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Abstract. The main purpose of this paper is to introducesidoversion of intuitionistic
fuzzy soft G-modulo theory, which extends the notid modules by introducing some
algebraic structures in soft set. Finally, we Bstigate some basic properties of maximal
intuitionistic fuzzy soft G-modules.
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1. Introduction

The notion of a fuzzy set was introduced Zadeh E4] since then this has been applied
to various algebraic structures. The idea of “duifionistic fuzzy set” was introduced by
Atanassov [3,4] as a generalization of the notibfuzzy set. The concept near ring, a
generalization of both the concepts near ring ardd ring was introduced by
Satyanarayana [19]. Later several author such a#hB[6] and Satyanarayana [19]
studied the real theory ofl - near rings. Later Jun.et.al [8,9,10,11] considetiee
fuzzification of left (respectively right) ideals 6- near rings. In 1999 Molodtsov [17]
proposed an approach for modeling vagueness anertamty called soft set theory.
Since its inception works on Soft set theory hasnbapplied to many different fields,
such as function smoothness, Riemann integratieaysen integration, Measurement
theory, Game theory and decision making. Maji efH] defined some operations on
soft sets. Aktas and Naimcagman [1] generalizedssa$ by defining the concept of soft
groups. After them, Sun et al [22] gave soft mogul&tagun and Sezgin [2] defined the
concepts of soft sub rings of a ring, soft sub Ieled a field and soft sub modules of a
module and studied their relative properties wihpect to soft set operations. Atagun
and Sezgin [20] defined soft N-subgroups and sefiédils of an N-group. Naimcagman
et al. [20] introduced the concept of union suldties of an near rings and N-
subgroups. In this paper, we investigate basic imer®f properties of maximal
Intuitionistic Fuzzy Soft N-ideals and propertidsnmaximal Intuitionistic Fuzzy Soft N-
ideals.
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2. Preiminaries
In this section we include some elementary aspbatsare necessary for this paper, from
now on we denote & near ring and N is ideal unless otherwise spextifi

Definition 2.1. [15] A nonempty set R with two binary operations ‘+ddition) and “.
(multiplication) is called a Near-ring if it satig§ the following axioms.

® (R, +) is a group.

(i) (R, .)is a semigroup.

(i) (x+y). z =x. z +y.z for all x,y,Z1 R.

Definition 2.2. [16] A - near ring is a triple (M,4,) where
® (M,+) is a group.
(i) I is a nonempty set of binary operations on M suwt for all,
(M,+,a) is a near ring.
(i) xa(yfSz) = (xay) gz for all x,y,z00 M anda, 3 OT.

Definition 2.3. [16] A subset A of d - near ring M is called a left (respectively right)
ideal of M if

(@ (A,+) is a normal divisor of (M,+).

(i) Ua(x+V) - UaV O A ( respectively U O A) for all xJ A, al" and
uviMm

Definition 2.4. [8] A fuzzy set A in d - near ring M is called a fuzzy left (respectively
right) ideal of M if

0) A(x-y) 2min{ Ay, Ay }

(i) A(y+x-y) 2 Ay for all x, yO M

(i) A(Ua(x+V) - UaV) 2 A for all x, U, VO M andalr.

Definition 2.5. [1] Let X be an initial universal Set and E be a $giamameters. A pair
(F,E) is called a soft set over X if and only ifid=a mapping from E into the set of all
subsets of the set that is F:B(X) where p(x) is the power set of X.

Definition 2.6. [15] The relative complement of the soft sat &ver U is denoted byF
where K’ : A - p(U) is a mapping given as'Ra) = U/ R (a) for all a0A.

Definition 2.7. Let X be a non-empty fixeda: X -[0,1] andva: X -[0,1] denote the
degree of membership of each elemeniXxto the set S respectively andQ (x)+
va(X)<1.

Notation: For the sake of simplicity, we shall use the syh#be < s va> for the IFS
A ={< X, Ha(X),Va (X)> / XOX}

Definition 2.8. Let A be an IFS in & - near ring M, for each pairos3> O [0,1] with
o+B < 1, the set Ayp- = { XOX / pa(x) =2 a and va (X)< B} is called a «,3> level
subset of A.
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Definition 2.9. [9] Let G be a finite group. A vector space M oxdield K is called a
G- module if for every ¢ G and me M, there exists a product (called the actioGof
on M) m.ge M satisfying the following axioms.

h)ml;=m,vmeM (1l; being the identity element in G)

i) m.(g.h) = (m.g).hy me M ; g, he G

iii) (ymy +k; my).g =k, (my.9)+ ky(my.09), V ki ky e K my, mye M; ge G

Example2.1.[9] Let G ={1, -1, i, -i} and M =C" (n>1). Then M is a vector space
over C and under the usual addition and multiplicatiof complex numbers, we
can show that M is a G-module.

Definition 2.10. [9] Let M be a G-module. A vector subspace N of M i&-aub module
if N is also a G-module under the same actio® .of

Definition 2.11. [9] Let M andM* be G-modules. A mapping: M — M*is a G-
module homomorphism if

) o(kymy+ kymy) =ky. o( my)+ kao(my) and,

i) o(m.g)=p(m).g, V k;,k;eK;m,my,m;eM;geG
Further if, ¢ is 1-1, theng is an isomorphism. The G-modules M and M¥ said
to be isomorphic if there exists an isomorphiswf M onto M*. Then we write M=
M* .

Definition 2.12. [9] Let M be a nonzero G-module. Then M is irreducibline only G-
sub modules of M are M and {0}.Otherwise M isueible

Definition 2.13. [1] Let U be an initial Universal Set and E be a $qtamameters. A pair
FS(U) denotes the fuzzy power set of U and &. A pair (F,A) is called a fuzzy soft set
over U, where F is a mapping given by Ef(U).

A fuzzy soft set is a parameterized family of fuszypsets of U.

Definition 2.14. An intutionistic fuzzy soft set A on Universe Xrcde defined as
follows A = {< X, Ha(X) va (X)> / XTX} where pa(x): X -[0,1] and Va(X):
X =[0,1] with the property Sua (X)+va(X)<1, the value ofia (X) and va(X) denote the
degree of membership and non-membership of x teggectively.

[Ta ()= 1 -pa(X) - va(x) is called the intutionistic fuzzy soft index.

Definition 2.15. Let U be an initial Universal Set and E be a $gparameters. A pair
IFS(U) denotes the intutionistic fuzzy soft setiovd and A E. A pair (F,A) is called
an intutionistic fuzzy soft set over U, where Rimapping given by F:AIFS(U).

Definition 2.16. Let G be a group. Let M be a G-module of V aqg be a intuitionstic
fuzzy soft set over V. Thefy, is called Intuitionstic Fuzzy Soft G-module of VF§G-
m), denoted bw,, <; V if the following properties are satisfied
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(i) p(ax + by)= p(x) N p(y) andv(ax+by)< v(x) Uv(y),
(i) pw(ox) = u(x) and v(ax) < v(x) ,for all x, ye M, a,b,ct € F.

Example2.2. Let G = {1,-1} , M = R over R. Then M is a G-module.
Define A on M by,
1, if x, = 0 Vi

Alx) = {0.5, if atleastx;, = 0.
where x=§,, ¥, X;, X,}; X; € R. Then A'is a inuitionstic fuzzy soft G-Module

Example 2.3. Let R be the set of all integers. Then R is g.rifeke M 1" = R. Let a,b
O M, adrl, Suppose a b is the product of a,l[IR, then M is & — near ring.
Define an IFSS A = €15 va> in R as follows

HA(O) =1 and HA(il) = uA(iZ) = U-A(ig) = ... =t
And va(0) = 1 andva(zl) =va(x2) =va(x3) = ..... =s wheref (0,1) and €1 (0,1) and
t+s< 1.

By routine calculations, clearly A is an intutiatiisfuzzy soft G-module of M.

Example 2.4. Consider the additive group {Z +) is a multiplication given in the
following table. (%, +) is a near ring.
0 1

AWINEFL O
OoOlwo|lw|o
AlWINFR O
NWAOWOIN
OWo|Iwo|lw
AWNRFROM
NiwlhlO1O|OT

5 3 5 1 3 5 1
But consider the G-module , we define soft set Y®y G(0)={1,3,5} and G(3)={1,5}
Since G(4.(2+3) - 4.2) = G(4.5-4.2)= G(2-2) ©>={1,3,5} O G(3)={1,5}

3. Propertiesof intutionistic fuzzy soft G-modules
Proposition 3.1. Given an IFSG-m A of & — near ring M. Let A* be the IFSS in M
defined byuas(X) = Ha(X)+1 - Ha(0), Var(X) = Va(X)+1 -va(0) for all xOd M .Then A* is
an IFSG-m of M.
Proof: For all xO M usepas(X) = Ha(X)+1 - Ha(0) = 1 andvas(X) =va(X) -va(0) =0
We have
() pa(ax+by) =pa(ax+by)+1 41a(0)
= min {Ha(X), Ha(Y)}+1 - pa(0)
= min fia(x)+1- pa(0), Ha(y) + 1 -pa(0)}
= min fia-(X), Ha-(y)} and
Va(@x+by) =va(ax+by) -va(0)
< max {Va(x), Va(y)} - va(0)
= maxya(x)- Va(0), Va(y) - va(0)}
= maxya(X), Va (¥)}
(i) Ha(0x)  =Ha(ax)+1 - pa(0)
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> Ha(X)*+1 - pa(0)
=Har(X)
Vas(axX) =Vva(ax) - va(0)
< Va(X) - va(0)
= va(X)

Corollary: Let A and A* be as in Property 3.1, if there exist] M such that A*(x) =0
then A(x) = 0.

Proposition 3.2. Let A be a IFSG-module of B—near ring M and let f:[@(0)] —[0,1],
0:[0,v(0)] —[0,1] are increasing functions. Then the IFS. M — [0,1] defined byp:_qf
=f(pa(X)), Va, =f(va(X)) is IFSG-module of M.
Proof: Let x,y(O M we have
Ha (ax+by) = flua(ax+by))
> f (min {pa(x), pa(y)})
= min {f (1a(x)),f(Ha(¥))}
= min e, (), a, ()}
Va, (ax+by) =f0a(ax+by))
<f (max {va(x), va(y)})
= max {f ¢a(x)),f(va(y))}
= max ¥ (x), Va, ()}
Hag (0x) = fua(ax)
> f(Ha(X))
“Hag ()
Vag (ax)  =fQa(ox)
< f(va(x))
Var )
Therefore Ais an IFSG-module of M.
Note: If f[ua(0)] = 1, thenuAf (0)=1 and Ma(x)] =0 andvAf (xX) =0then Ais
normal.

Assume that f(t) = fia(X)] = pa(X) and f(t) = fua(X)] < va(x) for any xO M which gives
A DA;.

Proposition 3.3. Let A 0 N(M) is a non constant maximal element of (N(W), Then A
takes only the two values (0,1) and (1,0).
Proof: Since A is normal, we hayg(0)=1 andva(0) =0, andua(X) #1 and va(x) # 0
for some x(0 M , we consider thatia(0)=1 andva(0) = 0, If not theridx, O M such
that O<pa(X)<1 and Gva(Xg)<l.

Define an IFSS on M, by setting

Hs (ax+by) = pa(ax+by)+pa(xg)] /2 and

Vs (ax+by) = ba(ax+by)+va(xg)] / 2 for all xO' M
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Then clearlyd is well defined and for all x, ¥ M
We have s (ax+by) = [a(@x+by)+pa(%o)] / 2
> %o { min { pa(X), Ha(¥)} + Ha(X0)}
min { [Ma(X)+ Ha(X0)] / 2, [Ha(Y)* Ha(X0)] / 2 }
min { s (X), K5 (Y)}
Vs (ax+by) = pa(ax+by)+va(xg)] / 2
< Y2 {min { va(X), Va(¥)} + Va(Xo)}
< min { [Va(X)+ Va(Xo)] / 2, Va(¥)+ Va(x0)] / 2 }
< min {vs (x), V5 ()}
Ms(ox) = [Ha(ox)+ pa(Xo)] / 2
> %2 { Ha(X)} + Ha(X0)}
=Ha(X)+ Ha(Xo) / 2
=Hs(X)
Vs(ox) = Ma (0X)+ Va(Xo)] / 2
< Y2 {Va(X)+ Va (X0)}
=Vs(X)
Therefored is an IFSG-module of M.

\YAm\Y}

Proposition 3.4. If {A;/iO I} is a family of IFSG-module on M, therilg, A) IFSG-
module of M.

Proof: Let {A;/iO I} is a family of IFSG-module on M.
For all x, yOI M, we have
(L1 A) (ax+by) = inf { A (ax+by) / 11 I}
zinf{min {A;(x), Ai(y)}/i01}
=min { {oi A) (X), Tor A) ()}
(Go1 Aj) (ax+by) = sup { A(ax+by) / T I}
<sup {max { A(x), Ai(y)}/i0 1}
=max { o1 A) (X), Gor A) ()}
Cor A) (@x) = inf{ Ai(ax) /i0 1}
>inf{Ai(x)/iO1}
= Uoi A) ()
Goi A) (ax) = sup {A(ax) /il 1}
<sup{AX)/iO1}
= Uor A) (¥)
Hence (o) A)) IFSG-module of M.

Definition 3.1. An IFSG-module A of M is said to be complete ifstnormal and if(x
0 M such that A(x)=0.

Proposition 3.5. Let A be an IFSNG-module of M and ketbe a fixed element of M
such that a fuzzy soft set A*in M by

A*(X) = JAKX) — A(w)] / JA(1) — A(w)] for all x O M then A* is an complete
IFSG-module of M.
Proof: For any x,\{1 M, we have
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Ha-(@x+by) = [A(ax+by) — AE)] / [A(1) — A(w)]
2 [min{A(X), A(y)} — A( )]/ [A(1) - A(w)]
= min{[AX)-A@)JAL)-A(W)LIAY)-A(W)AL)-A(w)]}
= min{A*(x),A*(y)}
Also vas(ax+by) = [A(ax+by) — AQ)] / [A(L) — A(w)]
< [max{A(x), A(y)} — A(w)] / [A(1) — A(w)]
= max{[AX)-AWVA(L)-A(W)]IAY)-A(W)AL)-A(wW)]}
= max{A*(x),A*(y)}
Has(ax) = [A(ax) — A()] / [A(1) — A(w)]
2 [A(X) — A(w)] 7 [A(1) — A(w)]
= A*(x)
Vas(ax) = [A(ax) = A(@)] / [A(1) — A(w)]
<[AX) — A(w)] / [A(1) - A(w)]
= A*(X)
Therefore A* is a complete IFSG-module of M.

4. Conclusion

This paper summarized the basic concepts of Iphigiic fuzzy soft-G modules. By
using these concepts, we studied the algebraictstas of IFSG-module with suitable
example. To extend this work one could study tlaperty of IFS sets in other algebraic
structures such as groups and fields.
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