Intern. J. Fuzzy Mathematical Archive Vol. 15, No. 2, 2018, 279-283 ISSN: 2320 – 3242 (P), 2320 – 3250 (online) Published on 30 April 2018 <u>www.researchmathsci.org</u> *DOI: http://dx.doi.org/10.22457/ijfma.v15n2a20*

International Journal of **Fuzzy Mathematical Archive**

A Note on Characterization of Intuitionistic Fuzzy Bi-Ideals of Near Rings

M.Ramachandran¹ and K.Dhilip Kumar²

 ¹Department of Mathematics, Government Arts & Science College Sathyamangalam-638401, Tamilnadu, India. E-mail: <u>dr.ramachandran64@gmail.com</u>
 ²Department of Mathematics, SSM College of Arts & Science Komarapalayam-638183, Tamilnadu, India. E-mail: <u>dhilipkumarmaths@gmail.com</u>

Received 17 March 2018; accepted 21 April 2018

Abstract. In this paper, we introduce the notion of intuitionistic fuzzy bi-ideals of nearrings. We give some characterizations of intuitionistic fuzzy bi-ideals of near-rings.

Keywords: Near-rings, Bi-ideals, Fuzzy bi-ideals, Intuitionistic fuzzy set, Intuitionistic fuzzy subring, Intuitionistic fuzzy ideal, Intuitionistic fuzzy bi-ideal.

AMS Mathematics Subject Classification (2010): 16D25; 03E72; 16Y30; 03F55

1. Introduction

The notion of intuitionistic fuzzy set (IFS) was introduced by Atanassov [2] as a generalization of notion of fuzzy sets. The concept of near-rings was introduced by Pilz [9]and that of quasi-ideal in near ring was introduced by Yakabe [12]. The notion of biideals was introduced by Chelvam and Ganesan [4].

In this paper we study the intuitionistic fuzzification of the notion of bi-ideals in near-rings. We give characterizations of intuitionistic fuzzy bi-ideals in near-rings.

A *near-ring* is a non empty set N with two binary operations "+" and "." such that

- (i) (N,+) is a group not necessarily abelian
- (ii) (N, .) is a semi group
- (iii) (x + y).z = x.z + y.z, for all $x, y, z \in \mathbb{N}$.

Precisely speaking it is a right near-ring because it satisfies the right distributive law. If the condition (iii) is replace by $z(x + y) = z \cdot x + z \cdot y$ for all x, y, $z \in \mathbb{N}$, then it is called left near-ring. We denote xy instead of x.y. A near-ring N is called **zero symmetric** if $x \cdot 0 = 0$ for all $x \in \mathbb{N}$.

Given two subsets A and B of N, the product AB is defined as

 $AB = \{ab|a \in A, b \in B\}$

A subgroup S of (N, +) is called *left (right) N*-subgroup of N if NS \subseteq S (SN \subseteq S). A subgroup M of (N, +) is called *subnear-ring* of N if MM \subseteq M. A subnear-ring M is called *invariant* in N if MN \subseteq NM \subseteq M.

M. Ramachandran and K. Dhilip Kumar

2. Preliminaries
Definition 2.1. An *ideal* of a near-ring N is a subset I of N such that

(i) (I, +) is normal subgroup of (N, +)
(ii) I N ⊆I
(iii) y (x + i) - yx ∈I for all x, y∈N and i∈I

Note that I is right ideal of N if I satisfies (i) and (ii), and I is left ideal of N if I satisfies
(i) and (iii).

Definition 2.2. A subgroup Q of N is called a *quasi-ideal* of N if $QN \cap NQ \cap N^*Q \subseteq Q$.

Definition 2.3. A subgroup B of N is called a *bi-ideal* of N if BNB∩(BN)*B⊆B.

Definition 2.4. Let X be a non-empty set. A mapping $\mu : X \to [0, 1]$ is a fuzzy set in X. The complement of μ , denoted by μ^c , is the *fuzzy set* in X given by $\mu^c(x) = 1 - \mu(x)$ for all $x \in X$. For any $I \subseteq X$, χ_I denote the characteristic function of I.

Definition 2.5. For any fuzzy set μ in X and $r \in [0, 1]$, we define two sets, U (μ , r) = { $x \in X$ / $\mu(x) \ge r$ } and L(μ , r) = { $x \in X / \mu(x) \le r$ }, which are called an *upper and lower r-level cut* of μ respectively and can be used to the characterization of μ .

Definition 2.6. A fuzzy set μ in N is a *fuzzy subnear-ring* of N if for all $x, y \in \mathbb{N}$,

- (*i*) $\mu(x y) \ge \min\{\mu(x), \mu(y)\}$ and
- (ii) $\mu(xy) \ge \min\{\mu(x), \mu(y)\}.$

Definition 2.7. A fuzzy set μ in N is a *fuzzy bi-ideal* of N if for all $x, y \in \mathbb{N}$,

- (*i*) $\mu(x y) \ge \min\{\mu(x), \mu(y)\}$ and
- (ii) $\mu(xyz) \ge \min\{\mu(x), \mu(z)\}$ for all $x, y, z \in \mathbb{N}$.

3. Intuitionistic fuzzy sets and bi-ideals

Definition 3.1. An *intuitionistic fuzzy set* A in a non-empty set X is an object having the formA={ $(x, \mu_A(x), \nu_A(x))/x \in X$ }, where the functions $\mu_A: X \to [0,1]$ and $\nu_A: X \to [0,1]$ denote the degree of membership and the degree of non-membership of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for all $x \in X$.

For the sake of simplicity, we shall use the symbol $A = (\mu_A, \nu_A)$ for the intuitionistic fuzzy set $A = \{(x, \mu_A(x), \nu_A(x)) | x \in X\}$.

Definition 3.2 An intuitionistic fuzzy set $A = (\mu_A, \nu_A)$ of a group (G, +) is said to be an *intuitionistic fuzzy subgroup* of G if for all $x, y \in G$

(i) $\mu_A(x + y) \ge \min\{\mu_A(x), \mu_A(y)\}$ (ii) $\mu_A(-x) = \mu_A(x)$ (iii) $\mu_A(-x) = \mu_A(x)$

(*iii*) $\nu_A(x + y) \leq max\{\nu_A(x), \nu_A(y)\}$

A Note on Characterization of Intuitionistic Fuzzy Bi-Ideals of Near Rings

$$(iv) \quad v_A(-x) = v_A(x)$$

Equivalently, $\mu_A(x - y) \ge \min\{\mu_A(x), \mu_A(y)\}$ and $\nu_A(x - y) \le \max\{\nu_A(x), \nu_A(y)\}$ for all $x, y \in G$. Let $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ be two intuitionistic fuzzy subset of a near-ring N. We define the product of A and B as $AB = (\mu_{AB}, \nu_{AB})$. If $S \subseteq N$, then, we define the characteristic function χ_S on N is defined as

$$\chi_s(x) = \begin{cases} (1,0) \text{ if } x \in S\\ (0,1) \text{ if } x \in N \setminus S \end{cases}$$

The characteristic function on N is χ_N and $\chi_N(x) = (1, 0)$ for all $x \in N$

Definition 3.3. Let A be an intuitionistic fuzzy set of a universe set X. Then (α,β) -cut of A is a crisp set $C_{(\alpha,\beta)}$ (A) of the intuitionistic fuzzy set A is given by $C_{(\alpha,\beta)}(A) = \{x:x \in X \text{ such that } \mu_A(x) \ge \alpha, \nu_A(x) \le \beta\}$ where $\alpha, \beta \in [0,1]$ with $\alpha + \beta \le 1$.

Definition 3.4. An intuitionistic fuzzy set $A = (\mu_A, \nu_A)$ in N is an *intuitionistic fuzzy* subnear-ring of N if for all $x, y \in N$,

(v) $\mu_A(x - y) \ge \min\{\mu_A(x), \mu_A(y)\}$ (vi) $\mu_A(xy) \ge \min\{\mu_A(x), \mu_A(y)\}$ (vii) $\nu_A(x - y) \le \max\{\nu_A(x), \nu_A(y)\}$ (viii) $\nu_A(xy) \le \max\{\nu_A(x), \nu_A(y)\}.$

Definition 3.5. An intuitionistic fuzzy set $A = (\mu_A, \nu_A)$ in N is an *intuitionistic fuzzy biideal* of N if for all *x*, *y*, *n* \in N,

(i) $\mu_A(x-y) \ge \min\{\mu_A(x), \mu_A(y)\}$

- (ii) $\mu_A(xny) \ge \min\{\mu_A(x), \mu_A(y)\}$
- (iii) $\nu_A(x-y) \leq max\{\nu_A(x), \nu_A(y)\}$
- (iv) $\nu_A(xny) \leq max\{\nu_A(x), \nu_A(y)\}.$

Theorem 3.6. If A and B be two IFBI's of a near-ring N, then $A \cap B$ is IFBI of near-ring N.

Proof. Let $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ be two IFBI's of a near-ring N. Let $x, y \in A \cap B$ be any element.

$$\begin{split} \text{Then } \mu_{A \cap B}(x - y) &= \text{Min} \{ \mu_A(x - y) \ , \mu_B(x - y) \} \\ &\geq \text{Min} \{ \text{Min} \{ \mu_A(x), \mu_A(y) \}, \ \text{Min} \{ \mu_B(x), \mu_B(y) \} \} \\ &= \text{Min} \{ \text{Min} \{ \mu_A(x), \mu_B(x) \}, \ \text{Min} \{ \mu_A(y), \mu_B(y) \} \} \\ &= \text{Min} \{ \mu_{A \cap B}(x), \mu_{A \cap B}(y) \} \\ \text{Thus } \mu_{A \cap B}(x - y) &\geq \text{Min} \{ \mu_{A \cap B}(x) \ , \mu_{A \cap B}(y) \} \\ \text{Similarly, we can show that } \nu_{A \cap B}(x - y) &\leq \text{Max} \{ \nu_{A \cap B}(x) \ , \nu_{A \cap B}(y) \} \\ \text{Next, let } x, \ y \in A \cap B \ \text{and } n \in N \ \text{be any element, then} \\ \mu_{A \cap B}(xny) &= \text{Min} \{ \mu_A(xny), \mu_B(xny) \} \\ &\geq \text{Min} \{ \text{Min} \{ \mu_A(x), \mu_A(y) \}, \ \text{Min} \{ \mu_B(x), \mu_B(y) \} \} \\ &= \text{Min} \{ \ \text{Min} \{ \mu_A(x), \mu_B(x) \}, \ \text{Min} \{ \mu_A(y), \mu_B(y) \} \} \\ &= \text{Min} \{ \ \mu_{A \cap B}(x), \mu_{A \cap B}(y) \} \\ \text{Thus } \mu_{A \cap B}(xny) &\geq \text{Min} \{ \ \mu_{A \cap B}(x), \mu_{A \cap B}(y) \} \end{split}$$

M. Ramachandran and K. Dhilip Kumar

Similarly, we can show that $v_{A \cap B}(xny) \le Max\{v_{A \cap B}(x), v_{A \cap B}(y)\}$ Hence $A \cap B$ is IFBI of ring N.

Corollary 3.7. Intersection of an arbitrary family of IFBI's of a near-ring N is again a IFBI of N.

Theorem 3.8. Let A be IFLI and B be IFRI of a near-ring N, then $A \cap B$ is IFBI of near-ring N.

Proof. Let $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ be two IFBI's of a near-ring N. Let x, $y \in A \cap B$ be any element. Then $\mu_{A \cap B}(x-y) = Min\{\mu_A(x-y), \mu_B(x-y)\}$ \geq Min{Min{ $\mu_A(x), \mu_A(y)$ }, Min{ $\mu_B(x), \mu_B(y)$ }} $= Min\{Min\{\mu_A(x), \mu_B(x)\}, Min\{\mu_A(y), \mu_B(y)\}\}$ $= Min\{\mu_{A \cap B}(x), \mu_{A \cap B}(y)\}$ Thus $\mu_{A \cap B}(x-y) \ge Min\{\mu_{A \cap B}(x), \mu_{A \cap B}(y)\}$ Similarly, we can show that $\nu_{A \cap B}(x-y) \leq Max\{\nu_{A \cap B}(x), \nu_{A \cap B}(y)\}$ Further, let x, $y \in A \cap B$ and $n \in N$, then $\mu_{A \cap B} (xny) = Min\{\mu_A(xny) , \mu_B(xny)\}$ (1)But $\mu_A(xny) \ge \mu_A((xn)y) \ge \mu_A(y)$ and $\mu_B(xny) \ge \mu_B(x(ny)) \ge \mu_B(x)$ implies that $\operatorname{Min}\{\mu_A(xny), \mu_B(xny)\} \ge \operatorname{Min}\{\mu_A(y), \mu_B(x)\}$ (2)As $A \cap B \subseteq A$ and $A \cap B \subseteq B$. So $\mu_{A \cap B}(y) \leq \mu_A(y)$ and $\mu_{A \cap B}(x) \leq \mu_B(x)$ \Rightarrow Min{ $\mu_A(y)$, $\mu_B(x)$ } \geq Min{ $\mu_{A \cap B}(y)$, $\mu_{A \cap B}(x)$ } (3) From (1), (2) and (3), we get $\mu_{A \cap B}(xny) \ge Min\{\mu_{A \cap B}(y), \mu_{A \cap B}(x)\}$ Similarly, we can show that $v_{A \cap B}(xny) \le Max\{v_{A \cap B}(y), v_{A \cap B}(x)\}\$ Hence $A \cap B$ is IFBI of ring N.

Theorem 3.9. Let A be IFS of a near-ring N, then A is IFBI of N if $C_{\alpha,\beta}(A)$ is bi-ideal of N, for all $\alpha,\beta \in [0,1]$ with $\alpha + \beta \leq 1$, where $\mu_A(0) \geq \alpha$ and $\nu_A(0) \leq \beta$ **Proof:** Let A be IFBI of a near-ring N. Then by definition of (α, β) –cut of A, we have $C_{\alpha,\beta}(A) = \{ x \in N : \mu_A(x) \geq \alpha, \nu_A(x) \leq \beta \}$ Since $\mu_A(0) \geq \alpha$, $\nu_A(0) \leq \beta \implies C_{\alpha,\beta}(A) \neq \emptyset$. Let x, $y \in C_{\alpha,\beta}(A)$ be any elements, then $\mu_A(x) \geq \alpha, \mu_A(y) \geq \alpha, \nu_A(x) \leq \beta$., $\nu_A(y) \leq \beta$ $\Rightarrow Min \{\mu_A(x), \mu_A(y)\} \geq \alpha$ and $Max \{\nu_A(x), \nu_A(y)\} \leq \beta$ Now $\mu_A(x-y) \geq Min \{ \mu_A(x), \mu_A(y) \} \geq \alpha$ and $\nu_A(x-y) \leq Max\{\nu_A(x), \nu_A(y)\} \leq \beta$ Next, let x, $y \in C_{\alpha,\beta}(A)$ and $n \in N$ be any element. Then $\mu_A(xny) \geq Min\{\mu_A(x), \mu_A(y)\} \geq \alpha$ and $\nu_A(xny) \geq Max\{\mu_A(x), \mu_A(y)\} \leq \beta$ $\Rightarrow xny \in C_{\alpha,\beta}(A)$. Hence $C_{\alpha,\beta}(A)$ is bi-ideal of N.

Theorem 3.10. If every bi-ideal of a near-ring N is a ideal of N, then every IFBI of N is IFI of N.

A Note on Characterization of Intuitionistic Fuzzy Bi-Ideals of Near Rings

Proof. Let A be IFBI of N. Then by theorem (3.9), $C_{\alpha,\beta}(A)$ be bi-ideal of N, for all α , $\beta \in [0,1]$ with $\alpha + \beta \le 1$, which implies that $C_{\alpha,\beta}(A)$ be ideal of N, for all $\alpha, \beta \in [0,1]$ with $\alpha + \beta \le 1$ and A is IFI of N.

REFERENCES

- 1. S.Abou-Zaid, On fuzzy sub near-rings, Fuzzy Sets and Systems, 81 (1996) 383-393.
- 2. K.T.Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986) 87-96.
- 3. R.Biswas, Intuitionistic fuzzy subgroups, Mathematical Forum, X (1989) 37-46.
- 4. T.T.Chelvam and N.Ganeasan, On bi-ideals of near-rings, *Indian J. pure appl. Math.*, 18 (11) (1987) 1002-1005.
- 5. S.M.Hong, Y.J.Jun, H.S.Kim, Fuzzy ideals in near-rings, *Bull. Korean Math. Soc.*, 35 (1998) 343–348.
- 6. S.D.Kim and H.S.Kim, On fuzzy ideals of near-rings, *Bull. Korean Math. Soc.*, 33(4) (1996) 593-601.
- 7. W.Liu, Fuzzy invariants subgroups and fuzzy ideals, *Fuzzy Sets and Systems*, 8 (1982) 133-139.
- 8. T.Manikantan, Fuzzy bi-ideals of near-rings, *The Journal of Fuzzy Mathematics*, 17 (2009) 1-13.
- 9. G.Pilz, Near-rings, North Holland, Amsterdam, (1983).
- 10. A.Rosenfeld, Fuzzy groups, *Journal Of Mathematical Analysis and Application*, 35 (1971) 512-517.
- 11. P.K.Sharma, Intuitionistic fuzzy ideal of a near-rings, *International Mathematics* Forum, 7(16) (2012) 769-776.
- 12. I.Yakabe, Quasi ideals in near-rings, Math. Rep., XIV-1 (1983) 41-46.
- 13. Z.Jianming and M.Xueling, Intuitionistic fuzzy ideals of near-rings, *Scientiae Mathematicae Japonicae*, (e-2004) 289-293.
- 14. L.A.Zadeh, Fuzzy sets, Inform. and Control, 8 (1965) 338-353.