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Abstract. This article deals the problem of optimally conlirg the perishable inventory
with exponential perishable rate and exponentiad léme in a finite capacity retrial
service facility system. Arrival of demands to thgstem is assumed as Poisson and
service times are assumed to follows an exponedis&ibution. Here, the customers are
not allowed to form a queue. A customer who seesstrver busy joins the orbit and
reattempts the system with exponential distributede. For the given values of
maximum inventory and reorder level, we determihe bptimal ordering policy at
various instants of time. The system is formulaisda Semi-Markov Decision Process
and the optimum inventory control to be employedubing linear programming method
so that the long—-run expected cost rate is minichikkimerical examples are provided to
illustrate the model.
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1. Introduction

The analysis of perishable inventory systems has lige theme of many articles due to
its potential applications in sectors like foodgnticals, pharmaceuticals, photography
and blood bank management. Most of these modelsndiaeither the periodic review
systems with fixed life times or continuous revisystems with instantaneous supply of
reorders.

In last two decades, many researchers in the fadldretrial queuing system
contributed many results. For example, Elcan [B]lyddainambi et al. [1], Dragieva [4],
and Dudin et al. [5] discussed a single serveiialetjueue with returning customers
examined by balking or Bernoulli vacations and i the analysis part and solution
technigue using Matrix method or generating functio Truncation method using level
dependent quasi-birth-and-death process (LDQBD).

Paul et al. [12] andKrishnamoorthyet al. [10, 11] analyzed a continuous review
inventory system at a service facility and retaatustomersin all these systems, arrival
of customers form a Poisson process and servicestiane exponentially distributed.

235



S.Krishnakumaand C.Elango

They investigate the systems to compute performameasures and construct suitable
cost functions.

The main contribution of this article is to deritlee optimum control rule for
adjusted inventory replenishment process in res@lice facility system maintaining
inventory for service. We consider a service faciBystem and the orbit with finite
waiting space. For the given values of maximum iwgitspace, maximum inventory,
reorder level s, lead times and perishable rate adjusted inventory replenishment, the
system is formulated as a Semi-Markov Decision &scand the optimum inventory
policy to be employed is obtained using linear paogming method so that the long —
run expected cost rate is minimized.

The rest of the paper is organized as followslifRirgary concepts of retrial queues is
given in section 1. A brief account of Markov presewith continuous time space is
described in section 2. We provide a formulatiomwf Semi-Markov Decision model in
the next section 3. In section 4, we present agohaie to implement long—run expected
cost rate criteria to get the optimal vales ofshigtem parameters.

2. Problem formulation
In this paper we assume the following:

* A customer arrives to the system according to a$8oi process with raig>0).

* When the server is idle the arriving customer diyeenters the server gets
service and leaves the system.

* An arriving customer who finds a server busy isgd to leave the service area
and repeats his request from a virtual space JorBitreattempt made by a
customer after a random time for the service frowm ¥irtual space (orbit) is
calledretrial.

* The capacity of orbit is limited to the maximumhbf

* Customer’s retrials for service from an orbit fellan exponential distribution
with rated (> 0). (if there are j customers stay in the otbé retrial rate isd).
The capacity of orbit is assumed to be finite.

S
(Lead time)
(r=0)
—2 [Perishing rate
0 (6=0)]

Arrvival (A = 0) ﬂ:
- (n=0
- Departure

Retrial rate (6 —

Balking
Figure 1. Perishable inventory control in retrial serviceilfagcsystem
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* Service times of customers are independent of edttdr and have a common
exponential distribution with paramete(> 0).

* One (unit) of item is served to each customer dusarvice. The items in stock
are of perishable nature with perishing rate

* The maximum capacity of the inventory is fixed as\Wkenever the inventory
level reaches to a prefixed level s{(& < S), decision for ordering is taken for
each state lies between 0 and s. The lead timaafslan exponential distribution
with parametey.

* The size of the order is adjusted at the time pler@shment so that immediately
after replenishment the inventory level becomes S.

* Order decision is made at each level less thamoaleto the reorder level s.
Whenever the inventory level reaches to zero, thieig customers enter the
orbit.

3. Analysis of system

Let X(t), Y(t) and I(t) denotes the status of tleever, number of customers in thebit
and inventory level at time t, respectively.

Then {(X(1),Y(1),I(t)): t> 0} is a three dimensional continuous time Markowgess with

state spack, x E, x E, ,where, £={0,1}; E;={0,1,2,...,.N}; and 5={0,1,2,...,S}.

The infinitesimal generator A of the Markov procéss entries of the forr(‘a((i"’:‘k’;‘)).

Some of the state transitions are given below:
From state (0, j, k) only transitions into theldoling states are possible:
(0 (1, ], k) with ratex (direct customer arrival).
(i) (1, j-1, k) with rated (Customer arrival from orbit).
Here,j=0,1,2...,Nandk=1, 2... S.
From state (1, j-1, k) only transitions into tlildwing states are possible:
(i) (1, ], k) with ratel for 1<j <N and & k< S (direct customer arrival).
(i) (O, j-1, k-1) with rateu for 1< j <N and K k< S (Service completion).
From states (0, j, 0) transitions are possible tmiye states (0,j +1,0) f@r<j < N-1.

3.1. MDP formulation
Now, we formulate the MDP by considering the follog/five components:

Decision epochs: The decision epochs for the system are takenrakona points of time
say theservice completion and Perishing times.

State space: E X E, x E; = Eis considered as the state space.

Action set: The reordering decisions (0- no order; 1- orderc@mpulsory order) taken
at each state of the system (i, j,[(KE. The compulsory order for S items is made when
inventory level is zero. Let Ar =1, 2, 3) denotes the set of possible actidvikere,

Al = {0}, A2 = {0, l}, A3 = {2} and A = A1|:| AZD A3.

The set of all possible actions are at E.
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{0}, s+l<ks<S
A =401, 1skss, A=[JA.
{2}, k =0 roE
Suppose the policy (sequence of decisions) is defined as a functiok — A, given by
(i, j, K) ={@): @, j, K OE, alA,r=1, 2, 3}

I,m,n)

Transition probability: p{'T,) (@) denote the transition probability from state (i,
to state (I, m, n) when decision a is made at $iajtek).

Cost: C ( a) denote the cost occurred in the system when atiois taken at state
(i1 k)

(i, J, K).

3.2. Steady state analysis
Let R denote the stationary policy, which is defeistic time invariant and Markovian
Policy (MD). From our assumptions it can be seest {lax(t)’N(t)J(t)) 't 2 0} is

denoted as the controlled proc?(sg R (1), N R(t),IR(t)):tz o} when policy R is
adopted. The above process is completely Ergddévery stationary policy gives rise to
an irreducible Markov chain. It can be seen that #&very stationary policy
T, {X”,Y”, I ”} is completely Ergodic and also the optimal statigraolicy R exists,
because the state and action spaces are finite.

If dis the Markovian deterministic decision, the expdcteward satisfies the
transition probability relations.

pt((l,m,n) |(i,j,k) ,dt(i,j,k)) = Z Q((l,m,n)l(ivivk)va) R, i @)

alA

and (0, K),d,(i,j,K) = D r(i,j k. @)y 0 ().
al A
For Deterministic Markovian Poliay O n"® where,M"" denotes the space of
Deterministic Markovian policy. Under this polidy an actionaD Alr) is chosen with
probabilityl1, (r), whenever the process is in state E .Whenevef1,(r) =0or1, the

stationary Markovian policy1 reduces to a familiar stationary policy.

Then the controlled process TXYR, 17}, where, R is the deterministic Markovian
policy is a Markov process. Under the polidy, the expected long run total cost rate is
given by

C'=hl"+cW +ca,"+ca," + p" + o " . 1)
where, h -holding cost / unit item / unit timg;ewaiting cost / customer; e reordering
cost / order, £— service cost / customer, p — perishing costit/item, g — balking cost |
customer,1 " - mean inventory IeveI,\T\)_I - expected number of customers in the
orbit,a' - reordering rateg," - service completion ratey_ " - expected perishing rate,

a," - balking rate.
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Our objective here is to find an optimal poli€y for which C™ < C" for every MD
policy in NP

For any fixed MD policyl1 OM"Y and (i, j, k), (I,m,n)0JE , define

R (.mn, =P X" (1)=1,Y" ()= mI" ()= n| X" (0)= i,Y" (0)= j." (0)= K
(i, j,k),(ILbm,n)OE.

Now Pij[' (I,m, n, t) satisfies the Kolmogorov forward differential edoat
P'(t)=P(t)A, where, A is an infinitesimal generator of the Marko

proces§(X M(t), Y (1), 1 () : t =0}.
For each MD policyr, we get an irreducible Markov chain with the stgpace E and
actions space A which are finite,

PT(I,m,n)= Ilim Pij!-lk (I,m , n;t) exists and is independent of initial state
t - o
conditions.
Now the system of equations obtained can be wrétefollows:
(1+59) POOSFyY. B (00K @
k=0
(1+]o+HP0SFYL B 0K jSN 3
k=0

A+u+HP LO,SFAP (0,0,95F (OLSy> P (LOK),
(/1+u+869|17(1j,8):/1i%Fﬂ (. i, ¢ WP OF lS}Vkil P @Ljk<jsN-1 (5

(+HP (A, N,S)=/1':i0 B (N i K ykzl B (LNK) (€
(A4 POOK=LP L0k 3 & §'P 00Kk B <k S 1

(MHjoHgPI0jR=LP Lk r k P Q k K B <k<S 1 8
(A+1HGPL0K-A P 00K P 01K kAP (18K $i<ks S1 &)

(/|+,U“H<@F“(lj,k)=/li]:ﬂ 0 R+EFIP OF 1K (¢ B P L), < sN-Is+Eks S-1 (I

(wktﬁ)lj(lNk)#i]jﬂ,NiW(mﬂﬁ(lNk DsrdkS 1 ¢
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(HyHGP00KL P L0k 9 «A'P 08k ks
(HoHHGPIQ) KA Lk B (e TP QK DN skss
(At HGP LOR-P Q0RO P Q1K kAP 16k ks

]
“

(eGP (lj,k):/g]ﬂ (HRHEDP QF LK k PP WD KjsN-1klss (&

(AHMP”(lNW%]ﬂ (N iR+ (¢ 9P Nk Ddi<s

(A+y)P1(0,0,0= P (1,0,646 P (0,0,1)
A+NPO,L0=uP LA P (05 L8 P (0,jIlisN- 1
yP1(O,N,0=AP" (ON- 1,0y P (LN, H6 P (O,N,2)

(A+pYP1(1,0,0:0 P (1,0,2)

A+ P (,,0=AP" (1j-1,00+8P' (1,j,),kjsN- 1

yPTLN,0=0 P (1,N,3 AP (1N 1,0)

Together with the above set of equations, the fotathability condition
> P, j,k) =1,
(i, j,K)OE
gives steady state probabilities*{R], k), (i, j, k) O E} uniquely.
3.3. System Performance M easures.
The average inventory level in the system is givgn
_ 1 N _S o
I7=>"% > kP7(i, k).
i=0 j=0k=1
Expected number of customers in the orbit is gimgn
_ 1 N s o
W 7= > > jP"(i | k).
i=0 j=1k=0
The reorder rate is given by
N s+1 1 N s+1
al =pu>d Y P K+ Y > (k)P (i, ], k).
j=0 k=1 i=0 j=0k=1
The service completion rate is given by
al =pu> > > P7(,jk).
i=0 j=1k=1
The expected perishable rate is given by
S
al = i EN: > kO P"(i,j k).
i=0 j=0k=1

The balking rate is given by
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1 S
a7 =3 Y APT(i,N k). (29)

i=0 k=0
Now the long run expected cost rate is given by

C”= hzl:ZN: i kP™(i, j, k) + quZN Zs‘, JP(i, J, k)

[yzip (1,k)+zzi(ke)pﬂ(.1k)]
1 N S 1 N S
FeuY Y D P K) F P Y Y K P )K)
1 S
+gZZ/]P”(i,N,k) (30)

4. Linear programming problem

4.1. Formulation of LPP
In this section we propose a LPP model within a Mi2ifhework. First we define the
variables, D (i, j, ka) as a conditional probability expression
D (i, j, k, @ = Pr {decision isa | state is (i, j, k)}. (31)
Since 0< D (i, j, k,a) < 1, this is compatible with the deterministic timgariant
Markovian policies. Here, the Semi—Markovian demigproblem can be formulated as a
linear programming problem. Hence,
0<D(,jka=<land Y D(,j,k,a)=1i=0,1;0<j<N;0<k<M.

alA={0,1,2}
For the reformulation of the MDP as LPP, we definether variable
y (i, j, k, @) as follows.

y(@i,j,k,a)=D(i,j.k,a)P"(,j,k). (32
From the above definition of the transition prolitibs
P™(,j, k) = z y(i, j, k,a),(,j,k)OE,al A ={0,1,2} (33)

alA
ExpressingP”(i, j, k) in terms ofy (i, j, k, @), the expected total cost rate function
(30) is obtained and the LPP formulation is offitven Minimize

241



S.Krishnakumaand C.Elango

1 S N
C"=h ZZkZP”(lea)+gz ZZZ]PT(Ijka
a={0,1,2} i=0 k=1 j=0 a={0,1,2} =0 j=1k=
N s+1 N stl o
+C, [,uz P(ljka)+zz (kH)F’T(I,J,k,a)J
a={0,1,2} =0 k=1 =0k=1

1 N S o 1 N S

+C U SN Pika+p > YYD WP, ]k, a)
a={0,1,2} i=0 j=1 k=1 a={0,1,2} i=0 j=0 k=1

S
g > Zl:Z/lP”(i,N,k,a) (34)

a={0,1,2} i=0 k=1
subject to the constraints,
(1) y(,j,k,a)=0,(,j,k)\OE, a0 A ,1=0,1,2

@Y Y Y y(ijk.a)-=

=0 (i,j,k)ODE, a0 A,
and the balance equations (2) — (22) are obtaiged b
replacinge 7 (i, j, k) by Y y(i, j.k,a).

alA

Lemma 4.2. The optimal solution of the above Linear Prograngnoblem yields a
Markovian deterministic (MD) policy.
Proof: From the equations

(@i, j, k,a)=D(, j,k,a) " (i, ], K)

35]
and
P7(,j,k) = 3 yi i, k,a), 0, k) O E.
adA 360
We have,D(i, j, K, a) — 2y(i! j! K, a)
> y(i.j.k, a)
a0 (37)

Since the decision problem is completely ergodiergwasic feasible solution to the
above linear programming problem has the properthat t for each
(i,j,k) OE,y(i,j,k,a) > 0 for exactly oneaJA. Hence, for each (j, j, K} E,

D(i, j, k, a) is 1for at least one value afand zero for all other values af Thus, given
the amount of inventory on — hand and the numbe&usfomers in the orbit, we have to
choose the order of inventory for which D(i, j, & is 1. Hence any basic feasible
solution of the linear programming yields a detaistic policy.

5. Numerical illustration and discussion

In this section we consider a service facility sgstmaintaining inventory with positive
lead time and the size of the order is adjustatieatime of replenishment will illustrate
the stochastic model described in section 4, tHroogmerical examples. We have
implemented TORA software to solve LPP by simpliggodthm.

Consider the MDP problem with the following paraerst
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S$=3,s=1A=2,p=3,6=3,6=0.7y=1,p=08,h=0.1,6 2j;j=1,2,3,9g = 1.
Optimum cost for N = 2 is 15.95203.  Optimum costMo= 3 is 18.17716.
Optimum cost for N = 4 is 20.06195.  Optimum costMo=5 is 21.86752.

Optimum poalicy for N=2is

{X(1), N(1), I(t)} (0,03 | (0,1,3 | (0,2,3 | (1,0,3 | (1,1,3 | (1,2,3
Action 0 0 0 0 0 0
{X(@®), N, IV} |(0,0,2) | (0,1,2) | (0,2,2)| (1,0,2) (1,1,2)| (1,2,2)
Action 0 0 0 0 0 0
{X(®), N, I(t)} |(0,0,1) | (0,1,1) | (0,2,1)| (1,0,1) (1,1,1)| (1,2,2)
Action 0 0 0 0 0 0
{X(t), N(t), I()} | (0,0,0 | (0,1,0 | (0,2,0 | (1,0,0 | (1,1,0 | (1,2,0
Action 2 2 2 2 2 2

Optimum policy for N = 3is

{X(), N@®), I(t} |(0,0,3 {0,1,3 [0,2,3 [0,3,3 (1,0,3 [1,1,3 (1,2,3 (1,3,3
Action 0 0 0 0 0 0 0 0

{X(), N@®), I(t} |(0,0,2 {0,1,2 [0,2,2 [0,3,2 (1,0,2 [1,1,2 (1,2,2 (1,3,2
Action 0 0 0 0 0 0 0 0

{X(t), N(¥), I(t} |(0,0,1’ (0,1,1 [0,2,1 [0,3,1 (1,0,1 (1,1,1 (1,2,1 (1,3,1
Action 0 0 0 0 1 0 0 0

{X(t), N(®), I(t} ](0,0,0' {0,1,0 [0,2,0 [0,3,0 (1,0,0 [1,1,0 (1,2,0 (1,3,0
Action 2 2 2 2 2 2 2 2

Optimum policy for N=4and5is

|{\|X(g),i(t)} (0,0,3)(0,1,3) (0,231 (0,3,3) (0,4,3) (1,0,3) (1,1,3) (1,2,3) (1,3,3) (1.4.3)
Acton| 0 | 0 | 0 | 0 ] 0 | 0 | 0] 0] o0
|{\|X(g),i(t)} (0,0,2)(0,1,2)(0,2,2)(0,3,2) (0,4,2) (1,0,2) (1,1,2) (1,2,2) (1,3,2) (1.4.2)
Acton| 0 | 0 | 0 | 0 ] 0 | 0 | 0] 0] 0 0o
l{\ﬁg),’(t)} (0,0,1)(0,1,1)(0,2,1)(0,3,1) (0,4, (1,0,1) (1,1, 1) (1,2, 1) (1,3,1)| (1,4, 1)
Acton| 1 | 0 | 0 | 0 ] 0 | 1 | 0] 0] o 0o
L)((S),i(t)} (0,0,0)(0,1,0) (0,2,0)(0,3,0)(0,4,0) (1,0,0) (1,1,0) (1,2,0) (1,3,0) (1,4,0)
Acton| 2 | 2 | 2 | 2 | 2 | 2 [ 2] 21 2| 2

6. Conclusion

In most of previous works optimal ordering polic@ssystem performance measures are
determined. We approached the problem in new sigiag Semi—Markov Decision
Process to control optimally with adjusted invept@plenishment. The optimum control
policy to be employed is found using linear progmang method so that the long—run
expected cost rate is minimized. In future we tikeextend this model to non — adjusted
inventory replenishment in single server-retriatviage facility system with inventory
maintenance.
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