
Intern. J. Fuzzy Mathematical Archive 
Vol. 15, No. 2, 2018, 217-226 
ISSN: 2320 –3242 (P), 2320 –3250 (online) 
Published on 30 April 2018 
www.researchmathsci.org 
DOI: http://dx.doi.org/10.22457/ijfma.v15n2a13 
 

217 
 

 International Journal of 

Optimal Control of Customers to the Service Facility with 
Two Types of Customers 

P. Maheswari*, C. Selvakumar and C. Elango 

Department of Mathematical Sciences, Cardamom Planters’ Association College 
Bodinayakanur, Tamilnadu, India.  

*Corresponding author. E- mail: mathresearchcpac@gmail.com 

Received 7 March 2018; accepted 21 April 2018  

Abstract. In this article, we considered a discrete-time service facility system, viewed as a 
Markov Decision Process (MDP). Decisions are taken at discrete time epochs to control 
admissions to the system. Here the queue before the server is divided into eligible queue 
and potential queue. Potential queue has two types of customers (Priority and non-
priority). It is assumed that demands arrived throughout the period but they are satisfied 
only at the end of the period. The MDP based on average cost criteria is used to find the 
optimal policy to be implemented for the system. Numerical example is provided to 
illustrate the problem. 
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1. Introduction 
Modelling of inventory systems maintained at a service facility has received considerable 
attention in the last three decades Berman et al. [1] studied the first model in inventory 
management with a service facility which is releasing one item from inventory to 
complete each service. This is equivalent to the make-to-order production system with 
common component inventory. They considered a model with constant demand and 
service rate in which queues can occur only during stock out period. So treating the queue 
in the service facility as a potential component whose length shall be reduced. So optimal 
admission control must be done to protect the system from congestion. 
 For this purpose we imposed the Markov Decision Process frame on this problem to 
implement sequential decision making. This kind of decision problems arise in feed back 
control of engineering systems, portfolio management and supply chain management etc.  

The standard mathematical formulation of this problem involves MDPs. Thus the 
states of the system is modeled  as a Markov Chain, whose transition probabilities 
depends on the appropriate action chosen by considering the state-action dependent cost 
is incurred at each stage. 

Recently Kim [6] considered the admission control and the inventory management 
problem of a make-to-order (MTO) facility with a common component, which is 
purchased from a supplier under stochastic lead time processes and setup costs. Arriving 
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demands of MTO type (different types) are satisfied by using common (single) 
component. Selvakumar et al. [10] considered a discrete time MDP in a service facility 
system in which inventory is maintained to complete the service. Decision is taken at 
discrete time epochs to control both admission and inventory control in service facility 
systems. Control system is used to transfer customers from potential queue to eligible 
queue, but with single demand class. 

When arriving customers consist of two types (ordinary and priority) as already 
studied (Veinott [12], Nahmias and Demmy [7], Ha ([3,4]), Dekker, Hill, and Kleijn [2], 
Sapna [9], Karthick et al. [5]). 

In this article, we considered a service facility system with two types of customers. 
The arrival of customers to the system is controlled by taking decisions at discrete 
decision epochs. Here, we use policy iteration method to optimize the expected total cost 
rate. In the last section a numerical example is provided to illustrate the model. 

 
2. Model description 

  
Figure 1: 

• The system is observed every 0η >  unit of time and the decision epochs are 

0, ,2 ,...η η  

• Admissions to the service facility is controlled, by splitting the queue into Eligible  
queue and Potential queue. Potential queue has two types of customer called 
priority (T(1)) and non-priority (T(2)) customers. 

• At each decision epoch the controller observes the number of customers in the 
system (Eligible queue + Server) and number of priority and non-priority 
customers in the potential queue. 

• Assume that the maximum capacity of waiting space in the eligible queue is N 
(finite).  

•  Maximum number of customers to be admitted at time epoch t = N - Number of 
customer in the eligible queue at time t . Other customers are rejected. 

• Arriving customers to service facility system follows a probability distribution 

( )1g ⋅  and ( )2g ⋅  for priority and non-priority customers respectively and the 

arriving customers are placed in potential queue. Possible service completions in 

each period follows a probability distribution ( )f ⋅ . 

• No partial service completion allowed during any period. 
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• All serviced customers depart the system at the end of period. 
 
3. MDP formulation 
We consider the MDP having five components (tuples) ( ) ( )( ), ,  , p | , .s t tT S A r⋅  

Decision epochs: 

{ }0, ,2 ,... .T η η=  

States:  

1 2S S S= ×  

{ } { }0,1,2,..., N 0,1,2,... .S = ×  

( ){ }1 1 1           : the number of customers in the system eligible queueS s s den sot s ere erv= +

{ }2 2 2     :     the number of customers in the potentS s s ialdeno qte es ueu=  

 
Actions: 
Number of customers admitted is the decision variable 

( ) { }
1 2 2 1 2, 0,1,2,..., , .s s s s s NΑ = + ≤  

 
Transition probability: 

( )

( )

1

1 1 2 1 1

2 1 1

2 1 1

1 1

f ' ( ') ' 0

f( ) ( ') ' 0, 0
' | ,

( ') ' 0

0 ' 0.

N

i s at

s a s g s if a s s

i g s if s a s
p s s a

g s if s a s

if s a s

= +

 + − + > >


  = + > =   
 = + =
 > + ≥

∑
 

where  2 1 1 2 2( ') (n ') (n '),g s g g= ⋅ 1 2 1 2( , ), ' ( ', ').s s s s s s= =  

 
Cost: 

1 1 2( , ) ( ) (i), , ( , ).t s
s S

c s a k s a p a A A s s s
∈

= + + ∈ = =∪  

The stationary cost structure consist of two components: a waiting cost ( )k y  per period 

when there are 1( )y s a= +  customers in the system and an incentive cost ( ) ,p i  when  i 

priority customers are transfer  from potential queue to the system. 
 
4. Analysis 
Let tX  denote the number of customers in the system immediately prior to the decision 

epoch t  and tZ  is the number of customers arrivals in the period t . Customer arriving in 

the period 1t −  enter  the  potential queue at time epoch t. Potential queue has two types 
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of customers (Priority and non-priority). (1)
tX  and (2)

tX  represents number of priority 

and non-priority customers in the potential queue at time epoch t respectively.  
 
Decision rule: 

At the decision epoch t  the controller admits ( )tN X
+− (number of waiting space in the 

system at time epoch t)  tu=  of customers from the potential customer queue into the 

system.  

( ) 0

0 0.

x if x
x

if x

+  >= 
≤

 

The random variable tZ  assumes non-negative values which follows a time invariant 

probability distribution g( )n , 

{ } { }
1 1 2 2

(1) (2)
1 2

g( ) (n ) (n )

Pr Pr , 0,1,2,...t t

n g g

Z n Z n t

= ⋅

= = = =
 

where (1)
tZ , (2)

tZ denotes the number of priority and non-priority customers arrived in 

the period t and 1 2,g g  are independent.  

Let tY  denote the number of “possible service completions” during period t . The 

random variable tY  assume non-negative integer values and follows a time invariant 

probability distribution { }( ) Pr , 0,1,2,...tf n Y n t= = = . 

 
Time Potential queue System 

                       t 
                      t+ 

( ) ( )1 2 (1) (2)
1 1t t t tZ Z X X− −+ = +  

                       0 

                      tX  

                  ttX u+  

 
Here t +  denotes the time point in time immediately after the control has been 

implemented but prior to any service completions. 

 
Figure 2: 
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Number of customers admitted to system from potential job queue at time epoch t: 
(i)  If (1)

t tX N X> −  admit ( )tN X− priority customers, reject all other customers 

including non-priority customers. 

 (ii)  If (1)
t tX N X< −  admit (1)

tX  customers and if (2) (1)
t t tX N X X> − −  admit 

(1)( )t tN X X− −  non-priority customers, reject remaining non-priority customers 

else if (2) (1)
t t tX N X X< − −  admit (2)

tX  customers. 

Here t +  denotes a point in time immediately after the control has been implemented 
but prior to any service completions. 

The system state at a decision epoch t is denoted by the pair ( , I ),t tX   where 

I t denotes the content of the potential queue at decision epoch t. 

The two component of the system state is given by 

( ) ( )
( ) ( ) ( )

( ) ( )

(1) (2)

(1) (1) (1) (2) (1)
1

(1) (2) (1) (2) (1)

0

.

t t t t t t

t t t t t t t t t t t

t t t t t t t t t

N if N and

N if N and

X Y X X X X

N

if N

X X Y X X X X X X X X

X Y X X X X and NX X X

+

 − + − −

= − + − − − − −


− + − − −

> ≥

+ < >

+ <


<

 

  ( ) ( )1 2 (1) (2)
1 1 1.t t t t tI Z Z X X+ + += + = +  

The one step costs are given by, ( ) ( )1 2,, ,t s a s sc s= . 

Let ( ), It tX  denote the state of the system of decision epoch t (beginning of tht  period). 

Assume the stationary policy R  and hence the transition probability 

          ( ) ( ) ( ){ } ( ) ( )1 1 1 2 1 2' | s, , I , Ir = ' |  , , ' ' , , .',t t t t ts a P X s X s a s s s sp s s+ += = = =  

regardless the past history of the system up to time epoch t . 

Then ( ){ };  : 0t tX I t ≥  is a Markov chain with discrete state space 1 2.S S S= ×  The t - 

step transition probabilities of the Markov chain under policy R  is given by 

      ( ) ( ) ( ) ( ){ } ( ) ( )0 0 1 2 1 2Pr = ' |  , ,  ' | s , I , I ' ' , ,', .t t t as X s X s R s sp s sR s s= = = =  

Define ( ) ( )1 2, ,,tV s R s s s=  denote the total expected cost over the first t  decision 

epochs with initial state ( )1 2,s s  and policy R  is adopted. 

Then 

( ) ( ) ( )( ) ( ) ( ) ( )
1

' 1 2 1 2
0 '

, ' ,  ',s,R ' ' , ,
t

k
t s

k s S

p s s R c R s s s s s sV
−

= ∈

= = =∑∑  

where, 

               ( )sC R =  waiting cost of customer/period + incentive cost. 

                           3 4 ,C L C P= × + ×  
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where L  denotes the mean number of customers in the eligible queue + 1 in service 

counter and P denotes the number of priority customers are transfer  from potential 
queue to the system 
 
5. Cost analysis 

The average cost function ( )sh R  is given by ( ) ( ) ( )1 2

1
lim s,R , ,s
t

th R V s s S
t→∞

= ∈ . The 

elements of the above average cost function is due to the Theorem (Puterman [8] & Tijms 
[11]).   
 

Theorem 5.1. For all ( ) ( )1 2 1 2' ' , ,', ,s s s s Ss s= = ∈  

( ) ( )
1

1
lim ' | ,

t
k

t
t

k

p s s R
t→∞ =
∑  always exists and for any ( )1 2',' ' Ss s s= ∈ . 

( )( )

1

1
'1

'lim ' |

0 ' ,

t
k

s
t

k

if state s is recurrent
p s s

t
if state s is transient

µ
→∞ =


= 



∑  

where 'sµ  denote the mean recurrent time from state ( )1 2', 's s  to itself. 

Also ( ) ( ) ( ) ( )( ) ( ') (k)
( ) 2

1
1 2

1
1

1 1
lim ' | lim ' ,  , ',, ' ' .

t t
k s

s t
t t

k k

s s sp s s f p s s
t

s
t

s
→∞ →∞= =

= ==∑ ∑  

Since the Markov Chain ( ){ }, I : 0,1,2,...t tX t =  is a unichain which is irreducible, all its 

states are ergodic and have a unique equilibrium distribution. 

Thus, ( ) ( ) ( ) ( ) ( ) ( )1 2' 1 2
( )

1

1
lim ' | , , , ' , ,''

t
k

s t
k

s s s s sR p s s R
t

sπ
→∞ =

== =∑   

exist and is independent of initial state , such that Pπ π=  and  ( ) 1.s
s S

π
∈

=∑  

6.  Optimal policy 
A stationary policy *R  is said to be an average cost optimal policy if 

( ) ( )
1 2 1 2,s ,s*s sh R h R≤  for each stationary policy R  uniformly with the initial 

state( )1 2,s s . 

The relative value associated with a given policy R  provides a tool for constructing a 
new policy *R  whose average cost is no more than that of the current policy R. 

The objective is to improve the given policy R  whose average cost is ( )h R  and relative 

value ( ) ( ) ( )
1 2 2, 1, , .s s s sv R S∈  

By constructing a new policy  R  such that for each ( )1 2,s s S∈ , 

( ) ( ) ( ) ( )( ,
'

) ''* * ................. (1)s s
s S

ss sc p v vR h R R
∈

− + ≤∑  
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where, ( )1 2,s s s=  and ( )1 2'' ',s s s= , we obtain an improved rule *R  with  

( ) ( )*h R h R≤ . We have to find the optimal policy *R  satisfying (1) which  minimizes 

the cost functions  ( ) ( ) ( ) ( )
'

' h ' | s,ai t
s

s
S

c R p s v Ra
∈

− +∑  over all actions ( )a A s∈ . 

7. Algorithm 
Step 0: (Initialization) 
Choose a stationary policy R  for the periodic review based admission control in service 
facility system with two types of customers. 
 
Step 1: (Value determination step) 
For the current policy R , compute the unique solution ( )( ), v ( )sh R R  to the following 

linear  equations  

( ) ( ) ( )( ) ( ) ( )' 1 2
'

' | ,s ,,ts
s

s s
S

p s R v Rv c R h R s s Ss
∈

== − + ∈∑  

( )1 20, ,ssv where s s is arbitarily chosen state in S== . 

 
Step 2: (Policy improvement) 
For each state ( )1 2,s s s S= ∈  determine the actions yielding, optimal cost, that is  

( ) ( ) ( ) ( )'
'

*a arg min .' | s,a
s

t s
s

s
a A

S

p s vh Rc a R
∈∈

 ∈ − + 
 

∑  

The new stationary policy *R  is obtained by choosing  * sR a= . 
 
Step 3: (Convergence test) 
If the new policy *R R= ( the old one), then the searching process stops with policy R . 
Otherwise go to Step 1 with R  replaced by new *R . 
 
8. Numerical example 
Consider a MDP formulation of a service facility system with two types of customers. 
Admission to the system is controlled by observing the number of customers in the 
eligible queue and potential queue. Decisions at equidistant time epochs are taken to 
admit the eligible number of customers by observing the different category of customers 
and available empty space in the system. 

For the system we assume, 5N = .  Let ( ){ }: 0t tΧ ≥ where X(t) denote the number of 

customers in the eligible queue  be a stochastic process with has state space 

{ }1 0,1,2,3,4,5S = and  action set { }2 1 20,1,2,..., , where 5.s s sΑ = + ≤  

Assume that the incentive cost 1 0.1rc =  per customer for priority and waiting cost be cw 

= 0.01 per customer. 
'

1 1\s s  5 4 3 2 1 0 

5 0.27 0.35 0.20 0.10 0.05 0.03 
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4 0.01 0.20 0.37 0.30 0.10 0.02 
3 0.02 0.04 0.24 0.5 0.15 0.05 
2 0.02 0.04 0.05 0.24 0.55 0.10 
1 0.01 0.03 0.04 0.05 0.37 0.50 
0 0.02 0.03 0.05 0.09 0.12 0.69 

 
Computational procedure: 
For any given policy ,R  the policy improvement quantity is given by 

( ) ( ) ( ) ( ) ( ) ( ) ( )'
'

a, ' | , a, .s s t s s s s
s S

T R c a h R p s s a v a where T R v R for a R
∈

= − + = =∑  

Iteration 1: 

Policy iteration algorithm is initialized with ( ) ( )1 0,0,0,0,0,5R = , which prescribes the 

transfer  of  5 priority customers from potential queue to the system(eligible queue + 1 in 
server) when there is no customer  in the system.  Solving the system of linear equations 
connecting the average cost (1)h( )R  by assuming v5 = 0 we get 

( )( )1
5v R = 0, ( )( )1

4v R = 0.1424144091, ( )( )1
3v R = 0.2601353793,  

( )( )1
2v R = 0.4703303818, ( )( )1

1v R = 0.7836061876, ( )( )1
0v R = 1.369282975, 

 ( )( )1h R = 0.2291639559 

( )( )1,  sT a R  

1s \ a 4 3 2 1 0 

4 X X x 0.15 0.1824144090 
3 X X 0.25 0.14 0.2901353793 
2 X 0.35 0.24 0.13 0.4903303818 
1 0.45 0.34 0.23 0.12 0.7936061876 

The new policy will be ( ) ( )2 0,1,1,1,1,5R = . Since the new policy ( )2R  is different from 

the initial policy ( )1R the searching process continues. 
 
Iteration 2: 

For the policy ( )2R , solving the system of linear equations connecting the average cost 
(2)h( )R  by assuming v5 = 0 we get 

 ( )( )2
5v R = 0, ( )( )2

4v R = 0.2484449811, ( )( )2
3v R = 0.3411719874,  

( )( )2
2v R = 0.5096793582, ( )( )2

1v R = 0.7611227312, ( )( )2
0v R = 1.227951781, 

( )( )2h R = 0.2810527667. 

 
 
 



Optimal Control of Customers to the Service Facility with Two Types of Customers 

225 
 

 

( )( )2,  sT a R  

1s \ a 4 3 2 1 0 

4 X X X 0.15 0.1884449810 
3 X X 0.25 0.14 0.2711719874 
2 X 0.35 0.24 0.13 0.4296793582 
1 0.45 0.34 0.23 0.12 0.6711227311 

Since the new policy ( ) ( )3 0,1,1,1,1,5R =  is identical with the policy, the searching 

process stops here.  After two iterations we obtained the optimal policy 

( )* 0,1,1,1,1,5R =  which prescribes the following rule:  It is beneficial to allow no 

customer, 1 priority customer, 1 priority and 0 or 1 ordinary customer, 1 priority and 0 or 
1 or 2 ordinary customers, 1 priority and 0 or 1 or 2 or 3 ordinary customers and 5 
priority customers to the system   at system states:  5, 4, 3, 2, 1and 0 respectively. 
 
9. Conclusion and future research 
In this article we analyzed a discrete time MDP in service facility systems with two types 
of customers. We control the number of customers admitted to the system by observing 
two types of customers in the potential queue and empty space in the system. Decision to 
admit customers is made at the beginning of each period. In future we would like to 
extend the model to control both service and inventory in a service facility with inventory 
management.  
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