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Abstract. An L(3,2,1)-labeling is a simplified model for the channel assignment problem. 
It is a natural generalization of the widely studied L(2,1)-labeling. An L(3,2,1)-labeling 
of a graph G is a function f from the vertex set V(G) to the set of positive integers such 
that for any two vertices x,y, if d(x,y) = 1, then │f(x) ─ f(y)│≥ 3; if d(x,y) = 2, then                   
f(x) ─ f(y)│≥ 2; if d(x,y) = 3,then │f(x) ─ f(y)│≥ 1. The L(3,2,1)-labeling number K3(G) 
of G is the smallest positive integer k such that G has an L(3,2,1)-labeling with k as the 
maximum label. In this paper we determine the L(3,2,1)-labeling number of the Jahangir 
graph J4,m. 
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1. Introduction 
Griggs and Yeh  defined the L(2, 1)-labeling of a graph  G = (V, E) as a function f which 
assigns every x, y∈V, a label from the set of positive integers such that │f(x) – f(y)│≥ 2 
if d(x, y) = 1 and│f(x) – f(y)│ ≥ 1 if d(x, y) = 2 [1]. 
       L(2, 1)-labeling has been widely studied in recent years. Chartand et al. introduced 
the radio-labeling of graphs; this was motivated by the regulations for the channel 
assignments in the channel assignment problem [3]. Radio-labeling takes into 
consideration the diameter of the graph, and as a result, every vertex is related. 
       Practically, interference among channels may go beyond two levels. L(3, 2, 1)-
labeling [2,4] naturally extends from L(2, 1)-labeling, taking into consideration vertices 
which are within a distance of three apart; however, it remains less difficult than radio-
labeling. 
      In this chapter we determine the L(3,2,1)-labeling number of the Jahangir graph J4,m.   
 
Definition 1.1. Let G = (V,E)be a graph and f be a mapping f: V → N. f  is an L(3,2,1)-
labeling of G if, for all x,y∈V, 
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 |f(x) – f(y)| ≥

3 if d(x, y) 1

2 if d(x, y) 2

1 if d(x, y) 3

=
 =
 =

   

Definition 1.2. The L(3,2,1)-number, K3(G), of a graph G is the smallest natural 
number k such that G has an L(3,2,1)-labeling with k as the maximum label. An 
L(3,2,1)-labeling of a g r a p h  G  is called a minimal L(3,2,1)-labeling of G if, under the 
labeling, the highest label of any vertex is  K3(G). 

Note : If 1 is not used as a vertex label in an L(3, 2, 1)-labeling of a graph, then every 
vertex label can be decreased by one to obtain another L(3, 2, 1)-labeling of the graph. 
Therefore in a minimal L(3, 2, 1)-labeling 1 will necessarily appear as a vertex label. 

Definition 1.3. A cycle in a graph G is a sequence of distinct vertices (u0,u1,u2,…,u(n−1)) 
where  ui  and u(i + 1)  are adjacent for all i = 0, 1, 2,…, (n − 2) and u(n – 1)  and u0  are 
adjacent. A cycle with n vertices is denoted by Cn. 

Definition 1.4: The Jahangir graph Jn, m for m ≥ 3 is a graph on (nm + 1) vertices. That 
is, a graph consisting of a cycle Cnm with one additional vertex which is adjacent to m 
vertices of Cnm at distance n to each other on Cnm. 

Theorem 2.1:  K3( J4,m ) = 2m + 2  for all  m ≥ 5 where  J4,m  is  the Jahangir graph. 
Proof : Let  G = (V, E)  be the Jahangir graph  J4,m  with the vertex set    
V = {u0 ,u1, u2, …,um, v1, v2,…, v3m} and the edge set    
E = {u0ui : 1 ≤ i  ≤ m } ∪ { ui+1v3i+1 : 0 ≤ i ≤ m − 1}∪ { v ivi+1 : 1 ≤ i  ≤ 3m – 1 with                     
i ≠ 3,6,...,3m } ∪ {v 3iuj,uj v3i+1:1 ≤i ≤ m– 1, j = 2,3,4,...,m}. 

Let  f  be a minimal  L(3,2,1)-labeling of  the Jahangir graph  J4,m. we have d(u0, ui) = 
1  for all 1 ≤ i ≤ m ; d(ui,uj) = 2  for all 1 ≤ i, j ≤  m with  i ≠ j; d(ui+1,v3i+1) = 1  for all                               
1 ≤ i ≤ m – 1; d(vi,vi+1) = 1  for all  1 ≤ i ≤ 3m – 1 with i ≠ 3,6,...,3m ; d(u1,v3i+2) =  4 for 
all  1 ≤ i ≤m – 2.   

Since the diam(G)  is greater than three,  f is not injective. Since f is minimal, any 
one of the vertices of G should have label 1. Let f(u0) = 1. we have d(u0, ui) = 1 for all 1 ≤ 
i ≤ m,  without loss of generality we can assume f(u1) ≥ 4. 
 As the distance between any two vertices of ui is two, their labels should differ by 
atleast 2. Since f(u1) ≥ 4 and there are (m–1) remaining vertices of ui, the label of one of 
the vertices of ui should be greater than or equal to 2(m– 1)+ 4.  
Hence  K3(J4,m) ≥ 2m + 2. 
Next we prove that K3(J4,m) ≤  2m + 2. Define  
                                       1            if i = 0 
                     f(ui) = 
                                       2(i + 1) if   1 ≤i ≤ m 
 
                                        2  if    i = 2, 5, 8, ...,(3m – 1) 
                                        5         if     i = 6,9,12,...,(3m – 3) 
                     f(vi) =        7           if     i = 1 & i = 10,13,...,(3m – 2) 
                                        9          if     i = 3,3m 
                                        11     if     i = 4,7 
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As per the labeling, the max {f(u) : u ∈ V} = 2m + 2. 
Hence K3(J4, m) = 2m + 2  for all  m ≥ 5. 
 
L(3,2,1) - labeling of J4, 5 
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Figure 2.2: (a) (K3(J4, 5)) = 12 
L(3,2,1) - labeling of J4, 8 
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Figure 2.2: (b) (K3(J4, 8)) = 18 
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