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1. Introduction 
We consider only finite, connected, undirected graphs without loops and multiple edges. 
The degree of a vertex v, denoted by dG(v), is the number of vertices adjacent to v. Let 
MG(v) denote the product of the degrees of all vertices adjacent to v. We refer to [1] for 
undefined terminology not given here. 

A topological index is a numerical parameter mathematically derived from the 
graph structure. Several topological indices have been considered in Mathematical 
Chemistry. 

In [2], Kulli put forward the first and second KV indices: 

 ( ) ( ) ( )
( )

1 ,G G
uv E G

KV G M u M v
∈
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 ( ) ( ) ( )
( )
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Recently, some new variants of KV indices were proposed and studied such as 
hyper KV indices [3], square KV index [3], connectivity KV indices [4]. 

We now define first and second multiplicative KV indices as 
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Also we introduce the first and second multiplicative hyper  KV indices and they 
are defined as  
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We propose the general first and second multiplicative KV indices of a graph G, 
defined as  
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 = + ∏                          (1) 
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where a is a real number. 
Recently some new multiplicative indices were studied, see [5, 6, 7, 8, 9, 10, 11, 

12, 13, 14, 15]. 
In this paper, the first and second multiplicative KV indices, first and second 

multiplicative hyper KV indices, and general first and second multiplicative KV indices of 
POPAM and tetrathiafulvalene dendrimers are determined. 

 
2. POPAM dendrimers 
The family of POPAM dendrimers is symbolized by POD2[n], where n is the steps of 
growth in this type of dendrimers. The graph of POD2[2] is shown in Figure 1. 

 
Figure 1: Graph of POD2[2] 

 
        Let G = POD2[n]. By calculation, we have |V(G)| = 2n+5 – 10 and |E(G)| = 2n+5 – 11. 
 
Lemma 1. Let G = POD2[n] be a POPAM dendrimer with 2n+5 – 11 edges. The edge 
partition of POD2[n] based on the degree product of neighbors of end vertices of each 
edge is as follows: 

E1 = { uv ∈ E(G) | MG(u) = MG(v) = 2 },     |E1| = 2n+2. 
E2 = { uv ∈ E(G) | MG(u) = 2, MG(v) = 4 },     |E2| = 2n+2. 
E3 = { uv ∈ E(G) | MG(u) = MG(v) = 4},      |E3| = 1.  
E4 = { uv ∈ E(G) | MG(u) = 4, MG(v) = 6 },        |E4| = 3×2n – 6. 
E5 = { uv ∈ E(G) | MG(u) = 6, MG(v) = 8 },        |E5| = 3×2n – 6. 
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Theorem 2. The general first multiplicative KV index of a POPAM dendrimer POD2[n] 
is  

 [ ]( ) ( ) ( )2 22 2 3 2 6 3 2 6
1 2 4 6 8 10 14 .

n n n na a a a a aKV II POD n
+ + × − × −= × × × ×                         (3) 

Proof: Let G = POD2[n]. From equation (1) and by Lemma 1, we deduce  

 [ ]( ) ( ) ( )
( )

1 2

aa
G G

uv E G

KV II POD n M u M v
∈

 = + ∏  

 ( ) ( ) ( ) ( ) ( )
2 22 2 1 3 2 6 3 2 6

2 2 2 4 4 4 4 6 6 8
n n n n

a a a a a
+ + × − × −

         = + × + × + × + × +           
( ) ( )2 22 2 3 2 6 3 2 64 6 8 10 14 .

n n n na a a a a+ + × − × −= × × × ×  
 
The following results are obtained by using Theorem 2. 

 
Corollary 2.1. The first multiplicative KV index of POD2[n] is  

 KV1II (POD2[n]) 
2 22 2 3 2 6 3 2 64 6 8 10 14 .

n n n n+ + × − × −= × × × ×  
Proof: Put a = 1 in equation (3), we get the required result. 
Corollary 2.2. The first multiplicative hyper KV index of POD2[n] is 

HKV1II (POD2[n]) 
3 32 2 2 6 2 12 6 2 124 6 8 10 14 .

n n n n+ + × − × −= × × × ×  
Proof: Put a = 2 in equation (3), we obtain the desired result. 
 
Theorem 3. The general second multiplicative KV index of a POPAM dendrimer 
POD2[n] is 

 [ ]( )2 2
aKV II POD n

( ) ( )2 22 2 3 2 6 3 2 64 8 16 24 48 .
n n n na a a a a+ + × − × −= × × × ×                         (4)  

Proof: Let G = POD2[n]. By using equation (2) and by Lemma 1, we obtain  

 [ ]( ) ( ) ( )
( )

2 2

aa
G G

uv E G

KV II POD n M u M v
∈

 =  ∏  

 ( ) ( ) ( ) ( ) ( )
2 22 2 1 3 2 6 3 2 6

2 2 2 4 4 4 4 6 6 8
n n n n

a a a a a
+ + × − × −

         = × × × × × × × × ×           

 
( ) ( )2 22 2 3 2 6 3 2 64 8 16 24 48 .

n n n na a a a a+ + × − × −= × × × ×  
 
We obtain the following results by using Theorem 3. 
 
Corollary 3.1. The second multiplicative KV index of POD2[n] is 

 KV2II (POD2[n]) 
2 22 2 3 2 6 3 2 64 8 16 24 48 .

n n n n+ + × − × −= × × × ×  
Proof: Put a = 1 in equation (4), we get the required result. 
 
Corollary 3.2. The second multiplicative hyper KV index of POD2[n] is  

 HKV2II (POD2[n]) 
3 3 1 12 2 2 3 2 12 3 2 124 8 16 24 48 .

n n n n+ + + +× − × −= × × × ×  
Proof: Put a = 2 in equation (4), we obtain the desired result. 
 
2. Tetrathiafulvalene dendrimers TD2[n] 
The family of tetrathiafulvalene dendrimers is denoted by TD2[n], where n is the steps of 
growth in this type of dendrimers. The molecular graph of TD2[2] is shown in Figure 2.  
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Figure 2: The molecular graph of TD2[2] 

 Let G = TD2[n]. By calculation, we obtain that G has 31×2n+2 – 74 vertices and 
35×2n+2 – 85 edges. The edge partition of TD2[n] based on the degree product of 
neighbors of end vertices of each edge is obtained as given in Table 1. 

MG(u), MG(v)\uv∈E(G) Number of edges 

(2, 3) 2n+2 

(3, 6) 2n+2
 – 4  

(3, 8) 2n+2
  

(6, 6) 7×2n+2
 – 16  

(6, 8) 11×2n+2
 – 24 

(6, 9) 2n+2
 – 4 

(6, 12) 3×2n+2
 – 8 

(9, 12) 8×2n+2
 – 24  

(12, 12) 2×2n+2
 – 5  

Table 1: Edge partition of TD2[n] 

Theorem 4. The general first multiplicative KV index of a tetrathiafulvalene dendrimer 
TD2[n] is 
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[ ]( ) ( ) ( ) ( )2 2 2 2 22 2 4 2 7 2 16 11 2 24
1 2 5 9 11 12 14

n n n n na a a a a aKV II TD n
+ + + + +− × − × −= × × × ×  

  
( ) ( ) ( ) ( )2 2 2 22 4 3 2 8 8 2 24 2 2 515 18 21 24

n n n na a a a+ + + +− × − × − × −× × × ×                              (5) 

Proof: Let G = TD2[n].  By using equation (1) and Table 1, we obtain 

[ ]( ) ( ) ( )
( )

1 2
aa

G G
uv E G

KV II TD n M u M v
∈

 = + ∏  

 

2 2 2 22 2 2 7 2 16
(2 3) (3 6) (3 8) (6 6)

n n n n

a a a a
+ + + +× −

       = + × + × + × +         

 

2 2 211 2 24 2 4 3 2 4
(6 8) (6 9) (6 12)

n n n

a a a
+ + +× − − × −

     × + × + × +       

 

2 28 2 24 2 2 5
(9 12) (12 12)

n n

a a
+ +× − × −

   × + × +     

 
( ) ( ) ( )2 2 2 2 22 2 4 2 7 2 16 11 2 245 9 11 12 14

n n n n na a a a a+ + + + +− × − × −= × × × ×  

( ) ( ) ( ) ( )2 2 2 22 4 3 2 8 8 2 24 2 2 515 18 21 24
n n n na a a a+ + + +− × − × − × −× × × ×  

 We establish the following results by using Theorem 4. 

 
Corollary 4.1. The first multiplicative KV index of TD2[n] is 

[ ]( ) 2 2 2 2 22 2 4 2 7 2 16 11 2 24
1 2 5 9 11 12 14

n n n n n

KV II TD n
+ + + + +− × − × −= × × × ×  

  
2 2 2 22 4 3 2 8 8 2 24 2 2 515 18 21 24 .

n n n n+ + + +− × − × − × −× × × ×  

Proof: Put a = 1 in equation (5), we obtain the desired result. 

 

Corollary 4.2. The first multiplicative hyper KV index of TD2[n] is 

[ ]( ) ( ) ( ) ( )2 2 2 2 22 2 2 2 4 2 2 2 7 2 16 2 11 2 24
1 2 5 9 11 12 14

n n n n n

HKV II TD n
+ + + + +× − × × − × −= × × × ×  

  
( ) ( ) ( ) ( )2 2 2 22 2 4 2 3 2 8 2 8 2 24 2 2 2 515 18 21 24 .

n n n n+ + + +− × − × − × −× × × ×  

Proof: Put a = 2 in equation (5), we obtain the desired result. 

Theorem 5. The general second multiplicative KV index of a tetrathiafulvalene 
dendrimer TD2[n] is 

[ ]( ) ( ) ( ) ( )2 2 2 2 22 2 4 2 7 2 16 11 2 24
2 2 6 18 24 36 48

n n n n na a a a a aKV II TD n
+ + + + +− × − × −= × × × ×  

  
( ) ( ) ( ) ( )2 2 2 22 4 3 2 8 8 2 24 2 2 554 72 108 144

n n n na a a a+ + + +− × − × − × −× × × ×                          (6) 

Proof: Let G = TD2[n].  By using equation (2) and Table 1, we deduce 
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KV II TD n M u M v
∈

 =  ∏  

 

2 2 2 22 2 4 2 7 2 16
(2 3) (3 6) (3 8) (6 6)

n n n n

a a a a
+ + + +− × −

       = × × × × × × ×         

 

2 2 211 2 24 2 4 3 2 8
(6 8) (6 9) (6 12)

n n n

a a a
+ + +× − − × −

     × × × × × ×       

 

2 28 2 24 2 2 5
(9 12) (12 12)

n n

a a
+ +× − × −

   × × × ×     

 
( ) ( ) ( )2 2 2 2 22 2 4 2 7 2 16 11 2 246 18 24 36 48

n n n n na a a a a+ + + + +− × − × −= × × × ×  

( ) ( ) ( ) ( )2 2 2 22 4 3 2 8 8 2 24 2 2 554 72 108 144
n n n na a a a+ + + +− × − × − × −× × × ×  

We establish the following results by using Theorem 5. 

 
Corollary 5.1. The second multiplicative KV index of TD2[n] is 

[ ]( ) 2 2 2 2 22 2 4 2 7 2 16 11 2 24
2 2 6 18 24 36 48

n n n n n

KV II TD n
+ + + + +− × − × −= × × × ×  

  
2 2 2 22 4 3 2 8 8 2 24 2 2 554 72 108 144 .

n n n n+ + + +− × − × − × −× × × ×  

Proof: Put a = 1 in equation (6), we obtain the desired result. 

 
Corollary 5.2. The second multiplicative hyper KV index of TD2[n] is 

[ ]( ) ( ) ( ) ( )2 2 2 2 22 2 2 2 4 2 2 2 7 2 16 2 11 2 24
2 2 6 18 24 36 48

n n n n n

HKV II TD n
+ + + + +× − × × − × −= × × × ×  

  
( ) ( ) ( ) ( )2 2 2 22 2 4 2 3 2 8 2 8 2 24 2 2 2 554 72 108 144 .

n n n n+ + + +− × − × − × −× × × ×  

Proof: Put a = 2 in equation (6), we obtain the desired result. 
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