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Abstract. Chemical Graph Theory is a branch of Mathematical Chemistry whose focus of 
interest is to finding topological indices of chemical graphs which correlate well with 
chemical properties of the chemical molecules. We propose the arithmetic-geometric 
Banhatti index and multiplicative arithmetic-geometric Banhatti index of a molecular 
graph. In this paper, we compute these Banhatti topological indices of certain infinite 
classes of dendrimer nanostars. 
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1. Introduction 
Let G be a finite, simple connected graph with vertex set V(G) and edge set E(G). The 
degree dG(v) of a vertex v is the number of vertices adjacent to v. The edge connecting the 
vertices u and v will be denoted by uv. Let dG(e) denote the degree of an edge e = uv in G 
is defined by dG(e) and dG(e) = dG(u) + dG(v) – 2. We refer to [1] for undefined term and 
notation. 

A molecular graph or a chemical graph is a finite, simple graph such that its 
vertices correspond to the atoms and the edges to the bonds. A topological index is a 
numerical parameter mathematically derived from the graph structure. Numerous 
topological indices are useful for establishing correlations between the structure of a 
molecular compound and its physico-chemical properties, see [2]. 

Recntly, Kulli [3], introduced the geometric-arithmetic Banhatti index of a graph 
G and it s defined as 
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where ue means that the vertex u and edge e are incident in G. Recently some topological 
indices were studied, for example, in [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. 
 Very recently, Kulli [4] proposed the multiplicative geometric-arithmetic 
Banhatti index of a graph G and it is defined as 
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 Recently, some multiplicative topological indices were studied, for example, in  
[14, 15, 16, 17, 18, 19, 20,21]. 
 Motivated by the definition of the geometric-arithmetic Banhatti index, we 
introduce the arithmetic-geometric Banhatti index and multiplicative arithmetic-
geometric index of a molecular graph as follows: 
 The arithmetric-geometric Banhatti index of a molecular graph G is defined as 
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 The multiplicative arithmetic- geometric Banhatti index of a molecular graph G 
is defined as 
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 We consider some families of dendrimer nanostars, see [22]. In this paper, the 
arithmetic-geometric Banhatti index and multiplicative arithmetic-geometric Banhatti 
index of certain families of dendrimer nanostars are computed. 
 
2. Results for dendrimer nanostars D1[n] 
In this section, we consider a family of dendrimer nanostars with n growth stages, 
denoted by D1[n], where n≥0. The molecular graph of D1[n] with 4 growth stages is 
depicted in Figure 1.  

 
Figure 1: The molecular graph of D1[4] 

  
 Let G = D1[n] be the chemical graph in the family of dendrimer nanostar. By 
calculation, we obtain that G has 18×2n–11 edges. We obtain that the edge set E(D1[n]) 
can be divided into three partitions as  
 E13 = {uv ∈ E(G) | dG(u) = 1, dG(v) = 3},  |E13| = 1. 
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 E22 = {uv ∈ E(G) | dG(u) = dG(v) = 2},  |E22| = 6 × 2n – 2. 
 E23 = {uv ∈ E(G) | dG(u) = 2, dG(v) = 3},  |E23| = 12 × 2n – 10. 
 Then the edge degree partition of  G is given in Table 1. 

dG(u) dG(v)\ uv ∈ E(G) (1,3) (2, 2) (2, 3) 

dG(e) 2 2 3 

Number of edges 1 6 × 2n – 2 12 × 2n – 10 

Table 1: Edge degree partition of G 
 

Theorem 1. The arithmetic-geometric Banhatti index of a dendrimer nanostar D1[n] is 
given by 
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Proof: Let G be the graph of a dendrimer nanostar D1[n]. By using equation (1) and 
Table 1, we deduce 
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Theorem 2. The multiplicative arithmetic-geometric index of a dendrimer nanostar D1[n] 
is given by 
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Proof: Let G be the graph of a dendrimer nanostar D1[n]. By using equation (2) and 
Table 1, we deduce 
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3. Dendrimer nanostars D3[n] 
In this section, we consider a family of dendrimer nanostars with n growth stages, 
denoted by D3[n], where n ≥ 0. The molecular graph of D3[n] with three growth stages is 
depicted in Figure 2. 

 

Figure 2: The molecular graph of D3[3] 
 

Let G = D3[n] be the chemical graph in the family of dendrimer nanostars. By 
calculation, we obtain that G has 24×2n+1 – 24 edges. Also by calculation, we obtain that 
the edge set E(D3[n]) can be divided into 4 partitions as 

E13 = {uv ∈ E(G) | dG(u) =1, dG(v) = 3}, |E13| = 3×2n. 
 E22 = {uv ∈ E(G) | dG(u) = dG(v) = 2}, |E22| = 12×2n – 6. 
 E23 = {uv ∈ E(G) | dG(u) = 2, dG(v) = 3}, |E23| = 24×2n – 12. 
 E33 = {uv ∈ E(G) | dG(u) = dG(v) = 3}, |E33| = 9×2n – 6. 

 
Then the edge degree partition of D3[n] is given in Table 2. 

dG(u), dG(v)\uv ∈ E(G) (1, 3) (2, 2) (2, 3) (3, 3) 
dG(e) 2 2 3 4 

Number of edges 3×2n 12×2n – 6 24×2n – 12 9×2n – 6 
Table 2: Edge degree partition of G 

 
Theorem 3. The arithmetic-geometric Banhatti index of a dendrimer nanostar D3[n] is 
given by 
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Proof: Let G be the graph of a dendrimer nanostar D3[n]. By using equation (1) and 
using Table 2, we derive 
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Theorem 4. The multiplicative sum connectivity Banhatti index of a dendrimer nanostar 
D3[n] is given by 
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Proof: Let G be the graph of a dendrimer nanostar D3[n]. By using equation (2) and 
Table 2, we derive 
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