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1. Introduction 
By a graph, we mean a finite, undirected graph without loops and multiple edges, for 
terms not defined here, we refer to Harary [5]. For standard terminology and notations 
related to number theory we refer to Burton [2] and graph labeling, we refer to Gallian 
[4]. The notion of prime labeling for graphs originated with Roger Entringer and was 
introduced in a paper by Tout et al. [12] in the early 1980s and since then it is an active 
field of research for many scholars. In [13], Vaidya et al. introduced the concept of                     
k-prime labeling of graph. Sundaram et al. introduced the notion of prime cordial labeling 
in [11]. The concept of neighborhood-prime labeling of graph was introduced by Patel et 
al. [10]. Lawrence et al. introduced the notation of k-neighborhood-prime labeling of 
graph in [8]. Lau et al was introduced a variant of prime graph labeling of graph in [6]. In 
[7], Lau et al. introduced SD-prime cordial labeling and they discussed SD-prime cordial 
labeling for some standard graphs. In [9], Lourdusamy et al. investigated some new 
construction of SD-prime cordial graph. In [3], Delman et.al., introduced the concept of             
k-SD-prime cordial labeling of graph and discussed k-SD-prime cordial labeling of some 
standard graphs. In [1], Babujee defined a class of planar graph as graph obtained by 
removing certain edges from the corresponding complete graph. The class of planar 
graph so obtained is denoted by Pln. Here we discuss the SD-Prime cordial labeling of Pln 
graph, for n ≥ 3 and k-SD-Prime cordial labeling of (Pn�K1)∪K1,n,n, for n ≥ 2 and 
Pn∪K1,n,n, for n ≥ 2. 
 
2. Basic definitions  
Definition 2.1. A complete biparitite graph K1,n is called a star and it has n+1 vertices and 
n edges. K1,n,n is the graph obtained by the subdivision of the edges of the star K1,n . 
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Definition 2.2. Let Kn be the complete graph on n vertices Vn = {1,2,...,n}. The class of 
graphs Pln has the vertex set Vn and the edge set  
                           En = E(Kn)\{(k, l) : 3 ≤ k ≤ n–2, k+2 ≤ l ≤ n}. 
 
Definition 2.3. Comb is a graph obtained by joining a single pendant edge to each vertex 
of a path. In other words Pn�K1 is a comb graph. 
 
Definition 2.4. Let G = (V,E) be a graph with n vertices. A function f : V(G) → 
{1,2,3,…,n} is said to be a prime labeling, if it is bijective and for every pair of adjacent 
vertices u and v, gcd(f(u),f(v)) = 1. A graph which admits prime labeling is called a prime 
graph. 
 
Definition 2.5. A k-prime labeling of a graph G is an injective function f : V → {k, k+1,…, 
k+|V|–1} for some positive integer k that induces a function f+: E(G) → N of the edges of 
G defined by f+(uv) = gcd(f(u),f(v)), ∀e = uv∈E(G) such that gcd(f(u), f(v)) = 1, ∀e = uv ∈ E(G). 
The graph which admits a k-prime labeling is called a k-prime graph. 
 
Definition 2.6. Let G = (V,E) be a graph with n vertices. A bijective function f : V(G) → 
{1,2,3,...,n} is said to be a neighborhood-prime labeling, if for every vertex v∈V(G) with 
deg(v) > 1, gcd {f(u): u ∈ N(v)} = 1. A graph which admits neighborhood-prime labeling 
is called a neighborhood-prime graph. 
 
Definition 2.7. Let G = (V(G),E(G)) be a graph with n vertices. A bijective function                   
f:V(G)→{k,k+1,…,k+n–1} is said to be a k-neighborhood-prime labeling, if for every 
vertex v∈V(G) with deg(v) > 1, gcd {f(u) : u∈N(v)} = 1. A graph which admits                        
k-neighborhood-prime labeling is called a k-neighborhood-prime graph. 
 
Definition 2.8. Given a bijection f : V(G) → {1,2,…,|n}, we associate 2 integers S = 
f(u)+f(v) and D = |f(u) − f(v)| with every edge uv in E. The labeling f induces an edge 
labeling f ′ : E(G) → {0,1} such that for any edge uv in G, f ′(uv) = 1 if gcd(S,D) = 1 and 
0 otherwise. We say f is SD-prime labeling if f ′(uv) = 1 for all uv ∈ E(G). Moreover, G 
is SD-prime if it admits SD-prime labeling. 
 
Definition 2.9. Given a bijection f : V(G) → {1,2,…,|V(G)|}, we associate two integers S 
= f(u) + f(v) and D = | f(u) − f(v) | with every edge uv in E(G). The labeling f induces an 
edge labeling f *: E(G) → {0, 1} such that for any edge uv in E(G), f *(uv) = 1 if gcd(S,D) 
= 1 and 0 otherwise. Let ef *(i) be the number of edges labeled with i ∈ {0, 1}. We say f 
is SD-prime cordial labeling if | ef*(0)−ef*(1)| ≤ 1. Moreover G is SD-prime cordial if it 
admits SD-prime cordial labeling. 
 
3. Main theorems 
Theorem 3.1. Pln is a SD-prime cordial graph, for n ≥ 3.  
Proof: Let v1,v2,...,vn be the vertices and e1,e2,...,e3n-6 be the edges of Pln, where ei = vivi+1 
for 1 ≤ i ≤ n–3, ei+n–3 = vn–1vi for 1 ≤ i ≤ n–2, ei+2n–5 = vnvi for 1 ≤ i ≤ n–2 and e3n–6 = vn–1vn.  

Let G = Pln. Then |V(G)| = n  and | E(G) | = 3n–6. 
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Define f : V(G) → {1,2,…,n} as follows: 
Case 1: n ≡ 1,3 (mod 4). 
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In view of the above defined labeling pattern, we have ef* (0)+1 = ef*(1) = 
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 Therefore the Pln is a SD-prime cordial graph, for n ≡ 1,3 (mod 4). 
Case 2: n ≡ 0 (mod 4). 
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In view of the above defined labeling pattern, we have ef* (0) = ef*(1) = 
2

63n−  and             

| ef* (0) − ef* (1)| ≤ 1. 
 Therefore the Pln is a SD-prime cordial graph, n ≡ 0 (mod 4). 
Case 3: n ≡ 2 (mod 4). 
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In view of the above defined labeling pattern, we have ef* (0) = ef*(1) = 
2

63n−  and             

| ef* (0) − ef* (1)| ≤ 1. 
 Therefore the Pln is a SD-prime cordial graph, for n ≡ 2 (mod 4). 
 Therefore the Pln is a SD-prime cordial graph, n ≥ 3. 
 
Theorem 3.2: The disconnected graph (Pn�K1) ∪ K1,m,m is k-SD-prime cordial graph, 
for n,m ≥ 2.  
Proof: Let Pn�K1 be a comb graph. Let v1, v2, ..., v2n be the vertices and e1, e2, ..., e2n–1 be 
the edges of Pn�K1. Let u,u1,u2,...,u2m be the vertices and s1,s2, ...,s2m be the edges of 
K1,m,m. 

Let G be the disconnected graph (Pn�K1) ∪ K1,m,m. 
 Then |V(G )| = 2n+2m+1  and | E(G) | = 2n+2m–1. 
Define g : V(G) → {k,k+1,…,k+2n+2m} as follows: 
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In view of the above defined labeling pattern, we have ef* (0)+1 = ef* (1) = n+m and             
| ef* (0) − ef* (1)| ≤ 1. 
 Therefore the disconnected graph (Pn�K1)∪K1,m,m is k-SD-prime cordial graph, for 
n,m ≥ 2. 
 
Theorem 3.3. The disconnected graph Pn∪K1,m,m is k-SD-prime cordial graph, for n,m ≥ 
2.  
Proof: Let Pn be a path graph. Let v1, v2, ..., vn be the vertices and e1, e2, ..., en–1 be the 
edges of Pn. Let u,u1,u2,...,u2m be the vertices and s1,s2, ...,s2m be the edges of K1,m,m. 

Let G be the disconnected graph Pn ∪ K1,m,m. 
 Then |V(G )| = n+2m+1  and | E(G) | = n+2m–1. 
Define g : V(G) → {k,k+1,…,k+n+2m} as follows: 
Case 1: n ≡ 1,3 (mod 4). 
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In view of the above defined labeling pattern, we have  

             ef* (0) = ef*(1) = 
2

12mn −+  and   | ef* (0) − ef*(1)| ≤ 1. 

 Therefore Pn∪K1,m,m is k-SD-prime cordial graph, for n ≡ 0,1,3 (mod 4).  
Case 2: n ≡ 0 (mod 4). 
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 Therefore Pn∪K1,m,m is k-SD-prime cordial graph, for n ≡ 0 (mod 4).  
Case 3: n ≡ 2 (mod 4). 
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In view of the above defined labeling pattern, we have ef*(0)+1 = ef* (1) = 
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 Therefore Pn∪K1,n,n is k-SD-prime cordial graph, for n ≡ 2 (mod 4).  
 Hence the disconnected graph Pn∪K1,n,n is k-SD-prime cordial graph, for n,m ≥ 2. 
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4. Conclusions 
In this paper, we presented the SD-Prime cordial labeling of Pln graph, for n ≥ 3 and k-
SD-Prime cordial labeling of (Pn�K1)∪K1,n,n, for n ≥ 2 and Pn∪K1,n,n, for n ≥ 2. 

REFERENCES 

1. J.Baskar Babujee, Planar graphs with maximum edges-antimagic property, The 
Mathematics Education, 37(4) (2003) 194-198. 

2. D.M.Burton, Elementary Number Theory, Second Edition, Wm. C. Brown Company 
Publishers, (1980). 

3. A.Delman, S.Koilraj and P.Lawrence Rozario Raj, k-SD-Prime Cordial Labeling of 
graphs, communicated. 

4. J.A.Gallian, A dynamic survey of graph labeling, The Electronic Journal of 
Combinatorics, 16, #DS6, )2016). 

5. F.Harary, Graph theory, Addison Wesley, Reading, Massachusetts, (1972).  
6. G.C.Lau and W.C.Shiu, On SD-prime labeling of graphs, Utilitas Math., accepted. 
7. G.C.Lau, H.H.Chu, N.Suhadak, F.Y.Foo and H.K.Ng, On SD-prime cordial graphs. 

Int. J. Pure Appl. Math., 106(4) (2016) 1017-1028. 
8. P.Lawrence Rozario Raj and Sr.Jincy Joseph, k-Neighborhood-prime labeling of 

graphs, International Journal of Innovative Science, Engineering & Technology, 3(8) 
(2016) 288-292.  

9. A.Lourdusamy and F.Patrick, New construction on SD-prime cordial labeling, In: 
Arumugam S., Bagga J., Beineke L., Panda B. (eds) Theoretical Computer Science 
and Discrete Mathematics, ICTCSDM 2016, Lecture Notes in Computer Science, 
LNCS 10398, Springer, Cham, pp. 134-143, (2017). 

10. S.K.Patel and N.P.Shrimali, Neighborhood-prime labeling, International Journal of 
Mathematics and Soft Computing, 5(2) (2015) 135-143.  

11. M.Sundaram, R.Ponraj and S.Somasundaram, Prime cordial labeling of graphs, J. 
Indian Acad. Math., 27 (2005) 373-390. 

12. A.Tout, A.N.Dabboucy and K.Howalla, Prime labeling of graphs, Nat. Acad. Sci. 
Letters, 11 (1982) 365-368. 

13. S.K.Vaidya and U.M.Prajapati, Some results on prime and k-prime labeling, Journal 
of Mathematics Research, 3(1) (2011) 66-75.  

 


