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1. Introduction 
The theory of fuzzy sets was introduced by Zadeh [16] in 1965. Rosenfeld [9] use the 
idea of fuzzy sets and developed the concept of fuzzy subgroups. Since then many 
authors have been studying fuzzy subalgebras of several algebraic structures (see 
[2,5,6,10]). 
        On the other hand, Guzman and Squier [4] introduced the variety of �-algebras as 
the variety generated by the three-element algebra � = {�, �, �} with the operations "∧"; 
"∨" and "′" of type (2,2,1), which is the algebraic form of the three-valued conditional 
logic. Following this work, many more results have been appeared on the structure of � −algebras (see [7,8,11-14]). In this paper, we consider the fuzzification of ideals in �-
algebra. Mainly, we characterize fuzzy ideals generated by fuzzy sets from the the 
algebraic point of view. Finally, it is proved that the class of all fuzzy ideals of a � −algebra forms an algebraic lattice. 
 
2. Preliminaries 
In this section, we recall some definitions and basic results on � −algebras from [4,13].  
 
Definition 2.1. An algebra (�,∨,∧, ′) of type (2,2,1) is called a�-algebra, if it satisfies 
the following axioms:   

    1.  �′′ = � 
    2.  (� ∧ �)′ = �′ ∨ �′ 
    3.  (� ∧ �) ∧ � = � ∧ (� ∧ �) 
    4.  � ∧ (� ∨ �) = (� ∧ �) ∨ (� ∧ �) 
    5.  (� ∨ �) ∧ � = (� ∧ �) ∨ (�′ ∧ � ∧ �) 
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    6.  � ∨ (� ∧ �) = � 
    7.  (� ∧ �) ∨ (� ∧ �) = (� ∧ �) ∨ (� ∧ �) for all �, �, � ∈ � 

 
Example 2.2. The three element algebra � = {�, �, �} with the operations given by the 
following tables is a�-algebra.  

 ∨ � � � � � � � � � � � � � � � 
  ∧ � � � � � � � � � � � � � � � 

 � �′ � � � � � � 
 

Note 2.1. The identities 2.1(1), 2.1(2) imply that the variety of �-algebras satisfies all the 
dual statements of 2.1(2) to 2.1(7).  
 
Definition 2.3. An element � of a �-algebra � is called a left zero for ∧ if � ∧ � = � for 
all � ∈ �.  
 
Definition 2.4. A nonempty subset � of a �-algebra � is called an ideal of �, if   

1.  �, � ∈ � ⇒ � ∨ � ∈ � and  
 2.  � ∈ � ⇒ � ∧ � ∈ �, for each � ∈ �.  

It is observed that � ∧ � ∈ � if and only if � ∧ � ∈ � for all �, � ∈ �. For any subset � ⊆�, the smallest ideal of � containing � is called the ideal of � generated by �  and is 
denoted by 〈�]. Note that:  〈�] = {∨� (�� ∧ ��): �� ∈ �, �� ∈ �, ! = 1, . . . , # for some # ∈ $%} 
If � = {�} then we write 〈�] for 〈�]. In this case 〈�] = {� ∧ �: � ∈ �}. Moreover it is 
observed in [13] that the set �& = {� ∧ �′: � ∈ �} is the smallest ideal in �. 
 
3. Fuzzy ideals 
In this section we define fuzzy ideals in � −  algebra and we give several 
characterizations. Throughout this note we simply write � to say a � −algebra (�,∨,∧, ′). 
By a fuzzy subset of � we mean a mapping ' of � into the unit interval [0,1]. For each * ∈ [0,1] the set  

 '+ = {� ∈ �: '(�) ≥ *} 
is called the level subset of ' at * and the set  

 -.//(') = {� ∈ �: '(�) > 0} 
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is called the support set of '  [16]. For numbers *  and 1  in [0,1]  we write * ∧ 1 
(respectively * ∨ 1) instead of 2!#{*, 1} (respectively 2��{*, 1}).  
 
Definition 3.1. A fuzzy subset ' of � is called a fuzzy subalgebra of � if:  '(� ∨ �) ∧ '(� ∧ �) ≥ '(�) ∧ '(�)    for all �, � ∈ � 
 
Definition 3.2. A fuzzy subset ' of A is called a fuzzy ideal of � if:   

    1.  '(�) = 1, whenever � is a left zero for ∧ 
    2.  '(� ∨ �) ≥ '(�) ∧ '(�) 
    3.  '(� ∧ �) ≥ '(�) 

for all �, � ∈ �.  
Note that the condition (3) in the above definition can be replaced by:  

 � ∧ � = � ⇒ '(�) ≥ '(�) 
for all �, � ∈ �. We denote the class of all fuzzy ideals of � by ℱℐ(�).  
 
Lemma 3.3.  Let ' be a fuzzy ideal of �. Then the following holds for all �, � ∈ �.   

    1.  '(� ∧ �) = '(� ∧ �) 
    2.  '(� ∧ � ∧ �) ≥ '(� ∧ �) for each � ∈ � 
    3.  '(�) ≥ '(� ∨ �) and hence '(�) ∧ '(�) = '(� ∨ �) ∧ '(� ∨ �) 
    4.  If � ∈ 〈�], then '(�) ≥ '(�).  
    5.  For a nonempty subset � of �;  

 � ∈ 〈�] ⇒ '(�) ≥ ∧678
9 '(��) 

for some �8, �:, . . . . , �9 ∈ �.  
In the following we give the most natural characterization of fuzzy ideals using their level 
sets.  
 
Lemma 3.4.  A fuzzy subset ' of � is a fuzzy ideal of � if and only if each * −level set '+ 
is an ideal of �. In particular; A nonempty subset � of � is an ideal of � if and only if its 
characteristic function ;< is a fuzzy ideal of �.  
         It is routine to verify that the intersection of any family of fuzzy ideals of � is a 
fuzzy ideal. So that for any fuzzy subset '  of � , there exists a smallest fuzzy ideal 
containing '. But the union of a family of fuzzy ideals of � is not in general a fuzzy ideal 
of �. Moreover, if we define binary operations ∘∧ and ∘∨ on the class [0,1]> as follows; 
for each ', ? ∈ [0,1]> and all � ∈ �:  

 (' ∘∧ ?)(�) = �./{'(�) ∧ ?(�): � ∧ � = �} 
and  

 (' ∘∨ ?)(�) = �./{'(�) ∧ ?(�): � ∨ � = �} 
If ' and ? are fuzzy ideals, then ' ∘∧ ? is a fuzzy ideal of � and ' ∘∧ ? = ' ∩ ? = ' ∧ ?. 
But it is not true in general that ' ∘∨ ? is a fuzzy ideal of �.  
 
Theorem 3.5. A fuzzy subset ' of � with '(�) = 1 for all � ∈ �&, is a fuzzy ideal of � if 
and only if:   

    1.  ' ∘∨ ' ⊆ ' and  
    2.  A ∘∧ ' ⊆ ' for all A ∈ [0,1]> 
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Definition 3.6. Let ' be fuzzy subset of �. The smallest fuzzy ideal of � containing ' is 
called a fuzzy ideal of � generated by ' and is denoted by 〈']. 
 
Lemma 3.7. Let � be any subset of � and ;B  its characteristic function. Then 〈;B] =;〈B].  
Proof: We show that ;〈B] is the smallest fuzzy ideal of � containing ;B . Clearly ;B ⊆;〈B]. Also from lemma 3.4 we have ;〈B] is a fuzzy ideal of �. Let C be any fuzzy ideal of �  containing ;B . Then C(�) = 1 for each � ∈ � . It remain to show that ;〈B] ⊆ C . If � ∈ 〈�], then � =∨�789 (�� ∧ ��), where �� ∈ �, �� ∈ �. Then consider:  

C(�) = C( ∨�78
9 (�� ∧ ��)) 

 ≥ �#D{C(�� ∧ ��): ! = 1,2, . . . , #} 
 ≥ �#D{C(��): ! = 1,2, . . . , #} 
 ≥ 1 

So that ;〈B] ⊆ C.  
For any fuzzy subset ' of �, it is clear that  '(�) = �./{* ∈ [0,1]: � ∈ '+} for all � ∈ � 
In the following theorem we characterize a fuzzy ideal generated by a fuzzy set in terms 
of its level ideals.  
 
Theorem 3.8. For a fuzzy subset ' of � let '̂ be defined by:  

 '̂(�) = �./{* ∈ [0,1]: � ∈ 〈'+]}for all � ∈ � 
Then '̂ = 〈'].  
Proof: It is enough if we show that '̂ is the smallest fuzzy ideal of � containing '.  
We first show that '̂ is a fuzzy ideal of �. For; for any �, � ∈ � consider:  '̂(�) ∧ '̂(�) = �./{* ∈ [0,1]: � ∈ 〈'+]} ∧ �./{1 ∈ [0,1]: � ∈ 〈'G]} 

 = �./{2!#{*, 1}: � ∈ 〈'+], � ∈ 〈'G]} 
If we put H = 2!#{*, 1} , where � ∈ 〈'+]  and � ∈ 〈'G] , then �, � ∈ 〈'I] . So that � ∨ � ∈ 〈'I]. Therefore  '̂(�) ∧ '̂(�) = �./{2!#{*, 1}: � ∈ 〈'+], � ∈ 〈'G]} 

 ≤ �./{H ∈ [0,1]: � ∨ � ∈ 〈'I]} 
 = '̂(� ∨ �). 

 Also, for any * ∈ [0,1],  
 � ∈ 〈'+] ⇒ � ∧ � ∈ 〈'+] 
for all �, � ∈ � which implies that '̂(� ∧ �) ≥ '̂(�). So that '̂ is a fuzzy ideal of �. It is 
also clear that ' ⊆ '̂. Let K be any fuzzy ideal of � such that ' ⊆ K, then '+ ⊆ K+ for all * ∈ [0,1]. As K is a fuzzy ideal of �, K+ is an ideal of � for all * ∈ [0,1]. That is, K+ is an 
ideal of � containing '+. Then 〈'+] ⊆ K+ for all * ∈ [0,1] 
Now for any � ∈ � consider;  '̂(�) = �./{* ∈ [0,1]: � ∈ 〈'+]} 

 ≤ �./{* ∈ [0,1]: � ∈ K+} 
 = K(�) 

 Hence the result holds.  
 
Corollary 3.9. For any fuzzy subset ' of �. 
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 〈'L] = 〈']LDMN �OO P ∈ [0,1] 
 
Notation 3.10. We write � ⊂⊂ � to say that � is a finite subset of �.  
 
Theorem 3.11.  Let ' be a fuzzy subset of �. Then a fuzzy subset ' of � defined by:  

 '(�) = �./{ ∧R∈S '(�): � ∈ 〈�], � ⊂⊂ �}DMN�OO� ∈ � 

is a fuzzy ideal of �.  
Proof: For any �, � ∈ � consider:  

'(�) ∧ '(�) = �./ T ∧R∈U '(�): � ∈ 〈V], V ⊂⊂ �W ∧ 

�./{ ∧X∈S '(�): � ∈ 〈�], � ⊂⊂ �} 

= �./{( ∧R∈U '(�)) ∧ ( ∧X∈S '(�)): � ∈ 〈V], � ∈ 〈�]} 

 = �./{ ∧Y∈U∪S '(�): � ∨ � ∈ 〈V ∪ �], V ∪ � ⊂⊂ �, } 

 ≤ �./{ ∧Y∈[ '(�): � ∨ � ∈ 〈\], \ ⊂⊂ �, } 

 = '(� ∨ �) 
 Also;  '(�) = �./{ ∧R∈S '(�): � ∈ 〈�], � ⊂⊂ �} 

 ≤ �./{ ∧R∈S '(�): � ∧ � ∈ 〈�], � ⊂⊂ �} 

 = '(� ∧ �) 
Therefore ' is a fuzzy ideal of �.  
In the following theorem we give an algebraic characterization for fuzzy ideals generated 
by fuzzy sets.  
 
Theorem 3.12. For any fuzzy subset ' of �, ' = 〈']; where ' is as given in Theorem 
3.11.  
Proof: Clearly ' ⊆ '. Let K  be fuzzy ideal of � such that ' ⊆ K . Let � ∈ � such that � ∈ 〈�] for some � ⊂⊂ �. Then by (5) of Lemma 3.3  

K(�) ≥ ∧�78
9 K(��)forsome �8, �:, . . . , �9 ∈ � 

Now  

∧R∈S '(�) ≤ ∧R∈S K(�) ≤ ∧�78
9 K(��) ≤ K(�) 

Therefore '(�) ≤ K(�) for all � ∈ �. So ' is the smallest fuzzy ideal of � containing '. 
That is ' = 〈'].  
 
Lemma 3.13. A fuzzy subset '& of � defined by:  

'& = T1     !D  � !- � O^DP �^NM DMN ∧0                    MPℎ^N`!-^              a 
for all � ∈ �, is the smallest fuzzy ideal of �.   
 
Theorem 3.14. The class ℱℐ(�)  of all fuzzy ideals of �  forms a complete bounded 
distributive lattice where the infimum and supremum of any family {'+: * ∈ b} of fuzzy 
ideals is given by:  ∧+ '+ =∩ '+, ∨+ '+ = 〈∪ '+] 
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'& is its zero element and 1>  (the fuzzy subset of � with constant value 1) is its unit 
element.  
For each � ∈ � and * ∈ (0,1] remember from [15] that, the fuzzy subset �+ of � given 
by:  

 �+(�) = T *   !D � = �0   MPℎ^N`!-^a 
is called a fuzzy point of �. In this case � is called the support of �+ and * its value.  
 
Theorem 3.15. For each fuzzy point �+ of �, the fuzzy set '+c given by:  
 

 '+c(�) = d 1         !D � ∈ �&*      !D� ∈ 〈�] − �&0        MPℎ^N`!-^      
a 

is the fuzzy ideal of � generated by the fuzzy point �+, or equivalently '+c = 〈�+].  
 
Lemma 3.16. For any fuzzy points �+ and �G of �, 〈�+] = 〈�G], if and only if 〈�] = 〈�] 
and * = 1.  
 
Corollary 3.17. Let �+ , �G and �e be fuzzy points of �. If 〈�+] = 〈�G], then 〈�e ∘∨ �+] =〈�e ∘∨ �G].  
 
Theorem 3.18. The following statements are equivalent for any � −algebra �:   

    1.  � is a Boolean algebra  
    2.  For any fuzzy points �+ and �G  of �; �+ ∘∨ �G = �G ∘∨ �+ 
    3.  For any fuzzy points �+ and �G  of �; 〈�+ ∘∨ �G] = 〈�G ∘∨ �+] 
    4.  For any fuzzy points �+ and �G  of �; 〈�+ ∘∨ �G] = 〈'e{c,f}];  
         where K = 2!#{*, 1} and 'e{c,f} is given by:  

 'e{c,f}(�) = TK     !D  � ∈ {�, �}0      MPℎ^N`!-^  a 
    5.  For any fuzzy points �+ , �G  and �e of �. If 〈�+] = 〈�G],  
         then 〈�+ ∘∨ �e] = 〈�G ∘∨ �eg 
 

4. Homomorphisms and fuzzy ideals 
Theorem 4.1.  Let D: � → i be a surjective homomorphism of �-algebras, ' a fuzzy 
ideal of � and j a fuzzy ideal of i, then   

    1.  D(') is a fuzzy ideal of i 
    2.  Dk8(j) is a fuzzy ideal of � 

Proof: Since D is given to be surjective, Dk8(�) ≠ ∅ for all � ∈ i. Let �8, �: ∈ i. Then 
consider:  D(')(�8) ∧ D(')(�:) = �./{'(�): � ∈ Dk8(�8)} ∧ �./{'(�): � ∈ Dk8(�8)} 

 = �./{'(�) ∧ '(�): � ∈ Dk8(�8), � ∈ Dk8(�8)} 
 ≤ �./{'(� ∨ �): D(�) = �8, D(�) = �8} 
 ≤ �./{'(�): � ∈ Dk8(�8 ∨ �:)} 
 = D(')(�8 ∨ �:) 

 Also let �8, �: ∈ i and � ∈ � such that D(�) = �8. Then consider:  
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D(')(�:) = -./{'(�): � ∈ Dk8(�:)} 
 ≤ -./{'(� ∧ �): D(�) = �8, D(�) = �:} 
 = -./{'(� ∧ �): � ∧ � ∈ Dk8(�8 ∧ �:)} 
 ≤ -./{'(�): � ∈ Dk8(�8 ∧ �:)} 
 = D(')(�8 ∧ �:) 

 Thus D(') is a fuzzy ideal of i. Similarly one can easily verify that Dk8(j) is a fuzzy 
ideal of �.  
 
Theorem 4.2. Let D: � → i be a homomorphism, ' and j fuzzy ideals of �, ? and C fuzzy 
ideals of i then   

    1.  D(' ∨ j) = D(') ∨ D(j) 
    2.  D(' ∧ j) = D(') ∧ D(j) 
    3.  Dk8(? ∨ C) = Dk8(?) ∨ Dk8(C) 
    4.  Dk8(? ∧ C) = Dk8(?) ∧ Dk8(C) 

Proof: We prove the first part only. For this, we show that D(' ∨ j) is the smallest fuzzy 
ideal of i containing both D(') and D(j). By theorem 4.1 D(' ∨ j) is a fuzzy ideal of i. 
Also for any � ∈ i consider:  D(')(�) = -./{'(�): � ∈ Dk8(�)} 

 ≤ -./{(' ∨ j)(�): � ∈ Dk8(�)} 
 = D(' ∨ j)(�) 

 So that D(') ⊆ D(' ∨ j). Similarly, we get D(j) ⊆ D(' ∨ j). Now for any fuzzy ideal A 
of i:  D(') ⊆ A, D(j) ⊆ A ⇒ Dk8(D(')) ⊆ Dk8(A), Dk8(D(j)) ⊆ Dk8(A) 

 ⇒ ' ⊆ Dk8(A), j ⊆ Dk8(A) 
 ⇒ ' ∨ j ⊆ Dk8(A) 
 ⇒ D(' ∨ j) ⊆ D(Dk8(A)) = A 

 Thus D(' ∨ j) = D(') ∨ D(j). The others can be proved using similar arguments.  
 
5. Product of fuzzy ideals 
Theorem 5.1. If '8 and ': are fuzzy ideals of �-algebras �8 and �: respectively, then '8 × ': is a fuzzy ideal of �8 × �:.  
Proof: Suppose that '8 and ': are fuzzy ideals �8 and �: respectively. Remember that '8 × ': is a fuzzy subset of �8 × �: defined as:  ('8 × ':)(�8, �:) = 2!#{'8(�8), ':(�:)} 
for all �8 ∈ �8 and �: ∈ �:. Now consider:  ('8 × ':)((�8, �:) ∨ (�8, �:)) = '8 × ':((�8 ∨ �8), (�: ∨ �:)) 

 = 2!#{'8(�8 ∨ �8), ':(�: ∨ �:)} 
 ≥ 2!#{2!#{'8(�8), '8(�8)}, 2!#{':(�:), ':(�:)} 
 = 2!#{2!#{'8(�8), ':(�:)}, 2!#{'8(�8), ':(�:)} 
 = 2!#{('8 × ':)(�8, �:), ('8 × ':)(�8, �:)} 

 Also  ('8 × ':)((�8, �:) ∧ (�8, �:)) = '8 × ':((�8 ∧ �8), (�: ∧ �:)) 
 = 2!#{'8(�8 ∧ �8), ':(�: ∧ �:)} 
 ≥ 2!#{'8(�8), ':(�:)} 
 = ('8 × ':)(�8, �:) 
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So that '8 × ': is a fuzzy ideal of �8 × �:. But it is not in general true that any fuzzy 
ideal of �8 × �: is of the form '8 × ':  for some fuzzy ideals '8  and ':  of �8 and �: 
respectively.  
 
Definition 5.2. [2] For a fuzzy subset ' of �8 × �:;  

 /N8(')(�) = -./{'(�, �): � ∈ �:} 
and  

 /N:(')(�) = -./{'(�, �): � ∈ �8} 
are called the projections of ' on �8 and �: respectively.  
 
Lemma 5.3. If ' is a fuzzy ideal of �8 × �:, then /N8(') (respectively /N:(')) is a fuzzy 
ideal of �8 (respectively �:).  
Proof: It is enough if we show that, /N8(') is a fuzzy ideal of �8. For; let �8, �: ∈ �8. 
Then consider:  /N8(')(�8) ∧ /N8(')(�:) = �./{'(�8, �8): �8 ∈ �:} ∧ �./{'(�:, �:): �: ∈ �:} 

 = �./{'(�8, �8) ∧ '(�:, �:): �8, �: ∈ �:} 
 ≤ �./{'(�8 ∨ �:, �8 ∨ �:): �8, �: ∈ �:} 
 ≤ �./{'(�8 ∨ �:, �): � ∈ �:} 
 = /N8(')(�8 ∨ �:) 

 Also consider:  /N8(')(�:) = �./{'(�:, �:): �: ∈ �:} 
 ≤ �./{'[(�8, �8) ∧ (�:, �:)]: �: ∈ �:}    ∀�8 ∈ �8, �8 ∈ �: 
 = �./{'(�8 ∧ �:, �8 ∧ �:): �8, �: ∈ �:} 
 ≤ �./{'(�8 ∧ �:, �): � ∈ �:} 
 = /N8(')(�8 ∧ �:)    ∀�8 ∈ �8 

 So that /N8(') is a fuzzy ideal of �8. Similarly it can be verified that /N:(') is a fuzzy 
ideal of �:.  

 
Definition 5.4. [2] Let ' be a fuzzy subset of �8 × �:, � ∈ �: and � ∈ �8, the marginal 

fuzzy subsets of '(with respect to a and b) are '8(R) ∈ [0,1]>p and ':(X) ∈ [0,1]>q defined 
by:  

 '8(R)(�) = '(�, �)and':(X)(�) = '(�, �) 
for all � ∈ �8 and � ∈ �:.  
 

Lemma 5.5. If ' is a fuzzy ideal of �8 × �:, then '8(R) is a fuzzy ideal of �8 and ':(X) is a 
fuzzy ideal of �: for all � ∈ �: and � ∈ �8.  
 
Theorem 5.6. If �8 and �: are � −algebras with meet identity �, then any fuzzy ideal of �8 × �: is necessarily of the form '8 × ': for some fuzzy ideals '8 and ': of �8 and �: 
respectively.  
Proof: Suppose that ' is a fuzzy ideal of �8 × �:. Take  

 '8 = /N8(')and ': = /N:(') 
Since each /8 and /: are homomorphisms, by applying theorem 4.1 we get that '8 and ': 
are fuzzy ideals of �8 and �: respectively. Also for each �8 ∈ �8 and �: ∈ �: consider:  '8 × ':(�8, �:) = 2!#{'8(�8), ':(�:)} 
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 = 2!#{/8(')(�8), /:(')(�:)} 
 = 2!#{�./{'(�8, �:): (�8, �:) ∈ /8k8(�8)}, �./{'(�8, �:): (�8, �:) ∈ /:k8(�:)}} 
 = 2!#{�./{'(�8, �:): �: ∈ �:}, �./{'(�8, �:): �8 ∈ �8}} 
 ≥ 2!#{'(�8, �:), '(�8, �:)}      ∀�8 ∈ �8, �: ∈ �: 

 In particular ('8 × ':)(�8, �:) ≥ '(�8, �:). So that ' ⊆ '8 × ':. On the other hand, to 
show that '8 × ': ⊆ '  let �8 ∈ �8  and �: ∈ �:  such that ('8 × ':)(�8, �:) = * . Then '8(�8) ≥ * and ':(�:) ≥ *. It follows from the definition of '8 and ': that there exists �8 ∈ �8  and �: ∈ �:  such that '(�8, �:) ≥ *  and '(�8, �:) ≥ * . Put �8 = (�8, �:) , �: = (�8, �:) , �8 = (�, �) , �: = (�, �) , �8(�8, �)  and �:(�, �:) . Then we have �8 =�8 ∧ �8 and �: = �: ∧ �:. Since (�8, �:) = �8 ∨ �:, consider the following:  '(�8, �:) = '(�8 ∨ �:) 

 ≥ '(�8) ∧ '(�:) 
 = '(�8 ∧ �8) ∧ '(�: ∧ �:) 
 ≥ '(�8) ∧ '(�:) 
 = '(�8, �:) ∧ '(�8, �:) 
 ≥ * 

 Thus ('8 × ':) ⊆ ' and hence the result holds. 
 

6. The lattice of fuzzy ideals in C-algebras 
It is proved in section (3) that the class ℱℐ(�) of all ideals of � forms a complete lattice. 
In this section we further prove that the lattice ℱℐ(�) is an algebraic lattice.  
 
Lemma 6.1. For any two fuzzy ideals ' and ? of A, their supremum ' ∨ ? is given by:  

(' ∨ ?)(�) = -./{ ∧�78
9 ['(�� ∨ ?(��))]: � = ∨�78

9 �� , �� ∈ �} 

 
Corollary 6.2. For any family {'+}+∈r of fuzzy ideals of �:  

〈s  
+∈t

'+](�) = -./{ ∧�78
9 [-./+∈t{'+(��)}: � = [ ∨�78

9 ��], �� ∈ �} 

 
Note 6.3. For a fuzzy subset ' of �, by the cardinality of ', we mean the cardinality of 
the support set of '.  
 
Theorem 6.4. The lattice ℱℐ(�) of all fuzzy ideals of � is an algebraic lattice in which 
the compact elements are precisely the finitely generated fuzzy ideals.  
Proof: We first show that 〈H] is a compact element in the class ℱℐ(�) for a fuzzy subset H with finite cardinality. Let ��Nu(H) = #. That is, the -.//(H) has exactly # elements 
let say �8, �:, . . . , �9. Put P� = H(��) for all 1 ≤ ! ≤ #. Suppose that {'+}+∈t be a family 
of fuzzy ideals of � such that:  
 〈H] ≤ ∨+∈t '+ ⇒ 〈H]Lv ≤ [ ∨+∈t '+]Lv ,    ∀!, 1 ≤ ! ≤ # 

 ⇒ 〈HLv] ≤ ∨+∈t ['+]Lv ,    ∀!, 1 ≤ ! ≤ # 

 Since the class of all ideals is an algebraic lattice and finitely generated ideals are 
compact, for each !, 1 ≤ ! ≤ #, there exists *�w ∈ Δ, where each y, 1 ≤ y ≤ 2� such that  
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 〈HLv] ≤ ∨8z{z|v ['+vw ]Lv 
which implies that  

 〈HLv] ≤ ∨8z�z9,8z{z|v ['+vw ]Lv,    ∀!, 1 ≤ ! ≤ # 

Since H has # distinct level sets, 〈H] has also # distinct level sets. So that  
 〈H] ≤ ∨8z�z9,8z{z|v '+vw  

Thus 〈H] is compact. Conversely we show that any compact element in ℱℐ(�) should 
necessarily be of the form 〈H] where H is of finite cardinal. For; suppose that ' is compact 
in ℱℐ(�). For each * ∈ (0,1] and any � ∈ � consider a fuzzy subset *c of � given by  

*c(�) = T * !D � = �0 MPℎ^N`!-^a        ∀� ∈ � 

It is clear to see that:  
 ' = ∨}(c)~+ 〈*c](1) 

 As ' is compact, there exists �8, �:, . . . , �9 ∈ � and *8, *:, . . . , *9 ∈ (0,1] with '(��) ≥*� such that:  
 ' = ∨8z�z9 〈(*�)(cv)] 

 If we define a fuzzy subset H of � by:  

 H(�) = T *� !D � = ��0 MPℎ^N`!-^a         ∀� ∈ � 

Then H is of finite cardinal such that  
 〈H] = ∨8z�z9 〈(*�)(cv)] = ' 

Therefore the compact elements in ℱℐ(�) are precisely fuzzy ideals of � generated by 
fuzzy sets with finite cardinality. So that '  is generated by a fuzzy subset of finite 
cardinality. Also it follows from (1) that any fuzzy ideal of � is compactly generated and 
hence ℱℐ(�) is an algebraic lattice.  
 
7. Conclusion  
The results presented in this note indicate that many of the basic concepts in fuzzy 
normal subgroups (respectively fuzzy ideals) of the well known structures; groups 
(respectively rings) can readily be extended to fuzzy ideals of � −algebras. Moreover, 
this paper lays a ground for further studies on fuzzy ideal theories in � −algebras like: 
prime fuzzy ideals, fuzzy congruence relations and other fuzzy structures in � −algebras. 
 
Acknowledgements. We express our heartfelt thanks to the Chief-Editor for accepting our 
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