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1. Introduction 
The theory of fuzzy sets introduced by Zadeh [22] has evoked tremendous interest among 
researchers working in different branches of mathematics. Rosenfield in his pioneering 
paper [15] introduced the notions of fuzzy subgroups of a group. Since then, many 
researches have been studying fuzzy subalgebras of several algebraic structures (see [7, 
12, 13, 14, 19]). As suggested by Gougen [9], the unit interval [0,1] is not sufficient to 
take the truth values of general fuzzy statements. U. M. Swamy and D. V. Raju [17, 18] 
studied the general theory of algebraic fuzzy systems by introducing the notion of a fuzzy 
� − subset of a set 	 corresponding to a given class � of subsets of 	 having truth values 
in a complete lattice satisfying the infinite meet distributive law.  
        Ideals in universal algebras have been studied in a series of papers [4, 5, 6, 11, 20] 
as a generalization of those familiar structures: normal subgroups (in groups), normal 
subloops (in loops), ideals (in rings), submodules (in modules), subspaces (in vector 
spaces) and filters (in implication algebras or Heyting algebras). 
        In [1], we have introduced the concept � −fuzzy ideals in universal algebras and we 
gave a necessary and sufficient condition for a variety of algebras to be an ideal 
determined. In [2], we study � −fuzzy prime idelas and maximal � −fuzzy ideals of 
universal algebras and gave an internal characterization for � − fuzzy prime idelas 
analogous to the characterization of Swamy and Swamy [16] in the case of rings. In [3], 
we continued our study and we define � −fuzzy semi-prime ideals and the radical of 
� −fuzzy ideals in universal algebras in the frame work of � −fuzzy ideals given in [1]. 
In the present paper, we study the image and pre-image of �-fuzzy ideals of of universal 
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algebras under a homomorphism. We make a theoretical study on their properties and 
give several characterizing theorems.  
 
2. Preliminaries 
This section contains some definitions and results which will be used in the paper. We 
refer to the readers [8, 10], for the standard concepts in universal algebras. Throughout 
this paper 
 ∈ �, where � is a class of algebras of a fixed type Ω and assume that there 
is an equationaly definable constant in all algebras of � denoted by 0. For a positive 
integer �, we write �� to denote the � −tuple 〈��, ��, . . . , ��〉 ∈ 
�.  
 
Definition 2.1. [11] A term �(��, ��)  is said to be an ideal term in ��  if and only if 
�(��, 0��) = 0.  
 
Definition 2.2. [11] A nonempty subset �  of 
 is called an ideal of 
  if and only if 
�(��, ���) ∈ � for all �� ∈ 
�, ��� ∈ �  and any ideal term �(��, ��) in ��.  
We denote the class of all ideals of 
, by ℐ(
).  
 
Definition 2.3. [11, 20] A term "(��, ��, #�) is said to be a commutator term in ��, #� if and 
only if it is an ideal term in �� and an ideal term in #�.  
 
Definition 2.4. [11] In an ideal determined variety, the commutator [�, $] of ideals � and 
$ is the zero congruence class of the commutator congruence [�% , $%].  
It is characterized in [11] as follows:  
 
Theorem 2.5. [11, 20] In an ideal determined variety,  

[�, $] = {"(�� , '�, (�): �� ∈ 
�, '� ∈ � ��*(�
∈ $+,ℎ./."(��, ��, #�) 12 � 34556"�"4/ "./5 1� ��, #�} 

For subsets 8, 9 of 
, [8, 9] denotes the product [〈8〉, 〈9〉]. In particular, for �, � ∈ 
, 
[〈�〉, 〈�〉] is denoted by [�, �].  
 
Definition 2.6. [20] A proper ideal � of 
 is called prime if and only if for all �, $ ∈
ℐ(
):  

 [�, $] ⊆ � ⇒ .1"ℎ./� ⊆ �4/$ ⊆ � 
 
Theorem 2.7. [20] A proper ideal � of 
 is prime if and only if:  

 [�, �] ⊆ � ⇒ .1"ℎ./� ∈ �4/� ∈ � 
for all �, � ∈ 
.  

 
Definition 2.8. [20] An ideal < of 
 is called semiprime if and only if for all � ∈ ℐ(
):  

 [�, �] ⊆ < ⇒ � ⊆ < 
 
Definition 2.9. [20] The prime radical of an ideal � of 
, denoted by √� is the 
intersection of all prime ideals of 
 containing �.  

Throughout this paper � = (�,∧,∨ ,0,1)  is a complete Brouwerian lattice; i.e., �  is a 
complete lattice satisfying the infinite meet distributive law. By an � −fuzzy subset of 
, 
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we mean a mapping @: 
 → �. For each B ∈ �, the B −level set of @ denoted by @C is a 
subset of 
 given by:  
 @C = {� ∈ 
: B ≤ @(�)} 
For fuzzy subsets @ and E of 
, we write @ ≤ E to mean @(�) ≤ E(�) in the ordering of 
�.  
 
Definition 2.10. [21] For each � ∈ 
 and 0 ≠ B in �, the fuzzy subset �C of 
 given by:  

�C(#) = GB 1H# = �
0 4"ℎ./,12.

I 
is called the fuzzy point of 
. In this case � is called the support of �C and B its value.  
For a fuzzy subset @ of 
 and a fuzzy point �C of 
, we write �C ∈ @ whenever @(�) ≥
B.  
 
Definition 2.11. [1] An � −fuzzy subset @ of 
 is said to be an � −fuzzy ideal of 
 (or 
shortly a fuzzy ideal of 
) if and only if the following conditions are satisfied:   

    1.  @(0) = 1, and  
    2.  If �(��, ��) is an ideal term in �� and �� ∈ 
�, ��� ∈ 
 , then  

 @(�(��, ���)) ≥ @ (���) 
We denote by ℱℐ(
), the class of all fuzzy ideals of 
.  
 
Definition 2.12. [2] The commutator of fuzzy ideals @ and L of 
 denoted by [@, L] is a 
fuzzy subset of 
 defined by:  

[@, L](�) =∨ MB ∧ N: B, N ∈ �, � ∈ O@C , LPQR 
 =∨ {S ∈ �: � ∈ [@T, LT]} 

 for all � ∈ 
.  
Theorem 2.13. [2] For each � ∈ 
, and fuzzy ideals @ and L of 
:  

[@, L](�) =∨ {@ U���V ∧ L+(3�): � = "U��, ���, 3�V, ,ℎ./. �� ∈ 
�, ��� ∈ 
 , 3� ∈ 
+ , 
��*"(��, ��, #�)12 � 34556"�"4/ "./5 1� ��, #�} 

 
Definition 2.14. [2] A non-constant fuzzy ideal @ of 
 is called a fuzzy prime ideal if and 
only if:  

[E, L] ≤ @ ⇒ .1"ℎ./ E ≤ @ 4/ L ≤ @ 
for all E, L ∈ ℱℐ(
).  
 
Theorem 2.15. [2] A non-constant fuzzy ideal @ is a fuzzy prime ideal if and only if 
�5W(@) = {1, B}, where B is a prime element in � and the set  

@∗ = {� ∈ 
: @(�) = 1} 
is a prime ideal of 
.  
 
Definition 2.16. [3] A fuzzy ideal @ of 
 is called fuzzy semi-prime if:  

 [Y, Y] ≤ @ ⇒ Y ≤ @ 
for all Y ∈ ℱℐ(
).  
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According to [20], the prime radical of an ideal � of 
, denoted by √� is the intersection 
of all prime ideals of 
 containing �. Here we define the prime radical of fuzzy ideals 
using their level ideals.  
 
Definition 2.17. [3] For a fuzzy ideal @ of 
, its prime radical of @ denoted by √@ is 
defined as a fuzzy subset of 
 such that, for each � ∈ 
:  

√@(�) = B if and only if � ∈ Z@C and � ∉ Z@P for all N > B in �.  
 
Lemma 2.18. [3] Let @ be a fuzzy ideal of 
 and � ∈ 
. Then  
   √@(�) =∨ {B ∈ �: � ∈ Z@C} 
 
3. Homomorphisms and fuzzy ideals 
Let 
  and ]  be algebras of the same type Ω . A mapping ℎ: 
 → ]  is called a 
homomorphism from 
 to ] if:  
 ℎ(H^(��, ��, . . . , ��)) = H_(ℎ(��), ℎ(��), . . . , ℎ(��)) 
for each � −ary operation H in Ω and each sequence ��, ��, . . . , �� from 
. It is observed 
that if ̀  is an � −ary term of type Ω, then  

 ℎ(H^(��, ��, . . . , ��)) = `_(ℎ(��), ℎ(��), . . . , ℎ(��)) 
for all ��, ��, . . . , �� ∈ 
. 
 
Theorem 3.1.  Let ℎ: 
 → ] be a homomorphism. Then we have the following:   
   1.  If L is a fuzzy ideal of ], then ℎa�(L) is a fuzzy ideal of 
 
   2.  If @ is a fuzzy ideal of 
 and ℎ is surjective, then ℎ(@) is a fuzzy ideal of ].  

 
Proof: Let ℎ: 
 → ] be a homomorphism.   

1) Suppose that L is a fuzzy ideal of ] and let ��, ��, . . . , ��, ��, ��, . . . , � ∈ 
. 
Then ℎ(��), ℎ(��), . . . , ℎ(��), ℎ(��), ℎ(��), . . . , ℎ(� ) ∈ ]. If `(��, ��) is an 
� + 5 ideal term in ��, then we get:  

L(`_(ℎ(��), ℎ(��), . . . , ℎ(��), ℎ(��), ℎ(��), . . . , ℎ(� ))) ≥ L(ℎ(��)) ∧. . .∧ L(ℎ(� )) 
Now consider the following:  

ℎa�(L)(`^(��, . . . , ��, ��, . . . , � )) = L(ℎ(`^(��, . . . , ��, ��, . . . , � ))) 
 = L(`_(ℎ(��), . . . , ℎ(��), ℎ(��), . . . , ℎ(� ))) 
 = L(ℎ(��)) ∧. . .∧ L(ℎ(� )) 
 = ℎa�(L)(��) ∧. . .∧ ℎa�(L)(� ) 

 Therefore ℎa�(L) is a fuzzy ideal of 
.  
2) Suppose that ℎ is surjective and let @ be a fuzzy ideal of 
. If 

6�, 6�, . . . , 6�, c�, c�, . . . , c ∈ ], then there exist ��, ��, . . . , ��, ��, ��, . . . , � ∈

 such  that ℎ(�d) = 6d and ℎ(�e) = ce for all 1, f. If `(��, ��) is an � + 5 ideal 
term in ��, then we get:  
ℎ(`^(��, . . . , �� , ��, . . . , � )) = `_(ℎ(��), . . . , ℎ(��), ℎ(��), . . . , ℎ(� )) 
 = `_(6�, . . . , 6�, c�, . . . , c ) 

 So that ̀ ^(��, . . . , ��, ��, . . . , � ) ∈ ℎa�(`_(6�, . . . , 6�, c�, . . . , c )). Now consider the 
following:  

ℎ(@)(`_((6�, . . . , 6�, c�, . . . , c )) =∨ {@(�): � ∈ ℎa�(`_((6�, . . . , 6�, c�, . . . , c ))} 
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 ≥ @(`^(��, . . . , ��, ��, . . . , � )) 
 ≥ @(��) ∧. . .∧ @(� ) 

 Since �e  is arbitrary in ℎa�(ce)  for all f = 1,2, . . . , 5 , it follows that 
ℎ(@)(`_((6�, . . . , 6�, c�, . . . , c )) ≥ ∨

hi∈jki(li)
@(��) ∧. . .∧ ∨

hm∈jki(lm)
@(� ) 

 = ℎ(@)(c�) ∧. . .∧ ℎ(@)(c ) 
 Therefore ℎ(@) is a fuzzy ideal of ].  

 
Theorem 3.2. Let ℎ: 
 → ] be a homomorphism, @ and E be fuzzy ideals of 
. Then  

 ℎ(@ ∨ E) = ℎ(@) ∨ ℎ(E) 
Proof: We show that ℎ(@ ∨ E) is the smallest fuzzy ideal of ] containing both ℎ(@) and 
ℎ(E). By Theorem 3.1, ℎ(@ ∨ E) is a fuzzy ideal of ]. Now let � ∈ ]. If ℎa�(�) = ∅, 
then ℎ(@)(�) = 0 ≤ ℎ(@ ∨ E)(�). Also if ℎa�(�) ≠ ∅, then consider the following:   

ℎ(@)(�) =∨ {@(�): � ∈ ℎa�(�)} 
≤∨ {(@ ∨ E)(�): � ∈ ℎa�(�)} 

= ℎ(@ ∨ E)(�) 
So that ℎ(@) ≤ ℎ(@ ∨ E). Similarly, we can verify that ℎ(E) ≤ ℎ(@ ∨ E). Now for any 
fuzzy ideal o of ]:  

ℎ(@) ≤ o, ℎ(E) ≤ o ⇒ ℎa�(ℎ(@)) ≤ ℎa�(o), ℎa�(ℎ(E)) ≤ ℎa�(o) 
⇒ @ ≤ ℎa�(o), E ≤ ℎa�(o) 

 ⇒ @ ∨ E ≤ ℎa�(o) 
 ⇒ ℎ(@ ∨ E) ≤ ℎ(ℎa�(o)) ≤ o 

Therefore ℎ(@ ∨ E) is the smallest fuzzy ideal of ] containing both ℎ(@) and ℎ(E). So 
that, ℎ(@ ∨ E) = ℎ(@) ∨ ℎ(E).  

 
Theorem 3.3. Let ℎ: 
 → ] be a homomorphism, and @ and E be fuzzy ideals of 
. Then  

 ℎ(@ ∧ E) ≤ ℎ(@) ∧ ℎ(E) 
Moreover, if either @ or E is ℎ −invariant, then the equality holds.  
Proof: Let � be any element in ]. If ℎa�(�) = ∅, then ℎ(@)(�) = 0 = ℎ(E)(�) = ℎ(@ ∧
E)(�). Let ℎa�(�) ≠ ∅. Then consider the following:  

ℎ(@ ∧ E)(�) =∨ {(@ ∧ E)(�): � ∈ ℎa�(�)} 
 =∨ {@(�) ∧ E(�): � ∈ ℎa�(�)} 
 ≤∨ {@(�) ∧ E(�): �, � ∈ ℎa�(�)} 
 =∨ {@(�): � ∈ ℎa�(�)} ∧∨ {E(�): � ∈ ℎa�(�)} 
 = ℎ(@)(�) ∧ ℎ(E)(�) 

Therefore ℎ(@ ∧ E) ≤ ℎ(@) ∧ ℎ(E). Moreover, assume without loss of generality that @ is 
ℎ − invariant. Then @(�) = @(�) , whenever ℎ(�) = ℎ(�). Now for each � ∈ ] , with 
ℎa�(�) ≠ ∅, consider the following:  

ℎ(@)(�) ∧ ℎ(E)(�) =∨ {@(�): � ∈ ℎa�(�)} ∧∨ {E(�): � ∈ ℎa�(�)} 
 =∨ {@(�) ∧ E(�): �, � ∈ ℎa�(�)} 
 =∨ {@(�) ∧ E(�): � ∈ ℎa�(�)} 
 =∨ {(@ ∧ E)(�): � ∈ ℎa�(�)} 
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 = ℎ(@ ∧ E)(�) 
Therefore ℎ(@ ∧ E) = ℎ(@) ∧ ℎ(E).  

 
Theorem 3.4. Let ℎ: 
 → ] be a homomorphism, and and L and Y be fuzzy ideals of ]. 
Then  

ℎa�(L) ∨ ℎa�(Y) ≤ ℎa�(L ∨ Y) 
Moreover, the equality holds whenever ℎ is surjective.  
Proof: For each � ∈ 
, consider:  

 ℎa�(L)(�) = L(ℎ(�)) 
 ≤ (L ∨ Y)(ℎ(�)) 
 = ℎa�(L ∨ Y)(�) 

So that ℎa�(L) ≤ ℎa�(L ∨ Y). Similarly it can be verified that ℎa�(Y) ≤ ℎa�(L ∨ Y). 
Therefore ℎa�(L) ∨ ℎa�(Y) ≤ ℎa�(L ∨ Y). Further, let we assume that ℎ is surjective. To 
prove the equality, it is enough if we show that ℎa�(L ∨ Y) is the smallest fuzzy ideal of 

 containing both L and Y. From Theorem 3.1 we have that ℎa�(L ∨ Y) is a fuzzy ideal 
of 
 . From the above inequality also we have ℎa�(L) ≤ ℎa�(L ∨ Y)  and ℎa�(Y) ≤
ℎa�(L ∨ Y). Now let @ be any other fuzzy ideal of 
 such that ℎa�(L) ≤ @ and ℎa�(Y) ≤
@. Then ℎ(ℎa�(L)) ≤ ℎ(@) and ℎ(ℎa�(Y)) ≤ ℎ(@). Since ℎ is surjective, it follows that 
L ≤ ℎ(@) and Y ≤ ℎ(@). So that, L ∨ Y ≤ ℎ(@), which gives ℎa�(L ∨ Y) ≤ ℎa�(ℎ(@)). 
Our aim is to show that ℎa�(L ∨ Y) ≤ @. Suppose not. Then there exists � ∈ 
 such that 
ℎa�(L ∨ Y)(�) > @(�). If we put # = ℎ(�), then we get (L ∨ Y)(#) > ℎ(@)(#), which is 
a contradiction. Therefore ℎa�(L ∨ Y) ≤ @ and hence the equality holds.  

 
Theorem 3.5. Let ℎ: 
 → ] be a homomorphism, and L and Y be fuzzy ideals of ]. Then  

ℎa�(L ∧ Y) = ℎa�(L) ∧ ℎa�(Y) 
 
Proof: For each � ∈ 
, consider the following:  

 ℎa�(L ∧ Y)(�) = (L ∧ Y)(ℎ(�)) 
 = L(ℎ(�)) ∧ Y(ℎ(�)) 
 = ℎa�(L)(�) ∧ ℎa�(Y)(�) 
 = (ℎa�(L) ∧ ℎa�(Y))(�) 

Therefore ℎa�(L ∧ Y) = ℎa�(L) ∧ ℎa�(Y). 
 

Theorem 3.6. Let ℎ: 
 → ] be a surjective homomorphism. For any ℎ-invariant fuzzy 
subset @ of 
, we have:  

ℎ(〈@〉) = 〈ℎ(@)〉 
Proof: For any � ∈ ], consider:  

ℎ(〈@〉)(�) =∨ {〈@〉(�): � ∈ ℎa�(�)} 
 =∨ {∨ {B ∈ �: � ∈ 〈@C〉}: � ∈ ℎa�(�)} 
 =∨ {B ∈ �: � ∈ 〈@C〉��*ℎ(�) = �} 
 =∨ {B ∈ �: � ∈ ℎ(〈@C〉)} 

 on the other hand  
 〈ℎ(@)〉(�) =∨ {B ∈ �: � ∈ 〈ℎ(@)C〉} 

Now it is enough to show that  
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 ℎ(〈@C〉) = 〈ℎ(@)C〉 
Let # ∈ ℎ(〈@C〉) . Then # = ℎ(�)  for some � ∈ 〈@C〉 . There exists ��, . . . , �� ∈ 
 , 
��, . . . , � ∈ @C  and an ideal term ̀(��, ��)  in ��  such that � = `^(��, . . . , �� ∈ 
 , 
��, . . . , � ). So,  

  
# = ℎ(�) 

 = ℎ(`^(��, . . . , �� , ��, . . . , � )) 
 = `_(ℎ(��), . . . , ℎ(��), ℎ(��), . . . , ℎ(� ) 

 For each f = 1,2, . . . , 5 we have  
 ℎ(@)(ℎ(�e)) =∨ {@(�): � ∈ ℎa�(�e)} 

Since @ is ℎ-invariant and each �e ∈ @C, we get  
 ℎ(@)(ℎ(�e)) = @(�e) ≥ B 

for all f = 1,2, . . . , 5 ; that is ℎ(�e) ∈ ℎ(@)C  for all f  and 
# = `_(ℎ(��), . . . , ℎ(��), ℎ(��), . . . , ℎ(� ). This means # ∈ 〈ℎ(@)C〉. So that  

 ℎ(〈@C〉) ⊆ 〈ℎ(@)C〉 
To prove the other inclusion, let # ∈ 〈ℎ(@)C〉. Then # = `_(6��, c�) for some 6�, . . . , 6� ∈
], c�, . . . , c ∈ ℎ(@)C and some ideal term `(��, ��) in ��. Since ℎ is surjective, there exist 
��, . . . , ��, ��, . . . , � ∈ 
  such that ℎ(�d) = 6d  and ℎ(�e) = ce  for all 1 = 1, . . . , �  and 
f = 1, . . . , 5. As each ce ∈ ℎ(@)C, we have ℎ(@)(ℎ(�e)) ≥ B. Since @ is ℎ-invariant we 
get @(�e) ≥ B; that is, �e ∈ @C for all f. Put � = `^(��, . . . ��, ��, . . . � ). Then � ∈ 〈@C〉. 
Moreover  

ℎ(�) = ℎ(`^(��, . . . , ��, ��, . . . , � )) 
 = `_(ℎ(��), . . . , ℎ(��), ℎ(��), . . . , ℎ(� ))) 
 = `_(6�, . . . , 6�, c�, . . . , c ) 
 = # 

That is, # = ℎ(�), where � ∈ 〈@C〉, which gives # ∈ ℎ(〈@C〉). Thus 〈ℎ(@)C〉 ⊆ ℎ(〈@C〉). 
Hence ℎ(〈@C〉) = 〈ℎ(@)C〉 and this completes the proof.  
 
4. Homomorphisms and fuzzy prime ideals 
Theorem 4.1.  Let ℎ: 
 → ] be a surjective homomorphism.   

1.  If @ and L are fuzzy ideals of 
, then  
 ℎ([@, L]) = [ℎ(@), ℎ(L)] 

 
    2.  If L and Y are fuzzy ideals of ], then  
 [ℎa�(L), ℎa�(Y)] ≤ ℎa�([L, Y]) 

Proof: (1) Let � ∈ ] . Since ℎ  is assumed to be surjective, the set ℎa�(�)  is always 
nonempty. By definition we have:  

ℎ([@, o])(�) =∨ {[@, o](�): � ∈ ℎa�(�)} 
 =∨ {∨ {@ (���) ∧ o+(3�): � = "^(��, ���, 3�)}: � ∈ ℎa�(�)} 
 =∨ {@ (���) ∧ o+(3�): � = ℎ("^(��, ���, 3�))} 

 which gives  
ℎ([@, o])(�) ≥ @ (���) ∧ o+(3�)                                              (4.1) 
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for any ��, . . . , � , 3�, . . . , 3+ ∈ 
 , with � = ℎ("^(��, ���, 3�))  for some commutator term 
"(��, ��, #�) in ��, #� and some ��, . . . , �� ∈ 
. Now let � = "_(6��, c�, ,���) be any expression of 
�  using commutator terms, where 6�, . . . , 6�, c�, . . . , c , ,�, . . . , ,+ ∈ ] . Since ℎ  is 
surjective there exist ��, . . . , ��, ��, . . . , � , 3�, . . . , 3+ ∈ 
 such that ℎ(�d) = 6d , ℎ(�e) =
ce and ℎ(3p) = ,p for all 1 = 1,2, . . . , �, f = 1,2, . . . , 5 and / = 1,2, . . . , q. Equivalently, 
each �d ∈ ℎa�(6d), �e ∈ ℎa�(ce) and 3p ∈ ℎa�(,p). Now consider:  

ℎ("^(��, ���, 3�)) = "_(ℎ(��), . . . , ℎ(�r), ℎ(��), . . . , ℎ(� ), ℎ(3�), . . . , ℎ(3+)) 
 = "_(6�, . . . , 6�, c�, . . . , c , ,�, . . . , ,+) 
 = "_(6��, c�, ,���) 
 = � 

So, by eq. (4.1) we get  
ℎ([@, o])(�) ≥ @ (���) ∧ o+(3�) 

Since each �e  (respectively 3p ) is arbitrary in ℎa�(ce)  (respectively in ℎa�(,p) ), it 
follows that  

ℎ([@, o])(�) ≥ @ (���) ∧ o+(3�) 
= @(��) ∧. . .∧ @(� ) ∧ o(3�) ∧. . .∧ o(3+) 

≥ ∨
hi∈jki(li)

@(��) ∧. . .∧ ∨
hm∈jki(lm)

@(� ) ∧ ∨
si∈jki(ti)

o(3�) ∧. . .∧ ∨
su∈jki(tu)

o(3+) 

= ℎ(@)(c�) ∧. . .∧ ℎ(@)(c ) ∧ ℎ(o)(,�) ∧. . .∧ ℎ(o)(,+) 
= ℎ(@) (c�) ∧ ℎ(o)+(,���) 

 This gives  
ℎ([@, o])(�) ≥∨ {ℎ(@) (c�) ∧ ℎ(o)+(,���): � = "_(6��, c�, ,���)} 

= [ℎ(@), ℎ(o)](�) 
 Therefore [ℎ(@), ℎ(o)] ≤ ℎ([@, o]). To prove the other inequality, consider  

[ℎ(@), ℎ(o)](�) =∨ {ℎ(@) (c�) ∧ ℎ(o)+(,���): � = "_(6��, c�, ,���)} 
 So that  

[ℎ(@), ℎ(o)](�) ≥ ℎ(@) (c�) ∧ ℎ(o)+(,���)                                  (4.2) 
for all c�, . . . , c , ,�, . . . , ,+ ∈ ] , with � = "_(6��, c�, ,���)} , for some commutator term 
"(��, ��, #�)  in ��, #�  and some 6�, . . . , 6� ∈ ] . Now let � = ℎ("^(��, ���, 3�))  for some 
��, . . . , ��, ��, . . . , � , 3�, . . . , 3+ ∈ 
 and commutator term "(��, ��, #�) in ��, #�. That is,  

 � = "_(ℎ(��), . . . , ℎ(��), ℎ(��), . . . , ℎ(� )), ℎ(3�), . . . , ℎ(3+)) 
By eq. (4.2) we get  

[ℎ(@), ℎ(o)](�) ≥ ℎ(@)(ℎ(��)) ∧. . .∧ ℎ(@)(ℎ(� )) ∧ ℎ(o)(ℎ(3�)) ∧. . .∧ ℎ(o)(ℎ(3+)) 
 using the fact that ℎ(@)(ℎ(�)) ≥ @(�) for all � ∈ 
, we get the following:  

[ℎ(@), ℎ(o)](�) ≥ ℎ(@)(ℎ(��)) ∧. . .∧ ℎ(@)(ℎ(� )) ∧ ℎ(o)(ℎ(3�)) ∧. . .∧ ℎ(o)(ℎ(3+)) 
 ≥ @(��) ∧. . .∧ @(� ) ∧ o(3�) ∧. . .∧ o(3+) 
 = @ (���) ∧ o+(3�) 

 Since these �d ’s and 3e’s are arbitrary, it follows that  

[ℎ(@), ℎ(o)](�) ≥∨ {@ (���) ∧ o+(3�): � = ℎ("^(��, ���, 3�))} 
 = ℎ([@, o])(�) 

 which gives ℎ([@, o]) ≤ [ℎ(@), ℎ(o)] and therefore the equality holds. 
(2) Let � ∈ 
 be any element. Then  
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ℎa�([L, Y])(�) = [ℎa�(L), ℎa�(Y)](�) 
=∨ {@ (���) ∧ L+(3�): � = "(��, ���, 3�) ,ℎ./."(��, ��, #�)12�34556"�"4/"./51���, #�} 

Now let � = "^(��, ���, 3�) ; for some commutator term "(��, ��, #�)  in ��, #�  and 
��, . . . , ��, ��, . . . , � , 3�, . . . , 3+ ∈ 
. Then  

ℎ(�) = ℎ("^(��, ���, 3�)) 
 = "_(ℎ(��), . . . , ℎ(��), ℎ(��), . . . , ℎ(� ), ℎ(3�), . . . , ℎ(3+)) 

Consider the following:  
ℎa�([L, Y])(�) = [L, Y](ℎ(�)) 

 =∨ {L (c�) ∧ Y+(,���): ℎ(�) = "_(6��, c�, ,���)} 
 ≥ L(ℎ(��)) ∧. . .∧ L(ℎ(� )) ∧ Y(ℎ(3�)) ∧. . .∧ Y(ℎ(3+))) 
 = ℎa�(L)(��) ∧. . .∧ ℎa�(L)(� ) ∧ ℎa�(Y)(3�) ∧. . .∧ ℎa�(Y)(3+) 
 = (ℎa�(L)) (�) ∧ (ℎa�(Y))+(3�) 

Since each ��, . . . , ��, ��, . . . , � , 3�, . . . , 3+ are arbitrary, we get  

ℎa�([L, Y])(�) ≥∨ {(ℎa�(L)) (���) ∧ (ℎa�(Y))+(3�): � = "^(��, ���, 3�)} 
 = [ℎa�(L), ℎa�(Y)](�) 

Therefore [ℎa�(L), ℎa�(Y)] ≤ ℎa�([L, Y]). 
 
Theorem 4.2. If ℎ: 
 → ] is an onto homomorphism and @ is an ℎ-invariant fuzzy prime 
ideal of 
, then ℎ(@) is a fuzzy prime ideal of ].  
Proof: Suppose that @ is an ℎ-invariant fuzzy prime ideal of 
. It follows from Theorem 
3.1 that ℎ(@) is a fuzzy ideal of ]. Let L and Y be fuzzy ideals of ] such that  
 [L, Y] ≤ ℎ(@) 
Then  

 ℎa�([L, Y]) ≤ ℎa�(ℎ(@)) 
Since @ is given to be an ℎ-invariant, we have ℎa�(ℎ(@)) = @. So that,  

 ℎa�([L, Y]) ≤ @ 
Also, by (2) of Theorem 4.1, we have  

 [ℎa�(L), ℎa�(Y)] ≤ ℎa�([L, Y]) 
which gives  

 [ℎa�(L), ℎa�(Y)] ≤ @ 
Since @  is fuzzy prime, either ℎa�(L) ≤ @  or ℎa�(Y) ≤ @ , which implies either 
ℎ(ℎa�(L)) ≤ ℎ(@)  or ℎ(ℎa�(Y)) ≤ ℎ(@) ; that is, either L ≤ ℎ(@)  or Y ≤ ℎ(@) . This 
means ℎ(@) is fuzzy prime.   
 
Theorem 4.3. If ℎ is a homomorphism from 
 onto ] and L is a fuzzy prime ideal of ], 
then ℎa�(L) is a fuzzy prime ideal of 
.  
Proof: Suppose that Y is a fuzzy prime ideal of ]. By Theorem 3.1 ℎa�(Y) is a fuzzy 
ideal of 
. Let @ and o be fuzzy ideals of 
 such that  

 [@, o] ≤ ℎa�(Y) 
Then  

 ℎ([@, o]) ≤ ℎ(ℎa�(Y)) 
Since ℎ is surjective, ℎ(ℎa�(Y)) = Y and by (1) of Theorem 4.1, we have ℎ([@, o]) =
[ℎ(@), ℎ(o)]. So that  
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 [ℎ(@), ℎ(o)] ≤ Y 
Since Y  is fuzzy prime, either ℎ(@) ≤ Y  or ℎ(o) ≤ Y . This provides that either @ ≤
ℎa�(Y) or o ≤ ℎa�(Y). Therefore ℎa�(Y) is fuzzy prime.  

 
Theorem 4.4. If ℎ: 
 → ] is an onto homomorphism, then the mapping @ ↦ ℎ(@) defines 
a one-to-one correspondence between the set of all ℎ-invariant fuzzy prime ideals of 
 
and the set of all fuzzy prime ideals of ].  
Proof: The above two theorems confirm that @ ↦ ℎ(@) is an onto map from the set of all 
ℎ-invariant fuzzy prime ideals of 
 to the set of all fuzzy prime ideals of ]. It remains to 
show that it one-one. Let @� and 56� be an ℎ-invariant fuzzy prime ideals of 
 such that 
ℎ(@�) = ℎ(@�). Let � ∈ 
. Then ℎ(�) ∈ ] and ℎ(@�)(ℎ(�)) = ℎ(@�)(ℎ(�)). Since @� is 
ℎ-invariant we have @�(�) = @�(�) for all � ∈ ℎa�(�). So,  

@�(�) =∨ {@�(�): � ∈ ℎa�(�)} 
 = ℎ(@�)(ℎ(�)) 
 = ℎ(@�)(ℎ(�)) 
 =∨ {@�(�): � ∈ ℎa�(�)} 
 = @�(�) 

Thus @� = @� and hence the map @ ↦ ℎ(@) is a one-to-one correspondence.   
 
Theorem 4.5. If ℎ: 
 → ] is an onto homomorphism and @ is an ℎ-invariant maximal 
fuzzy ideal of 
, then ℎ(@) is a maximal fuzzy ideal of ].  
Proof: Suppose that @ is an ℎ-invariant maximal fuzzy ideal of 
. Let L  be a proper 
fuzzy ideal of ] such that  

 ℎ(@) ≤ L 
Then  

 ℎa�(ℎ(@)) ≤ ℎa�(L) 
Since @ is ℎ-invariant, we have @ = ℎa�(ℎ(@)). So that  

 @ ≤ ℎa�(L) 
By Theorem 4.1, ℎa�(L) is a fuzzy ideal of 
. Moreover, since L is proper, there exists 
� ∈ ] such thatL(�) < 1; that is, L(�) = ℎ(ℎa�(L))(�) < 1, which gives ℎa�(L)(�) <
1 for all � ∈ ℎa�(�). This means, ℎa�(L) is a proper fuzzy ideal of 
 such that @ ≤
ℎa�(L) . Since @  is maximal, we get that @ = ℎa�(L) , which implies ℎ(@) =
ℎ(ℎa�(L)) = L. Therefore ℎ(@) is a maximal fuzzy ideal in 
.  
 
Theorem 4.6. If ℎ is a homomorphism from 
 onto ] and L is a maximal fuzzy ideal of 
], then ℎa�(L) is a maximal fuzzy ideal of 
.  
 
Theorem 4.7. If ℎ: 
 → ] is an onto homomorphism, then the mapping @ ↦ ℎ(@) defines 
aone-to-one correspondence between the set of all ℎ-invariant maximal fuzzy ideals of 
 
and the set of all maximal fuzzy ideals of ].  
 
Theorem 4.8. Let ℎ: 
 → ] is an onto homomorphism. If @ is an ℎ-invariant fuzzy ideal 
of 
, then  

 ℎ(√@) = Zℎ(@) 
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Theorem 4.9. Let ℎ: 
 → ] is an homomorphism. If L is a fuzzy ideal of ], then  

 ℎa�(√@) = Zℎa�(@) 
 
Theorem 4.10. If ℎ: 
 → ] is an onto homomorphism and @ is an ℎ-invariant fuzzy semi-
prime ideal of 
, then ℎ(@) is a fuzzy semi-prime ideal of ].  

 
Theorem 4.11. If ℎ is a homomorphism from 
 to ] and L is a fuzzy semi-prime ideal of 
], then ℎa�(L) is a fuzzy semi-prime ideal of 
.  
 
Theorem 4.12. If ℎ: 
 → ]  is an onto homomorphism, then the mapping @ ↦ ℎ(@) 
defines a one-to-one correspondence between the set of all ℎ-invariant fuzzy semi-prime 
ideals of 
 and the set of all fuzzy semi-prime ideals of ].  
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