n-3}) = 0, \text{ for } 1 \le i \le \frac{n-2}{2}, \text{ if } n \equiv 0,2 \pmod{4}.$

$$g^*(e_{2i+n-4}) = 1$$
, for $1 \le i \le \frac{n-1}{2}$ and $g^*(e_{2i+n-3}) = 0$, for $1 \le i \le \frac{n-3}{2}$, if $n \equiv 1 \pmod{4}$.

Also the induced face labels are

$$g^{**}(f_{2i-1}) = 1$$
 and $g^{**}(f_{2i}) = 0$, for $1 \le i \le \frac{n-4}{2}$, if $n \equiv 0,2 \pmod{4}$.

$$g^{**}(f_{2i-1}) = 1$$
, for $1 \le i \le \frac{n-3}{2}$ and $g^{**}(f_{2i}) = 0$, for $1 \le i \le \frac{n-5}{2}$, if $n \equiv 1 \pmod{4}$.

In view of the above defined labeling pattern we have

$$\begin{split} & e_f(0)+1=e_f(1)=n-2 \text{ and } f_g(0)+1=f_g(1)=\frac{n-3}{2}, \text{ if } n\equiv 1(\text{mod } 4). \\ & e_f(0)+1=e_f(1)=n-2 \text{ and } f_g(0)=f_g(1)=\frac{n-4}{2}, \text{ if } n\equiv 2(\text{mod } 4). \\ & e_f(0)=e_f(1)+1=n-2 \text{ and } f_g(0)=f_g(1)=\frac{n-4}{2}, \text{ if } n\equiv 0(\text{mod } 4). \\ & \text{ Then } |e_g(0)-e_g(1)|\leq 1 \text{ and } |f_g(0)-f_g(1)|\leq 1, \end{split}$$

Thus switching of any one vertex in cycle C_n is face sum divisor cordial graph for $n \equiv 0, 1, 2 \pmod{4}$.

Sub Case 3.2: $n \equiv 3 \pmod{4}$

 $g(v_1)=1,\ g(v_2)=2,\ g(v_3)=4,\ g(v_4)=3,\ g(v_{i+4})=g(v_i)+4,\ for\ 2\leq i\leq n-5$ and $g(v_n)=n.$

Then induced edge labels are

$$g^{*}(e_{1}) = g^{*}(e_{4}) = 0, \ g^{*}(e_{2}) = g^{*}(e_{3}) = 1 \text{ and } g^{*}(e_{i+4}) = g^{*}(e_{i}), \text{ for } 1 \le i \le n-7.$$

 $g^{*}(e_{2i+n-3}) = 1 \text{ and } g^{*}(e_{2i+n-2}) = 0, \text{ for } 1 \le i \le \frac{n-3}{2}. \ g^{*}(e_{2n-5}) = 0.$

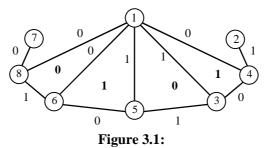
Also the induced face labels are

$$\begin{split} g^{**}(f_{2i-1}) &= 1, \mbox{ for } 1 \leq i \leq \frac{n-3}{2} \mbox{ and } g^{**}(f_{2i}) = 0, \mbox{ for } 1 \leq i \leq \frac{n-5}{2} \,. \\ & \mbox{ In view of the above defined labeling pattern we have } e_f(0) = e_f(1) + 1 = n-2 \mbox{ and } f_g(0) + 1 = f_g(1) = \frac{n-3}{2} \,. \\ & \mbox{ Then } |e_g(0) - e_g(1)| \leq 1 \mbox{ and } |f_g(0) - f_g(1)| \leq 1. \end{split}$$

Thus switching of any one vertex in cycle C_n is face sum divisor cordial graph for $n \equiv 3 \pmod{4}$.

Hence switching of any one vertex in cycle C_n is face sum divisor graph for $n \ge 5$.

Example 3.1. Switching of a vertex v_1 in cycle C_8 and its face sum divisor cordial labeling is shown in figure 3.1.



Theorem 3.2. Switching of a pendent vertex in path P_n is face sum divisor cordial graph for $n \ge 4$.

Proof: Let $v_1, v_2, ..., v_n$ be the vertices of path P_n . v_1 and v_n are pendent vertex of path P_n . Without loss of generality, let the switched vertex be v_1 . The graph G is obtained by switching of a pendent vertex v_1 in path P_n .

The v_1, v_2, \dots, v_n are vertices, $e_1, e_2, \dots, e_{2n-4}$ are edges and f_1, f_2, \dots, f_{n-3} are the interior faces of G. $e_i = v_1 v_{i+2}$, for $1 \le i \le n-2$, $e_{n-2+i} = v_{i+1} v_{i+2}$, for $1 \le i \le n-2$ and $f_i = v_1 v_{i+2} v_{i+3} v_1$ for $1 \le i \le n-4$. Then |V(G)| = n, |E(G)| = 2n-4 and |F(G)| = n-3. Define g : V(G) \rightarrow {1, 2, 3, ..., n } as follows **Case 1:** n = 4. $g(v_1) = 1$, $g(v_2) = 2$, $g(v_3) = 4$ and $g(v_4) = 3$. Then induced edge labels are $g^{*}(e_{1}) = 0$, $g^{*}(e_{2}) = 1$, $g^{*}(e_{3}) = 1$ and $g^{*}(e_{4}) = 0$. Also the induced face label is $g^{**}(f_1) = 1.$ In view of the above defined labeling pattern we have $e_f(0) = e_f(1) = 2$ and $f_g(0)+1 = f_g(1) = 1$. Then $|e_g(0) - e_g(1)| \le 1$ and $|f_g(0) - f_g(1)| \le 1$. Thus switching of a pendent vertex in path P_n is face sum divisor cordial graph for n = 4. **Case 2:** n = 5. $g(v_1) = 5$, $g(v_2) = 1$, $g(v_3) = 3$, $g(v_4) = 2$ and $g(v_5) = 4$. Then induced edge labels are $g^{*}(e_{1}) = 1, g^{*}(e_{2}) = 0, g^{*}(e_{3}) = 0, g^{*}(e_{4}) = 1, g^{*}(e_{5}) = 0 \text{ and } g^{*}(e_{6}) = 1.$ 200

Face Sum Divisor Cordial Graphs

Also the induced face labels are

 $g^{**}(f_1) = 1$ and $g^{**}(f_2) = 0$.

In view of the above defined labeling pattern we have

 $e_f(0) = e_f(1) = 3$ and $f_g(0) = f_g(1) = 1$.

Then $|e_g(0) - e_g(1)| \le 1$ and $|f_g(0) - f_g(1)| \le 1$.

Thus switching of a pendent vertex in path P_n is face sum divisor cordial graph for n = 5.

Case 3: n > 5.

Sub Case 3.1: $n \equiv 0 \pmod{4}$

 $g(v_1) = 1$, $g(v_2) = 2$, $g(v_3) = 4$, $g(v_4) = 3$ and $g(v_{i+4}) = g(v_i)+4$, for $1 \le i \le n-4$. Then induced edge labels are

 $g^{*}(e_{1}) = g^{*}(e_{4}) = 0, g^{*}(e_{2}) = g^{*}(e_{3}) = 1 \text{ and } g^{*}(e_{i+4}) = g^{*}(e_{i}), \text{ for } 1 \le i \le n-6.$ $g^{*}(e_{2i+n-3}) = 1 \text{ and } g^{*}(e_{2i+n-2}) = 0, \text{ for } 1 \le i \le \frac{n-2}{2}.$

Also the induced face labels are

 $g^{**}(f_{2i-1})=1, \mbox{ for } 1\leq i\leq \frac{n-2}{2} \mbox{ and } g^{**}(f_{2i})=0, \mbox{ for } 1\leq i\leq \frac{n-4}{2} \,.$

In view of the above defined labeling pattern we have $e_f(0) = e_f(1) = n-2$ and $f_g(0)+1 = f_g(1) = \frac{n-2}{2}$. Then $|e_g(0) - e_g(1)| \le 1$ and $|f_g(0) - f_g(1)| \le 1$.

Thus switching of a pendent vertex in path P_n is face sum divisor cordial graph for $n \equiv 0 \pmod{4}$.

Sub Case 3.2: $n \equiv 1 \pmod{4}$

 $g(v_1) = n$, $g(v_2) = 1$, $g(v_3) = 3$, $g(v_4) = 2$, $g(v_5) = 4$ and $g(v_{i+4})=g(v_i)+4$, for $2 \le i \le n-4$. Then induced edge labels are

$$g^{*}(e_{1}) = g^{*}(e_{4}) = 1, \ g^{*}(e_{2}) = g^{*}(e_{3}) = 0 \text{ and } g^{*}(e_{i+4}) = g^{*}(e_{i}), \text{ for } 1 \le i \le n-6.$$

$$g^{*}(e_{2i+n-3}) = 1, \text{ for } 1 \le i \le \frac{n-1}{2} \text{ and } g^{*}(e_{2i+n-2}) = 0, \text{ for } 1 \le i \le \frac{n-3}{2}.$$

Also the induced face labels are

 $g^{**}(f_{2i-1}) = 1, \text{ for } 1 \leq i \leq \frac{n-3}{2} \ \text{ and } g^{**}(f_{2i}) = 0, \ \text{ for } \ 1 \leq i \leq \frac{n-3}{2} \,.$

In view of the above defined labeling pattern we have $e_f(0) = e_f(1) = n-2$ and $f_g(0) = f_g(1) = \frac{n-3}{2}$. Then $|e_g(0) - e_g(1)| \le 1$ and $|f_g(0) - f_g(1)| \le 1$.

Thus switching of a pendent vertex in path P_n is face sum divisor cordial graph for $n \equiv 1 \pmod{4}$.

Sub Case 3.3: $n \equiv 2 \pmod{4}$

 $g(v_1) = n$, $g(v_2) = 1$, $g(v_3) = 2$, $g(v_4) = 4$, $g(v_5) = 3$, $g(v_6) = 5$ and $g(v_{i+4}) = g(v_i)+4$, for $3 \le i \le n-4$.

Then induced edge labels are

 $g^{*}(e_{1}) = g^{*}(e_{2}) = 1, \ g^{*}(e_{3}) = g^{*}(e_{4}) = 0 \text{ and } g^{*}(e_{i+4}) = g^{*}(e_{i}), \text{ for } 1 \le i \le n-6.$ $g^{*}(e_{2i+n-3}) = 0, \text{ for } 1 \le i \le \frac{n-2}{2} \text{ and } g^{*}(e_{2i+n-2}) = 1, \text{ for } 1 \le i \le \frac{n-2}{2}.$

Also the induced face labels are

$$g^{**}(f_{2i-1}) = 1$$
, for $1 \le i \le \frac{n-2}{2}$ and $g^{**}(f_{2i}) = 0$, for $1 \le i \le \frac{n-4}{2}$

In view of the above defined labeling pattern we have $e_f(0) = e_f(1) = n-2$ and $f_g(0)+1=f_g(1)=\frac{n-3}{2}$. Then $|e_g(0) - e_g(1)| \le 1$ and $|f_g(0) - f_g(1)| \le 1$.

Thus switching of a pendent vertex in path P_n is face sum divisor cordial graph for $n \equiv 2 \pmod{4}$.

Sub Case 3.4: $n \equiv 3 \pmod{4}$

 $g(v_1) = n-1, g(v_2) = 1, g(v_3) = 3, g(v_4) = 2, g(v_5) = 4, g(v_6) = 5, g(v_7) = 7 \text{ and } g(v_{i+4}) = g(v_i)+4, \text{ for } 4 \le i \le n-4.$

Then induced edge labels are

$$g^{*}(e_{1}) = g^{*}(e_{4}) = 0, \ g^{*}(e_{2}) = g^{*}(e_{3}) = 1 \text{ and } g^{*}(e_{i+4}) = g^{*}(e_{i}), \text{ for } 1 \le i \le n-6.$$

$$g^{*}(e_{2i+n-3}) = 1, \text{ for } 1 \le i \le \frac{n-1}{2} \text{ and } g^{*}(e_{2i+n-2}) = 0, \text{ for } 1 \le i \le \frac{n-3}{2}.$$

Also the induced face labels are

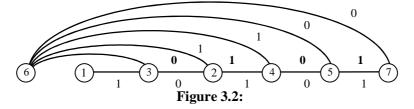
 $g^{**}(f_{2i-1}) = 0$, for $1 \le i \le \frac{n-3}{2}$ and $g^{**}(f_{2i}) = 1$, for $1 \le i \le \frac{n-3}{2}$.

In view of the above defined labeling pattern we have $e_f(0) = e_f(1) = n-2$ and $f_g(0) = f_g(1) = \frac{n-3}{2}$. Then $|e_g(0) - e_g(1)| \le 1$ and $|f_g(0) - f_g(1)| \le 1$.

Thus switching of a pendent vertex in path P_n is face sum divisor cordial graph for $n \equiv 3 \pmod{4}$.

Therefore switching of a pendent vertex in path P_n is face sum divisor graph for $n \ge 4$.

Example 3.2. Switching of a pendent vertex of path P_6 and its face sum divisor cordial labeling is shown in figure 3.2.



Theorem 3.3. The graph $S'(K_{1,n})$ is face sum divisor cordial graph for $n \ge 2$. **Proof:** Let $v, v_1, ..., v_n$ be the vertices of $K_{1,n}$. Let $G = S'(K_{1,n})$. Then $v, v_1, ..., v_n$, $v', v'_1, ..., v'_n$ are the vertices, $e_1, e_2, ..., e_{3n}$ are the edges and $f_1, f_2, ..., f_{n-1}$ are the interior faces of G, where $e_i = v'v_i$, $e_{n+i} = v_iv$ and $e_{2n+i} = v v'_i$ for $1 \le i \le n$ and $f_i = v'v_ivv_{i+1}v'$ for $1 \le i \le n-1$. Then |V(G)| = 2n+2, |E(G)| = 3n and |F(G)| = n-3.

Case 1: n = 2.

g(v') = 1, g(v) = 2, $g(v_1) = 3$, $g(v_2) = 4$, $g(v'_1) = 5$ and $g(v'_2) = 6$. Then induced edge labels are $g^*(e_1) = g^*(e_4) = g^*(e_6) = 1$ and $g^*(e_2) = g^*(e_3) = g^*(e_5) = 0$.

Also the induced face label is

g
$$(f_1) = 1$$
.

In view of the above defined labeling pattern we have

Face Sum Divisor Cordial Graphs

 $e_f(0) = e_f(1) = 3$ and $f_g(0)+1 = f_g(1) = 1$. Then $|e_g(0) - e_g(1)| \le 1$ and $|f_g(0) - f_g(1)| \le 1$. Thus $S'(K_{1,n})$ is face sum divisor cordial graph for n = 2. **Case 2:** n = 3. g(v') = 1, g(v) = 2, $g(v_1) = 3$, $g(v_2) = 5$, $g(v_3) = 4$ and $g(v'_i) = n+2+i$, for $1 \le i \le 3$. Then induced edge labels are $g^{*}(e_{1}) = g^{*}(e_{2}) = g^{*}(e_{6}) = g^{*}(e_{7}) = g^{*}(e_{9}) = 1$ and $g^{*}(e_{3}) = g^{*}(e_{4}) = g^{*}(e_{5}) = g^{*}(e_{8}) = 0$. Also the induced face labels are $g^{**}(f_1) = 0$ and $g^{**}(f_2) = 1$. In view of the above defined labeling pattern we have $e_f(0) + 1 = e_f(1) = 5$ and $f_g(0) = f_g(1) = 1$. Then $|e_g(0) - e_g(1)| \le 1$ and $|f_g(0) - f_g(1)| \le 1$. Thus $S'(K_{1,n})$ is face sum divisor cordial graph for n = 3. Case 3: $n \ge 4$. **Sub Case 3.1:** $n \equiv 0.1.2 \pmod{4}$ g(v') = 1, g(v) = 2, $g(v_1) = 3$, $g(v_2) = 4$, $g(v_3) = 6$, $g(v_4) = 5$, $g(v_{i+4}) = g(v_i) + 4$, for $1 \le i \le n-4$ and $g(v'_i) = n+2+i$, for $1 \le i \le n$. Then induced edge labels are $g^{*}(e_{1}) = g^{*}(e_{4}) = 0, \ g^{*}(e_{2}) = g^{*}(e_{3}) = 1 \text{ and } g^{*}(e_{i+4}) = g^{*}(e_{i}), \text{ for } 1 \leq i \leq n-4.$ $g^{*}(e_{n+1}) = g^{*}(e_{n+4}) = 1, \ g^{*}(e_{n+2}) = g^{*}(e_{n+3}) = 0 \text{ and } g^{*}(e_{n+4+i}) = g^{*}(e_{n+i}), \text{ for } 1 \le i \le n-4.$ $g^*(e_{2n+2i-1}) = 0$, for $1 \le i \le \frac{n}{2}$ and $g^*(e_{2n+2i}) = 1$, for $1 \le i \le \frac{n}{2}$, if $n \equiv 0,2 \pmod{4}$. $g^*(e_{2n+2i-1}) = 1$, for $1 \le i \le \frac{n+1}{2}$ and $g^*(e_{2n+2i}) = 0$, for $1 \le i \le \frac{n-1}{2}$, if $n \equiv 1 \pmod{4}$. Also the induced face labels are $g^{**}(f_{2i-1}) = 1$, for $1 \le i \le \frac{n}{2}$ and $g^{**}(f_{2i}) = 0$, for $1 \le i \le \frac{n-2}{2}$, if $n \equiv 0,2 \pmod{4}$. $g^{**}(f_{2i-1}) = 1$, for $1 \le i \le \frac{n-1}{2}$ and $g^{**}(f_{2i}) = 0$, for $1 \le i \le \frac{n-1}{2}$, if $n \equiv 1 \pmod{4}$. In view of the above defined labeling pattern we have $e_f(0) = e_f(1) = \frac{3n}{2}$ and $f_g(0)+1 = f_g(1) = \frac{n}{2}$, if $n \equiv 0,2 \pmod{4}$. $e_f(0)+1 = e_f(1) = \frac{3n+1}{2}$ and $f_g(0) = f_g(1) = \frac{n-1}{2}$, if $n \equiv 1 \pmod{4}$. Then $|e_g(0) - e_g(1)| \le 1$ and $|f_g(0) - f_g(1)| \le 1$. Thus $S'(K_{1,n})$ is face sum divisor cordial graph for $n \equiv 0, 1, 2 \pmod{4}$. **Sub Case 3.2:** $n \equiv 3 \pmod{4}$

g(v') = 1, g(v) = 2, $g(v_1) = 3$, $g(v_2) = 5$, $g(v_3) = 4$, $g(v_4) = 6$, $g(v_{i+4}) = g(v_i) + 4$, for $1 \le i \le n - 4$ and $g(v'_i) = n+2+i$, for $1 \le i \le n$. Then induced edge labels are

 $\begin{array}{l} g^{*}(e_{1}) = g^{*}(e_{2}) = 1, \ g^{*}(e_{3}) = g^{*}(e_{4}) = 0 \ \text{and} \ g^{*}(e_{i+4}) = g^{*}(e_{i}), \ \text{for} \ 1 \leq i \leq n-4. \\ g^{*}(e_{n+1}) = g^{*}(e_{n+2}) = 0, \ g^{*}(e_{n+3}) = g^{*}(e_{n+4}) = 1 \ \text{and} \ g^{*}(e_{n+4+i}) = g^{*}(e_{n+i}), \ \text{for} \ 1 \leq i \leq n-4. \\ \end{array}$

 $g^*(e_{2n+2i-1})=1, \text{ for } 1\leq i\leq \frac{n+1}{2} \ \text{ and } \ g^*(e_{2n+2i})=0, \text{ for } 1\leq i\leq \frac{n-1}{2} \,.$ Also the induced face labels are

 $g^{**}(f_{2i-1}) = 0$ and $g^{**}(f_{2i}) = 1$, for $1 \le i \le \frac{n-1}{2}$.

In view of the above defined labeling pattern we have

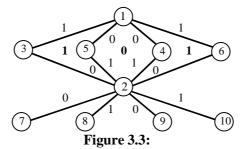
$$e_f(0)+1 = e_f(1) = \frac{3n+1}{2}$$
 and $f_g(0) = f_g(1) = \frac{n-1}{2}$.

Then $|e_g(0) - e_g(1)| \le 1$ and $|f_g(0) - f_g(1)| \le 1$.

Thus $S'(K_{1,n})$ is face sum divisor cordial graph for $n \equiv 3 \pmod{4}$.

Hence the graph $S'(K_{1,n})$ is face integer edge cordial graph for $n \ge 2$.

Example 3.3. The graph $S'(K_{1,4})$ and its face sum divisor cordial labeling is shown in figure 3.3.



4. Conclusions

In this paper, we presented the face sum divisor cordial labeling of switching of any vertex in cycle C_n , switching of a pendent vertex in path P_n and $S'(K_{1,n})$.

REFERENCES

- 1. I.Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, *Ars Combinatoria*, 23 (1987) 201-207.
- 2. D.M.Burton, *Elementary Number Theory*, Second Edition, Wm. C. Brown Company Publishers, (1980).
- 3. J.A.Gallian, A dynamic survey of graph labeling, *The Electronic Journal of Combinatorics*, 16, # DS6, (2016).
- 4. F. Harary, Graph theory, Addison Wesley, Reading, Massachusetts, (1972).
- 5. P.Lawrence Rozario Raj and R.Lawrence Joseph Manoharan, Face and total face product cordial labeling of graphs, *International Journal of Innovative Science*, *Engineering & Technology*, 2(9) (2015) 93-102.
- 6. A.Lourdusamy and F.Patrick, Sum divisor cordial graphs, *Proyecciones Journal of Mathematics*, 35(1) (2016) 119-136.
- 7. R.Varatharajan, S.Navanaeethakrishnan and K.Nagarajan, Divisor cordial graphs, *International J. Math. Combin.*, 4 (2011) 15-25.
- A.Saha, M.Pal and T.K.Pal, Selection of programme slots of television channels for giving advertisement: A graph theoretic approach, *Information Sciences*, 177 (12) (2007) 2480-2492.