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Abstract. The main purpose of this paper is to introduce a basic version of intuitionistic 
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intuitionistic fuzzy soft G-modules. 
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1. Introduction 
The notion of a fuzzy set was introduced Zadeh [24] and since then this has been applied 
to various algebraic structures. The idea of “an intuitionistic fuzzy set” was introduced by 
Atanassov [3,4] as a generalization of the notion of fuzzy set.  The concept Γ- near ring, a 
generalization of both the concepts near ring and  Γ- ring was introduced by 
Satyanarayana [19].  Later several author such as Booth [6] and Satyanarayana [19] 
studied the real theory of  Γ- near rings. Later Jun.et.al [8,9,10,11] considered the 
fuzzification of left (respectively right) ideals of Γ- near rings. In 1999 Molodtsov [17] 
proposed an approach for modeling vagueness and uncertainty called soft set theory. 
Since its inception works on Soft set theory has been applied to many different fields, 
such as function smoothness, Riemann integration, Pearson integration, Measurement 
theory, Game theory and decision making. Maji et al. [15] defined some operations on 
soft sets. Aktas and Naimcagman [1] generalized soft sets by defining the concept of soft 
groups. After them, Sun et al [22] gave soft modules.  Atagun and Sezgin [2] defined the 
concepts of soft sub rings of a ring, soft sub ideals of a field and soft sub modules of a 
module and studied their relative properties with respect to soft set operations. Atagun 
and Sezgin [20] defined soft N-subgroups and soft N-ideals of an N-group. Naimcagman 
et al. [20] introduced the concept of union substructures of an near rings and N-
subgroups. In this paper, we investigate basic version of properties of maximal 
Intuitionistic Fuzzy Soft N-ideals and properties of maximal Intuitionistic Fuzzy Soft N-
ideals. 
 
 



M.Subha and G. Subbiah 

272 
 

 

2.  Preliminaries 
In this section we include some elementary aspects that are necessary for this paper, from 
now on we denote a Γ- near ring and N is ideal unless otherwise specified. 
 
Definition 2.1. [15] A nonempty set R with two binary operations ‘+’ (addition) and “.” 
(multiplication) is called a Near-ring if it satisfies the following axioms. 

(i)  (R, +) is a group. 
(ii)  (R,  .) is a semigroup. 
(iii)  (x+y). z = x. z + y.z for all x,y,z ∈ R. 

 
Definition 2.2. [16] A  Γ- near ring is a triple (M,+, Γ) where 

(i) (M,+)  is a group. 
(ii)  Γ is a nonempty set of binary operations on M such that for α∈Γ, 

(M,+,α) is a near ring. 
(iii)  xα(y z) = (xαy) z for all x,y,z ∈ M and α,  ∈Γ. 

 
Definition 2.3. [16] A subset A of a Γ- near ring M is called a left (respectively right) 
ideal of M          if     

 (i)       (A,+) is a normal divisor of  (M,+).  
 (ii) Uα(x+V) - UαV ∈ A ( respectively  xαU ∈ A) for all x ∈ A, α∈Γ and 
U,V ∈ M 
 
Definition 2.4. [8]  A fuzzy set  A in a Γ- near ring M is called a fuzzy left (respectively 
right) ideal of M if   

(i) A(x-y) ≥ min{ A (x) , A(y) } 
(ii)  A(y+x-y) ≥ A(x)  for all x, y ∈ M   
(iii)  A( Uα(x+V) - UαV) ≥ A(x)  for all x, U, V ∈ M  and α∈Γ. 

 
Definition 2.5. [1] Let X be an initial universal Set and E be a set of parameters. A pair 
(F,E) is called a soft set over X if and only if F is a mapping from E into the set of all 
subsets of the set that is F:E→p(x) where p(x) is the power set of X. 
 
Definition 2.6. [15] The relative complement of the soft set FA   over U is denoted by FA

r  

where FA
r  : A→p(U) is a mapping given as FA

r (α) = U/ FA
 (α) for all α∈A. 

 
Definition 2.7. Let X be a non-empty fixed µA: X→[0,1] and νA: X→[0,1] denote the 
degree of membership of each element x∈X to the set S respectively and 0≤µA (x)+ 

νA(x)≤1. 
 
Notation: For the sake of simplicity, we shall use the symbol A = < µA, νA> for the IFS  
A = {< x, µA(x), νA (x)> / x∈X} 
 
Definition 2.8. Let A be an IFS in a Γ - near ring M, for each pair <α,β> ∈ [0,1] with 
α+β ≤ 1, the set A<α,β> = { x∈X /  µA(x) ≥ α  and  νA (x)≤ β} is called a <α,β> level 
subset of A. 
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Definition 2.9. [9] Let G be  a  finite  group. A  vector space M over a field K  is  called a 
G- module if for every g ϵ G and m ϵ M, there exists a product  (called the  action of G 
on M )   m.g ϵ M satisfying  the  following  axioms.  

i) m.  = m, ∀ m ϵ M (    being  the  identity  element  in G) 
ii) m.(g.h) = (m.g).h, ∀ m ϵ M ;  g, h ϵ G 

            iii) (  ).g = ( .g)+ ( .g),  ∀   ϵ K ;   ϵ M; gϵ G  
 
Example 2.1. [9] Let  G = {1, -1, i, -i}  and  M =   ( n ≥ 1). Then M  is  a vector  space  
over   ℂ  and  under the usual addition  and  multiplication  of  complex  numbers, we  
can  show  that  M  is  a  G-module. 
 
Definition 2.10. [9]  Let M be a G-module. A vector subspace N of M is  a G-sub module 
if N  is  also a G-module under the same action of G.   
 
Definition 2.11. [9] Let M and   be  G-modules. A mapping φ : M →  is  a G-
module homomorphism if 

i) φ( . + . ) =  φ( )+ φ( )  and,  
ii)  φ(m.g) = φ(m).g,     ∀   ,  ϵ K ; m, ,  ϵ M ; g ϵ G 

Further  if,  φ is  1-1, then  φ  is   an  isomorphism. The G-modules M  and M*  are said 
to be isomorphic  if  there exists an isomorphism φ of M onto M*. Then we  write  M ≅ 

 . 
 
Definition 2.12. [9] Let M be a nonzero G-module. Then M is irreducible if the only G-
sub modules of M are M  and  {0}.Otherwise M is reducible. 
 
Definition 2.13. [1] Let U be an initial Universal Set and E be a set of parameters. A pair 
FS(U) denotes the fuzzy power set of U and A ⊂ E. A pair (F,A) is called a fuzzy soft set 
over U, where F is a mapping given by F:A→p(U). 
A fuzzy soft set is a parameterized family of fuzzy subsets of U. 
 
Definition 2.14. An intutionistic fuzzy soft set A on Universe X can be defined as 
follows A = {< x, µA(x), νA (x)> / x∈X} where µA(x): X→[0,1] and                    νA(x): 
X→[0,1] with the property 0≤µA (x)+ νA(x)≤1, the value of µA (x) and  νA(x) denote the 
degree of membership and non-membership of x to A, respectively.  

∏A (x)= 1 - µA(x)  - νA (x) is called the intutionistic fuzzy soft index. 
 
Definition 2.15. Let U be an initial Universal Set and E be a set of parameters. A pair 
IFS(U) denotes the intutionistic fuzzy soft set over  U and A ⊂ E. A pair (F,A) is called 
an intutionistic fuzzy soft set over U, where F is a mapping given by F:A→IFS(U). 
 
Definition 2.16. Let G be a group. Let M be a G-module of V and be a intuitionstic 
fuzzy soft set over V. Then  is called Intuitionstic Fuzzy Soft G-module of V (IFSG-
m), denoted by   V if the  following properties are satisfied 
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(i) µ(ax + by)  µ(x) ∩ µ(y)  and ν(ax+by) ⊆ ν(x) ν(y),   
(ii)   µ( x)  µ(x)  and   ν( x) ⊆ ν(x) ,for all x, y  M, a,b,  F. 
 
Example 2.2. Let G = {1,-1} , M = R4 over R. Then M is a G-module. 
Define A on M by, 

  A(x) =  

where x={ , , , };  R. Then A is a inuitionstic fuzzy soft G-Module 
 
Example 2.3.  Let R be the set of all integers. Then R is a ring. Take M – Γ = R. Let a,b 
∈ M, α∈Γ, Suppose a α b is the product of a,b, α∈R, then M is a Γ – near ring. 
Define an IFSS A = < µA, νA> in R as follows  
µA(0) = 1 and  µA(±1) = µA(±2) = µA(±3) = ….. = t 
And νA(0) = 1 and νA(±1) = νA(±2) = νA(±3) = ….. = s  where t ∈ (0,1) and s ∈ (0,1) and 
t+s ≤ 1. 
By routine calculations, clearly A is an intutionistic fuzzy  soft G-module of M. 
 
Example 2.4. Consider the additive group (Z6 , +) is a multiplication given in the 
following table. (Z6 , +) is a near ring. 

. 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 3 1 5 3 1 5 
2 0 2 4 0 2 4 
3 3 3 3 3 3 3 
4 0 4 2 0 4 2 
5 3 5 1 3 5 1 

But consider the G-module , we define soft set (G,*) by G(0)={1,3,5} and G(3)={1,5} 
Since G(4.(2+3) - 4.2) = G(4.5 – 4.2 )=  G(2-2) = G(0) = {1,3,5}   ∉  G(3)={1,5}  
 
3.  Properties of  intutionistic fuzzy soft G-modules 
Proposition 3.1. Given an IFSG-m  A of a Γ – near ring M. Let A* be the IFSS in M 
defined by µA* (x) = µA(x)+1 - µA(0), νA* (x) = νA(x)+1 - νA(0) for all x ∈ M .Then A* is 
an  IFSG-m of M. 
Proof: For all x ∈ M use µA* (x) = µA(x)+1 - µA(0) = 1 and  νA*(x) = νA(x) - νA(0) = 0 
We have 

(i) µA* (ax+by) = µA(ax+by)+1 - µA(0) 
                ≥ min {µA(x), µA(y)}+1 - µA(0) 
                = min {µA(x)+1- µA(0),  µA(y) + 1 - µA(0)} 
                = min {µA* (x), µA* (y)} and  
                  νA*(ax+by)  = νA(ax+by) - νA(0) 
                ≤ max {νA(x), νA(y)} - νA(0) 
                = max {νA(x)- νA(0),  νA(y) - νA(0)} 
                = max {νA*(x), νA* (y)} 

(ii)   µA*(αx)       = µA(αx)+1 - µA(0) 
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                ≥  µA(x)+1 - µA(0) 
          = µA* (x) 
                         νA* (αx) = νA(αx) - νA(0) 
                ≤  νA(x) - νA(0) 
      =  νA*(x) 
 
Corollary: Let A and A* be as in Property 3.1, if there exists x ∈ M such that A*(x) = 0 
then A(x) = 0.  
 
Proposition 3.2. Let A be a IFSG-module of a Γ–near ring M and let f:[0,µ(0)] →[0,1], 
g:[0,ν(0)] →[0,1] are increasing functions. Then the IFS Af : M → [0,1] defined by   

=f(µA(x)),  =f(νA(x)) is IFSG-module of M. 

Proof: Let x,y ∈ M we have 
  (ax+by) = f(µA(ax+by)) 

            ≥ f (min {µA(x), µA(y)}) 
            = min {f (µA(x)),f(µA(y))} 
            = min {  (x),  (y)} 

  (ax+by)   = f(νA(ax+by)) 

            ≤ f (max {νA(x), νA(y)}) 
            = max {f (νA(x)),f(νA(y))} 
            = max {  (x),  (y)} 

    (αx)       = f(µA(αx) 

            ≥  f(µA(x)) 
            =  (x) 

      (αx)      = f(νA(αx) 

            ≤  f(νA(x)) 
            =  (x) 

Therefore Af is an IFSG-module of M. 
Note: If  f[ µA(0)] = 1, then  (0)=1  and  f[νA(x)] = 0 and  (x)  = 0 then Af  is 

normal. 
Assume that f(t) = f[µA(x)] ≥ µA(x) and f(t) = f[νA(x)] ≤ νA(x) for any x ∈ M which gives 
A ⊆ Af . 
 
Proposition 3.3. Let A ∈ N(M) is a non constant maximal element of (N(M),⊆). Then A 
takes only the two values (0,1) and (1,0). 
Proof: Since A is normal, we have µA(0)=1  and  νA(0)  = 0, and µA(x) ≠1  and  νA(x) ≠ 0 
for some x ∈ M , we consider that µA(0)=1  and  νA(0)  = 0, If not then ∃ x0 ∈ M such 
that 0<µA(x0)<1 and 0<νA(x0)<1. 
 Define an IFSS δ on M, by setting  
 µδ (ax+by) = [µA(ax+by)+ µA(x0)] / 2 and 
 νδ (ax+by) = [νA(ax+by)+ νA(x0)] / 2 for all x ∈ M 
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Then clearly δ  is well defined and for all x, y ∈ M 
We have  µδ (ax+by) = [µA(ax+by)+ µA(x0)] / 2 
         ≥ ½ { min { µA(x), µA(y)} + µA(x0)} 
         ≥  min { [µA(x)+ µA(x0)] / 2, [µA(y)+ µA(x0)] / 2 } 
         ≥  min { µδ (x), µδ (y)} 
  νδ (ax+by) = [νA(ax+by)+ νA(x0)] / 2 
        ≤ ½ { min { νA(x), νA(y)} + νA(x0)} 
        ≤  min { [νA(x)+ νA(x0)] / 2, [νA(y)+ νA(x0)] / 2 } 
        ≤  min { νδ (x), νδ (y)} 
              µδ (αx)      = [µA(αx)+ µA(x0)] / 2 
         ≥ ½ { µA(x)} + µA(x0)} 
         = µA(x)+ µA(x0) / 2 
         = µδ (x) 
                νδ (αx)     = [νA (αx)+ νA(x0)] / 2 
         ≤ ½ { νA(x)+ νA (x0)} 
         = νδ (x) 
 Therefore  δ is an  IFSG-module of M. 
 
Proposition 3.4. If  {A i / i∈ I} is a family of IFSG-module on M, then (∧i∈ I Ai) IFSG-
module of M. 
Proof:  Let  {Ai / i∈ I} is a family of IFSG-module on M. 
 For all x, y ∈ M, we have 

(∧i∈ I Ai) (ax+by) = inf { Ai (ax+by) / i∈ I} 
          ≥ inf { min { A i (x), Ai (y)} / i ∈ I} 
          = min { (∧i∈ I Ai) (x), (∧i∈ I Ai) (y)} 

(∨i∈ I Ai) (ax+by) = sup { Ai (ax+by) / i∈ I} 
          ≤ sup { max { Ai (x), Ai (y)} / i ∈ I} 
          = max { (∨i∈ I Ai) (x), (∨i∈ I Ai) (y)} 

  (∧i∈ I A i) (αx)     = inf { Ai (αx) / i∈ I} 
          ≥ inf { A i (x) / i∈ I} 
          = (∧i∈ I A i) (x) 

    (∨i∈ I Ai) (αx)   = sup { Ai (αx) / i∈ I} 
          ≤ sup { Ai (x) / i∈ I} 
          =  (∨i∈ I Ai) (x) 
 Hence  (∧i∈ I Ai) IFSG-module of M. 
 
Definition 3.1. An IFSG-module A of M is said to be complete if it is normal and if  ∋ x 
∈ M such that  A(x)=0. 
 
Proposition 3.5.  Let A be an IFSNG-module of M and let ω be a fixed element of M 
such that a fuzzy soft set  A* in M by 

A*(x) = [A(x) – A( ω)] / [A(1) – A(ω)] for all x ∈ M then A* is an complete 
IFSG-module of M. 
Proof: For any x,y ∈ M, we have 
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 µA* (ax+by) = [A(ax+by) – A(ω)] / [A(1) – A(ω)] 
         ≥ [min{A(x), A(y)} – A( ω)] / [A(1) – A(ω)] 
         = min{[A(x)–A(ω)]/[A(1)–A(ω)],[A(y)–A(ω)]/[A(1)–A(ω)]} 
         = min{A*(x),A*(y)} 
Also    νA*(ax+by)  = [A(ax+by) – A(ω)] / [A(1) – A(ω)] 
          ≤ [max{A(x), A(y)} – A( ω)] / [A(1) – A(ω)] 
          = max{[A(x)–A(ω)]/[A(1)–A(ω)],[A(y)–A(ω)]/[A(1)–A(ω)]} 
          = max{A*(x),A*(y)} 
               µA* (αx)    = [A(αx) – A(ω)] / [A(1) – A(ω)] 
          ≥ [A(x) – A(ω)] / [A(1) – A(ω)] 
          = A*(x) 
                 νA*(αx)   = [A(αx) – A(ω)] / [A(1) – A(ω)] 
           ≤ [A(x) – A(ω)] / [A(1) – A(ω)] 
           = A*(x) 

Therefore A* is a complete IFSG-module of M. 
 
4. Conclusion  
This paper summarized the basic concepts of Intuitionistic fuzzy soft-G modules. By 
using these concepts, we studied the algebraic structures of IFSG-module with suitable 
example. To extend this work one could study the property of IFS sets in other algebraic 
structures such as groups and fields. 
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