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1. Introduction 
Fuzzy measure has been introduced by Sugeno [2] and further studied by several authors 
in different point of view [3, 4, 5, 6, 7, 10, 11]. 

As the fuzzy measures lose additivity, some additional conditions are required to 
develop theory of fuzzy measures. Concepts of structural characteristics of fuzzy measure 
like null-additivity, autocontinuity, uniform autocontinuity, and subadditivity have been 
introduced by Wang [8, 9] and there by  a series of new results  have been obtained in the 
fuzzy measure theory. 

In this paper, we define the  structural characteristics such as null-additivity, 
autocontinuity, uniform autocontinuity,  subadditivity, and superadditivity  for the fuzzy 
measure defined in [1]  and we give some theorems which relates the characteristics  and   
on  finite fuzzy measure. 
 
2. Fuzzy measure 
Definition 2.1. Fuzzy measure [1]  Let X be a non empty  set, Ω   be a  non empty class  
of  subsets of  X and ( X, Ω ) be a measurable space. A fuzzy relation  ],0[: ∞→Ωm   
is said to be a  fuzzy measure,  if the following conditions are satisfied 
(i) ( ) 10, =φµ m  

(ii) For any two sets A and B in Ω  ,   BA ⊆  and  A is a nonempty set then 



P.S.Sivakumar and R.Kavitha 

58 
 

     yx
yBmxAm ==

≤
)()(

supsup      and       



























≤





























==
yBxA

yBm
m

xAm
m

)()(
sup,sup, µµ    

(iii) For a sequence of  non empty sets  { } Ω⊂nA ,  ......4321 ⊆⊆⊆⊆ AAAA  and 

Ω∈
∞

=
∪

1n
nA   ⇒

         

yx

y
n

nAm
xAmn

n
=












 ∞

=

=
=









∪

1

)(
supsuplim

                                                                      

  

             and         



















=

















=












 ∞

=

∞

==
yAxA

y
n

nAm
n

nm
xAm

nm
n

n
∪

∪
1

1)(
sup,sup,lim µµ

 

 

(iv) For a sequence of  non empty sets { } Ω⊂nA , ∞<⊇⊇⊇⊇ )(,...... 14321 AmAAAA     

and Ω∈
∞

=
∩

1n
nA     ⇒

  

yx

y
n

nAm
xAmn

n
=












 ∞

=

=
=









∩

1

)(
supsuplim                                                  

 and      



















=

















=












 ∞

=

∞

==
yAxA

y
n

nAm
n

nm
xAm

nm
n

n
∩

∩
1

1)(
sup,sup,lim µµ       

  
Remark: In the above definition,  m is called a lower or upper semicontinuous fuzzy 
measure if  it satisfies the above conditions (i), (ii), and (iii) or (i), (ii), and (iv), 
respectively. Both of them are simply called as semicontinuous fuzzy measure.  

3. Structural characteristics of  fuzzy measure 
Definition 3.1. Null–additive fuzzy measure  
 A fuzzy measure   m is called null-additive if 

 yx
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Example 3.2. Consider the example given in [1]. 
Let { }nX ,...3,2,1= , n is a finite value,  and   )(XP=Ω .  Let the fuzzy relation   

],0[: ∞→Ωm  be defined as   

      [ ]{ } Ω∈∀∈=≤= SSx/x(SmSxxSm ,,0)isthatiff)(  

and the membership function   ]1,0[: →mmµ
 
be  defined as  

 

φµ ≠≤= SforSx
S

x
xSm ,,),(

    

and 

   

1)0,( =φµm  

m is a fuzzy measure and also  m  is null- additive.  

Example 3.3. Let { }baX ,= ,  and   )(XP=Ω .  
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m is a fuzzy measure but it  is  not null-additive.  
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Definition 3.6. Subadditive fuzzy measure 
A fuzzy measure m is said to be  subadditive if  

( ) ( ) ( ) 
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===∪
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whenever Ω∈∪Ω∈ BABA and, . 

 
Definition 3.7. Superadditive fuzzy measure 
A fuzzy measure m is said to be  superadditive if  



P.S.Sivakumar and R.Kavitha 

60 
 

( ) ( ) ( ) 






+






≥
===∪

zyx
zBmyAmxBAm

supsupsup

 

whenever φ=∩Ω∈∪Ω∈ BABABA andand, . 

 
Example 3.8. The fuzzy measure   m in the  example 3.2  is subadditive  and also 
superadditive.  
 
Example 3.9. Consider the example given in [1]. 
Let { }cbaX ,,= , and { }87654321 ,,,,,,,)( SSSSSSSSXP ==Ω , 
where

{ } { } { } { } { } { } XScbScaSbaScSbSaSS ======== 87654321 ,,,,,,,,,,φ
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The fuzzy measure m  is not  subadditive  but it is superadditive.  

Definition 3.10. Autocontinuous fuzzy measure 
A  fuzzy measure m is said to be autocontinuous from above (or  from below) if   
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.  m is autocontinuous if and only if   it is both 

autocontinuous from  above  and autocontinuous from below.   
 
Example 3.11. Consider the example given in [1]. 
Let { }

321
,, aaaX =  , and { }87654321 ,,,,,,,)( SSSSSSSSXP ==Ω , where   
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Let  the fuzzy relation   ],0[: ∞→Ωm  be  defined as  
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The  fuzzy measure m is  auto continuous. 
 
Theorem 3.12. If a fuzzy measure m is autocontinuous from above, or autocontinuous 
from below, then it is null-additive. 
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Hence  m is autocontinuous from below. So, m  is autocontinuous. 
 
Definition 3.14. Uniformly autocontinuous fuzzy measure 

A fuzzy measure m is said to be  uniformly autocontinuous from above (or uniformly 
autocontinuous from below) if for any ,0>ε  there exists ( ) 0>= εδδ such that 
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m is uniformly autocontinuous if and only if  it is both uniformly autocontinuous from 
above and uniformly autocontinuous from below. 

Theorem 3.15. If  m is a fuzzy measure, then the following statements are equivalent: 
(i) m is uniformly autocontinuous 
(ii) m is uniformly autocontinuous from above  
(iii) m is uniformly autocontinuous from below 
(iv) for any ,0>ε  there exists ( ) 0>= εδδ such that 
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4. Finite fuzzy measure 
Definition 4.1. Finite fuzzy measure 

A fuzzy measure  m is said to be finite  if  Ω∈∞<
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Definition 4.2. σ -Finite fuzzy measure 
A fuzzy measure  m is said to be  σ - finite  if   
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Example 4.3. The fuzzy measure in the example 3.2 is finite fuzzy measure and also σ  - 
finite fuzzy measure. 
 
Theorem 4.4. If m is a finite fuzzy measure, then we have 
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Definition 4.5. Exhaustive  fuzzy measure 

A fuzzy measure m is called exhaustive if 0suplim
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  for  any disjoint sequence 

{ }nA .

 Example 4.6.  The fuzzy measure in the example 3.2 is also exhaustive fuzzy measure. 
 
Theorem 4.7. If m is  a finite upper semi continuous fuzzy measure, then it is exhaustive. 
Proof: Let { }nA  be   a disjoint  sequence

  

of sets in

  

Ω   

and ∪
∞

=

=
nk

kn AB . Then { }nB  is   a  decreasing sequence

   

and  

φ====
∞

=

∞

=

∞

=
n

nn nk

k

n

nn
n

AABB suplimlim
11
∩∪∩ . 

By the finiteness and the continuity from above of m, we have 

( )
0supsupsuplim

lim)(
===









==






=
xxx

xmxBmxBmn
n

n
n φ

 . 

Since ∪
∞

=

=
nk

kn AB ,
 

yx
yBmxAm nn ==

≤≤
)()(

supsup0 ⇒ 0suplimsuplim
)()(

=







≤









==
yx

yBmnxAmn
nn

⇒ 0suplim
)(

=








=
x

xAmn
n

. 

Hence m is exhaustive. 

5. Conclusion 
We have defined some structural characteristics such as null-additivity, autocontinuity 
and uniform autocontinuity and some types of fuzzy measure like finite, and σ  - Finite 
fuzzy measure. We have also established the relationship between the characteristics. 
Further investigations can be made to define more characteristics and to study the 
relationships between them. 

 



Fuzzy measure-Structural Characteristics  

65 
 

REFERENCES  

6. P.S.Sivakumar and R.Kavitha, Fuzzy measure: a fuzzy set theoretic approach, Annals 
of  Pure and Applied  Mathematics, 14(1) (2017) 21-31. 

7. M.Sugeno, Theory of fuzzy integrals  and its applications, Thesis, Tokyo Institute  Of   
Technology (1974).  

8. Z.Wang and G.J. Klir, Fuzzy Measure Theory, Plenum Press, New York, 1992. 
9. T.Murofushi and M.Sugeno, An interpretation of fuzzy measures and the Choquet 

integral as  an  integral with respect to a fuzzy measure, Fuzzy Sets and Systems, 29 
(1989) 201-227. 

10. T.Onisawa, M.Sugeno, Y.Nishiwaki, H.Kawai and Y.Harima, Fuzzy measure 
analysis of public attitude towards the use of nuclear energy, Fuzzy Sets and Systems, 
20 (1986) 259-289. 

11. R.Mesiar, Fuzzy measures and integrals, Fuzzy Sets and Systems, 156 (2005) 365- 
370. 

12. P.S. Sivakumar, A study on fuzzy number valued fuzzy measures and associated 
integrals,  Ph.D. Dissertation, Government Arts College, Coimbatore, October 2009. 

13. Z.Wang, The autocontinuity of set function and the fuzzy integral, Journal of 
Mathematical  Analysis and Applications, 99 (1984) 195-218. 

14. Z.Wang, Asymptotic structural characteristics of fuzzy measure and their 
applications, Fuzzy Sets and Systems, 16 (1985) 277-290.   

15. D.Rajan and A.Beulah, Fuzzy number fuzzy  measures and fuzzy integrals, Intern. J. 
Fuzzy Mathematical Archive, 9(1) (2015)11-15. 

16. D.Rajan and A.Beulah, Fuzzy valued measures based on integral decomposition and 
representation under closed intervals, Intern. J. Fuzzy Mathematical Archive, 13(1) 
(2017) 41-57. 


