Intern. J. Fuzzy Mathematical Archive Vol. 15, No. 2, 2018, 253-262 ISSN: 2320 – 3242 (P), 2320 – 3250 (online) Published on 30 April 2018 <u>www.researchmathsci.org</u> *DOI: http://dx.doi.org/10.22457/ijfma.v15n2a17*

International Journal of **Fuzzy Mathematical** Archive

Knot Matrix

R. Selvarani

K.L.N. College of Engineering, Pottapalayam, Sivagangai District Sivagangai-630612. Email: selvaklnce@gmail.com

Received 6 March 2018; accepted 21 April 2018

Abstract. In this paper, we define a knot matrix from knot diagram and derive an algorithm for knot matrix. Also, we define a signed addition modulo 2, which satisfied knotable matrix.

Keywords: Knot diagram, Knot matrix and signed addition modulo 2

AMS Mathematics Subject Classification (2010): 57Q45

1. Introduction

Brauer [1] introduced algebras, known as Brauer's algebras, in connection with the issue of decay of a tensor item representation into irreducible ones. These algebras have a basis consisting of undirected graphs. Wenzl [2] obtained the structure of these algebras D_{n+1} by making use of conditional expectations and by an inductive procedure from the structure of D_{n-1} and D_n . Parvathi and Kamaraj [3] introduced signed Brauer's algebra, which has a basis consisting of signed diagrams. Kamaraj and Mangayarkarasi [4] introduced knot diagrams using Brauer graphs without horizontal edges and also used two types of knots only. Kamaraj and Selvarani [5] introduced knot in Z*. Kamaraj and Selvarani [6] introduced an edge crossable matrix of order nxn. We are motivated to introduce a nxn matrices in {0,1,-1}. We call them knot matrix.

2. Preliminaries

2.1. Brauer's algebras

Definition 1.1.1. [1, 2] A graph has 2n vertices and n edges, the 2n vertices are arranged in two lines of n vertices each point has exactly one degree. The collection of all this type of diagrams is called a **Brauer diagram** (or) **Brauer graph**. It is denoted by D_n .

Example 1.1.2.

Figure 1:

R. Selvarani

Definition 1.1.3. [1,2] Let D_n be a Brauer diagram. Let D_{n1} , D_{n2} be two diagrams of D_n .

Then the composition of $D_{n1} \circ D_{n2}$ is defined as

- (i). D_{n1} is arranged in the upper diagram.
- (ii). D_{n2} is arranged in the lower diagram.
- (iii). Lower points of D_{n1} is joined to the corresponding upper points of D_{n2}
- (iv). Remove the cycles after the joining
- (v). we get the new diagram. It is denoted by $D_{n1} \circ D_{n2}$

The multiplication of D_{n1} and D_{n2} is defined by setting

$$D_{n1}D_{n2} = \delta^{n(D_{n1}, D_{n2})} D_{n1} \circ D_{n2}$$

Remark 1.1.4. $n(D_{n1}, D_{n2})$ means that number of removing the closed cycles in $D_{n1}D_{n2}$

Definition 1.1.5. [1,2] Let F be field with $\delta \in F$. The **Brauer algebra** $D_n(\delta)$ is an associative *F*-algebra with a linear basis which consists of all Brauer elements of diagrams.

Result 1.1.6. The dimension of $D_n(\delta) = (2n-1)(2n-3)...3.1$

1.2. Signed Brauer's Algebras

Definition 1.2.1. A Brauer graph which has directions is called a **signed Brauer graph**. It is denoted by \overline{D}_n .

Example 1.2.2. In *D*₈

Figure 2:

Remark 1.2.3. An edge having \downarrow is called a positive vertical edge. An edge having \rightarrow is called a positive horizontal edge. A positive horizontal edge (or)vertical edge is called positive sign. An edge having \uparrow is called a negative vertical edge. An edge having \leftarrow is called a negative horizontal edge. A negative horizontal edge (or)negative vertical edge is called negative sign.

Knot Matrix

1.3. Knot graph [4]

Definition 1.3.1. Let S_n be the symmetric group of order n and let $\pi \in S_n$. Then π can be represented as a graph which is an element of Brauer graph. Let $E(\pi)$ denote the set of all edges in the graph representation of π . We use the symbol \boldsymbol{e}_i to represent the edges $(i, \pi(i)), \forall i = 1, 2, \dots, n$ Let $E(\pi) = \{e_i = (i, \pi(i)); i = 1, 2, \dots, n\}$ A_{π} is denoted as $A_{\pi} \subseteq E(\pi) \times E(\pi)$ where $A_{\pi} = \{a_{ij} = (e_i, e_j): i \leq j, e_i, e_j \in E(\pi)\}$ A_{π} can be written as $\{a_{11}, a_{12}, a_{13}, \dots, a_{1n}, a_{22}, a_{23}, a_{24}, \dots, a_{2n}, \dots, a_{n-1n}, a_{nn}\}$ $B_{\pi} = \{b_{ij} = a_{ij} \in A_{\pi}: \pi(i) > \pi(j)\}$

Definition 1.3.2. Let S_n be the symmetric group of order n and $\pi \in S_n$. A **knot graph** of order n is a special graph which is defined from π as follows: π can be represented by a graph, which is an element of Brauer graph.

(i) If i < j and $\pi(i) < \pi(j)$, then the edges are drawn in usual Brauer graph.

(ii) If i < j and $\pi(i) > \pi(j)$, then the edges are drawn in two cases as shown below In case 1, $(i, \pi(i))$ is the higher edge and $(j, \pi(j))$ is the lower edge. It can also be said that the edge $(j, \pi(j))$ is lower than the edge $(i, \pi(i))$.

In case 2, the edge $(j, \pi(j))$ is higher than $(i, \pi(i))$ or else $(i, \pi(i))$ is lower than $(j, \pi(j))$

The above graph is called a knot graph of order n.

Definition 1.3.3. A knot mapping $f_{\pi} : A_{\pi} \to \{-1, 0, 1\}$ $f_{\pi}(e_i, e_j) = \begin{cases} 0 & \text{if } \pi(i) < \pi(j) \\ 1 & \text{if } \pi(j) > \pi(i) & \& e_i \text{ is higher than } e_j \\ -1 & \text{if } \pi(j) > \pi(i) & \& e_i \text{ is lower than } e_j \end{cases}$

Definition 1.3.4. $|B_{\pi}|$ is called the number of knot in π . **Result 1.3.5.** The number of knot mapping of π is $2^{|B_{\pi}|}$

Example 1.3.6. The number of knot graph of S_2 Let $\pi_1, \pi_2 \in S_2$

 $|B_{\pi_1}| = 0$ $|B_{\pi_2}| = 1$, therefore the number of knot of π_2 is $2^1 = 2$

1.4. Generalized Knot symmetric algebras in Z*[5] $S_{\pi} = \{ (s_1, s_2, \dots s_{\beta}) : s_i = (1, -1)^k \text{ (or)} (-1, 1)^l \} \text{ where } k \text{ and } l \text{ are integers} \}$

Definition 1.4.1. If $(s_1, s_2, \dots s_\beta) \in S_\pi$, then s_i is called **knots in** π .

Definition 1.4.2. If $s_i = (1, -1)^k$, then s_i is called **Type I knots in** π .

Definition 1.4.3. If $s_i = (-1, 1)^l$, then s_i is called **Type II knots in** π .

Definition 1.4.4. If $s_i = (1,-1)^k (or) (-1,1)^l$ and k = 1 (or) l = 1, then s_i is called **knot** in π .

1.5. Edge crossing matrix [6] Definition 1.5.1. If i < j and $\pi(i) > \pi(j)$, then $e_i \operatorname{crosses} e_j$. Otherwise, we say that e_i does not cross e_j .

 $\begin{array}{l} \text{Definition 1.5.2. } f_{\pi}: A_{\pi} \rightarrow \{0,1\} \text{ is defined as} \\ f_{\pi}(a_{ij}) = \begin{cases} 0, \text{ if } e_i \text{ does not cross } e_j \\ 1, \text{ if } e_i \text{ crosses } e_j \end{cases}; \text{ where } \pi \in S_n \end{array}$

R. Selvarani

Definition 1.5.3. M_{π} is defined as $M_{\pi} = (f_{\pi}(a_{ij}))_{i,j=1,2,..,n}; \pi \in S_n; M_{\pi}$ is called an edge crossing matrix 6. Knot matrix 6. Knot matrix 6.1.1. Types of Knots Let $\pi \in S_n$ and $a_{ij} = (e_i, e_j)$ Case 1: $f(a_{ij}) = 0$ Case 2: $\pi(i)$ $\pi(j)$ Figure 8: If $f(a_{ij}) = +1$ is called a Positive Knot in π Example 6.1.2. Positive Knot in π

Case 3: If $f(a_{ij}) = -1$ is called a **Negative Knot** in π **Example 6.1.3.** Negative Knot in π

Figure 10:

6.1.2. Knot mapping

Define $f: A_{\pi} \to \{0, +1, -1\}$ such that

 $f(a_{ij}) = \begin{cases} 0 & \text{no knot between } e_i \text{ and } e_j \\ +1 & e_i \text{ is upper than } e_j (\text{i.e., Positive knot}) \\ -1 & e_i \text{ is upper than } e_j (\text{i.e., Negative knot}) \end{cases}$

6.1.3. Knot matrix

Let $\pi \in S_n$ Define $M_{\pi}^f = (f_{\pi}(a_{ij}))_{i,j=1,2...n}$

Definition 6.1.4.

 $P(e_i) = \{e_j : e_i \text{ is upper then } e_j \}$ $|p(e_i)| \text{ is called number of positive knot of } e_i$

Definition 6.1.5.

 $N(e_i) = \{e_j : e_i \text{ is lower then } e_j\}$

 $|N(e_i)|$ is called number of negative knot of e_i

Properties 6.1.6.

- Sum of positive values of i^{th} row = No of positive knot of e_{i} .
- Sum of Negative values of i^{th} column = No of negative knot of $e_{i.}$
- ▶ Knot matrix is a Skew Symmetric.
- \blacktriangleright Det(A) = 0.
- Sum of the trace value is zero.
- ➤ All the eigen values are zero.

In
$$S_3$$
, $E(\pi) = \{(1,3)(1,2)\}$
 $A_{\pi} = E(\pi) \times E(\pi)$
 A_{π}
 $= \{(e_1, e_1), (e_1, e_2), (e_1, e_3), (e_2, e_1), (e_2, e_2), (e_2, e_3), (e_3, e_1), (e_3, e_2), (e_3, e_3)\}$
 $M_{\pi} = \begin{pmatrix} 0 & +1 & +1 \\ -1 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$

6.1.8. Algorithm to derive a Knot matrix from a given knot diagram. Let $A_{\pi} = (a_{ij})$; π is a knot diagram.

- 1. Set *i* ← 1, *j* ← 1
- 2. If $\mathbf{i} = \mathbf{j}$, $\mathbf{a}_{ij} \leftarrow \mathbf{0}$; otherwise $a_{ij} = \begin{cases} +1 & \text{if } e_i \text{ is upper than } e_j \\ -1 & \text{if } e_i \text{ is lower than } e_j \\ 0 & \text{if no knot between } e_i \text{ and } e_j \end{cases}$
- 3. If j≤n, j←j+1 and go to step to2; if i≤n, then i←i+1, j←1 and go to step 2; Otherwise go to step 4.
 4. Stop.

Definition 6.1.9. If M_{π} : $\pi \in S_n$ be a square matrix, then M_{π} is called a Knotable matrix

Remark 6.1.10. Any Skew Symmetric in {0, +1, -1} is Knotable Matrix.

Result 6.1.11.

(i)The addition of two knotable matrix need not be knotable matrix.

Knot Matrix

Exam	ple (5.1.1	2.							
(0)	0	1		<u> </u>	0	1		/ 0	0	2\
0	0	0	+	0	0	1	=	0	0	1)
\ −1	0	0/		\-1	-1	0/		\-2	-1	0/

(ii)The product of two knotable matrix need not be knotable matrix.

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

6.2. Signed addition modulo 2

We define a binary operation * called as signed addition modulo 2 on $\{0, -1, 1\}$ as follows.

*	0	1	-1
0	0	1	-1
1	1	0	0
-1	-1	0	0

Definition 6.2.1. If $A = (a_{ij})_{n \times n}$ and $B = (b_{ij})_{n \times n}$, then define $A * B = (c_{ij})_{n \times n}$; where $c_{ij} = a_{ij} \ast b_{ij}$

Definition 6.2.2. Let $A = (a_{ij}) \in M_{\pi}$, $B = (b_{ij}) \in M_{\sigma}$, $C = (c_{ij}) = A * B \in M_{\pi * \sigma}$

Remark 6.2.3. If $a, b \in \{0, -1, 1\}$; $a \neq b$; $a \neq 0$ and $b \neq 0$ then a = -b.

Theorem 6.2.4. If A and B is a knotable Matrix then A*B is also a knotable Matrix. **Proof:** Claim 1: $C_{ii} = 0$ By definition $C_{ii} = a_{ii} * b_{ii}$ = 0(since A and B are skew symmetric matrix) Claim 2: $C_{ij} + C_{ji} = 0$ It is enough to prove that $a_{ij} * b_{ij} + a_{ji} * b_{ji} = 0$ Case 1: $a_{ij} = b_{ij} \neq 0$ $a_{ij} * b_{ij} = a_{ij} * a_{ij} = 0$ Similarly $a_{ji} * b_{ji} = a_{ji} * a_{ji} = 0$ That is $a_{ij} * b_{ij} + a_{ji} * b_{ji} = 0 + 0 = 0$

R. Selvarani

Case 2: $a_{ij} \neq b_{ij} \& a_{ij} \neq 0 \& b_{ij} \neq 0$ By remark2 $a_{ij} = -b_{ij}$ $a_{ij} * b_{ij} = a_{ij} * (-a_{ij}) = 0$ Similarly $a_{ji} * b_{ji} = a_{ji} * (-a_{ji}) = 0$ That is $a_{ij} * b_{ij} + a_{ji} * b_{ji} = 0+0=0$ Case 3: $a_{ij} \neq b_{ij} \& a_{ij} \neq 0 \& b_{ij} = 0$ $a_{ij} * b_{ij} = a_{ij} * 0 = a_{ij}$ Similarly $a_{ji} * b_{ji} = a_{ji} * 0 = a_{ji}$ That is $a_{ij} * b_{ij} + a_{ji} * b_{ji} = a_{ij} * a_{ji} = 0$ Case 4: $a_{ij} \neq b_{ij} \& a_{ij} = 0 \& b_{ij} \neq 0$

The proof is similar to the previous case. Hence A* B is knotable matrix.

Result 6.2.5. Signed addition modulo 2 is a knotable matrix.

REFERENCES

- 1. R.Brauer, Algebras which are connected with semi-simple continuous groups, *Ann. Math.*, 38 (1937) 854–872 .
- H.Wenzl, The structure of Brauer's centralizer algebra, Ann. Math., 128 (1988) 173– 193.
- M.Parvathi and M.Kamaraj, Signed Brauer's algebras, Commun. Algebra., 26(3) (1998) 839–855.
- 4. M.Kamaraj and R.Mangayarkarasi, Knot symmetric algebras, *Res. J. Pure Algebra.*, 1(6) (2011) 141–151.
- 5. M.Kamaraj and R.Selvarani, Generalized knot symmetric algebras in Z*, *International Journal of Scientific and Engineering Research*, 6(3) (2015) 73-80.
- 6. M.Kamaraj and R.Selvarani, Edge crossing matrix, *Global Journal of Pure and Applied Mathematics*, 12(2) (2016) 61-64.