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1. Introduction
The theory of calculus, which deals with the inigegion and applications of derivatives
and integrals of arbitrary order has a long histdrige theory of calculus developed
mainly as a pure theoretical field of mathematieghe last decades it has been used in
various fields as rheology, viscoelasticity, electremistry, diffusion processes, etc [32,
33].calculus have undergone expanded study in te@ars as a considerable interest
both in mathematics and in applications. One of rdently influential works on the
subject of calculus is the monograph of Podlubrg} phd the other is the monograph of
Kilbas et al. [33]. The differential equations hayreat application potential in modeling
a variety of real world physical problems, whiclseeves further investigations. Among
these we might include the modeling of earthquatkesfluid dynamic traffic model with
derivatives, the measurement of viscoelastic natgrioperties, etc. Consequently,
several research papers were done to investigatthéory and solutions of differential
equations (see [18, 21, 35, 37] and referencesittjer

The concept of solution for differential equasorwith uncertainty was
introduced by Agarwal, Lakshmikantham and Nieto. [They considered Riemann-
Liouville differentiability concept based on the kihara differentiability to solve fuzzy
differential equations. Arshad and Lupulescu in| [i®ved some results on the existence
and uniqueness of solution to fuzzy differentiabi@ipn under Hukuhara Riemann-
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Liouville differentiability. Some existence result®r nonlinear fuzzy differential
equations of order involving the Riemann-Liouvillerivative have been proposed in
[30]. The solutions of fuzzy differential equatioase investigated by using the fuzzy
Laplace transforms in [51]. Recently, the conceptderivatives for a fuzzy function are
either based on the notion of Hukuhara derivati®®] [or on the notion of strongly
generalized derivative. The concept of Hukuharavdgve is old and well known, but
the concept of strongly generalized derivative wexently introduced by Bede and Gal
[13]. Using this new concept of derivative, thesskas of fuzzy differential equations
have been extend and studied in some papers suéthmsid et al. [4], Allahviranloo et
al. [9]-[11], Bede et al. [14]-[17], Gasilov [20Khastan et al. [27]-[29], Malinowski [41]-
[43] and Nieto [46]. Furthermore, by using this nesncept of derivative, Allahviranloo
et al. in [7, 8] have studied the concepts abonegdized Hukuhara Riemann-Liouville
and Caputo differentiability of fuzzy valued furaris. Later, authors have proved the
existence and uniqueness of solution for fuzzyedgffitial equation by using different
methods. Alikhani et al. in [6] have proved thestaince and uniqueness results for
nonlinear fuzzy integral and integration and diéfgial equations by using the method
of upper and lower solutions. Mazandarani et &) Btudied the solution to fuzzy initial
value problem under Caputo-type fuzzy derivatives Imodified Euler method. Besides,
authors studied some results on the existence aiglieness of solution to fuzzy
differential equation under Caputo type-2 fuzzyidsive and the definition of Laplace
transform of type-2 fuzzy number-valued functiodS][ Salahshour et al. [50] proposed
some new results toward existence and uniquenesslafion of fuzzy differential
equation. According to the concept of Caputo-typezy derivative in the sense of the
generalized fuzzy differentiability, Fard et al.9]lextended and established some
definitions on fuzzy calculus of variation and pd®/ some necessary conditions to
obtain the fuzzy Euler-Lagrange equation for bathstrained and unconstrained fuzzy
variational problems. Ahmad et al. [5] proposedvairgerpretation of fuzzy differential
equations and present their solutions analytiGaily numerically. The proposed idea is a
generalization of the interpretation given in [3, where the authors used Zadeh's
extension principle to interpret fuzzy different@juations.

In real world systems, delays can be recognizedyghere and there has been
widespread interest in the study of delay diffei@mquations for many years. Therefore,
delay differential equations (or, as they are calfanctional differential equations) play
an important role in an increasing number of systagdels in biology, engineering,
physics and other sciences. There exists an exteasnount of literature dealing with
delay differential equations and their applicatiotee reader is referred to the
monographs [22, 34], and the references thereip. stady of fuzzy delay differential
equations is expanding as a new branch of fuzzyhenmadtics. Both theory and
applications have been actively discussed ovelasiefew years. In the literature, the
study of fuzzy delay differential equations hasesal interpretations. The first one is
based on the notion of Hukuhara derivative. Undgs tinterpretation, Lupulescu
established the local and global existence and uenigss results for fuzzy delay
differential equations. The second interpretati@s wuggested by Khastan et al. [29] and
Hoa et al. [24].

In this setting, Khastanetal proved the existerfasvo fuzzy solutions for fuzzy
delay differential equations using the concept efagalized differentiability. Hoa et al.
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established the global existence and uniquenesdtsefr fuzzy delay differential
equations using the concept of generalized difteability. Moreover, authors have
extended and generalized some comparison theorathstability theorem for fuzzy
delays differential equations with definition a newapunov-like function. Besides that,
some very important extensions of the fuzzy deléferential equationsn [21, 28, 35,
53], the authors considered the fuzzy differerdplation with initial value
x'(t) = f(t.x(6). x(tp) = %0 € E*.(1.1)

wheref : [0, ©) x E°» Eand the symboldenotes the first type Hukuhara derivative
(classic Hukuhara derivative). O. Kaleva also dised the properties of differentiable
fuzzy mappings in [28] and showed thatfifs continuous and (t, X) satisfies the
Lipschitz condition with respect tg then there exists a unique local solution for the
fuzzy initial value problem (1.1). Lupulescu provestveral theorems stating the
existence, uniqueness and boundedness of soluticingzy differential equations with
the concept of inner product on the fuzzy spacesumthssic Hukuhara derivative in
[35].

In [34], Lupulescu considered the fuzzy functilotiéferential equation

xX'(@)=f(t.x). t =t
oz ) (1.2)
x(t)—go(t—tg)e E* to =2t=>ty—o0

wheref : [0, ©) x C,— E® and the symboldenotes the first type Hukuhara derivative
(classic Hukuhara derivative). Author studied tlmeal and global existence and
uniqueness results for (1.2) by using the methodsuafcessive approximations and
contraction principle.

In this paper, we consider fuzzy functional im&gipn and differential equations
under form

{ DY x(t) = f(t.x;) + ftfo g (t.5.X)ds.t > ¢,
x()=@p(t—ty)) = o€ Cs .ty =2t =ty —o0
We establish the local and global existence anduamess results for (1.3) by using the
method of successive approximations and contracfidnciple. This direction of
research is motivated by the results of Bede anld[%F4, Chalco-Cano and Roman-
Flores [23], Malinowski [37-40], Ahmad, Sivasundarfl], Allahviranloo et al. [5-7].

The paper is organized as follows. In Sectionwg, collect the fundamental
notions and facts about fuzzy set space, fuzzgmifftiation and integration. In Section
3, we discuss the FFIDEs with a two kinds of furigrivative. Some examples of this
class having two different solutions were presentesection 4.

(1.3)

2. Preliminaries and notation
In this section, we give some notations and progentelated to fuzzy set space, and
summarize the major results for integration andedkhtiation of fuzzy set-valued
mappings. We recall some notations and conceptepted in detail in recent series
works of Lakshmikantham et al. [32, 33].

Let K(R? denote the collection of all nonempty compact emavex subsets of
R%and scalar multiplication in §R%) as usual, i.e. foh, BEK(RY) andi € R.
A+B={a+b|a€A, beB}, \A= {iala €A}.
The Hausdorff distanag, in K (R®) is defined as follows

Su [ Su 1
an(4,8) = max{ ", " wa—puRn. SF M a-b1 R

23



M.R.Nourizadeh, N.Mikaeilvand and Toffigh Allahviribo

whereA, BE(K.,R), ||. ||z=denotes the Euclidean norm ifl. R is known that (R?), dj;
is a complete metric space. DenBte {» : R [0, 1] such that(2) satisfies (i)-(iv)
stated below}
i. wis normal, that is, there existge R%such thatv(z0) = 1;

ii. wisfuzzy convex, thatis, for9.<1
oAzl + (1 -21)22) > min{w(z1), w(Z2)},
for anyzl, 2 € R%

iii. w is upper semi continuous;

iv. []°=cl{z€ R%: w(2) >0} is compact, where cl denotes the closure h [R]).
Although elements dt’are often called the fuzzy numbers, we shall jaitthbem the
fuzzy sets.

Fora €(0, 1], denote p]°= {z €RY| w(2) > a} . Wewill call this set am-cut (a-
level set) of the fuzzy set. For o €E®one has thatef]“eKc(Rd)for everya €0, 1]. For
two fuzzywl, w2 €E®, we denoten1 < w2 if and only if p1]*c[w2]".

If g: R R°> R%is a function then, according to Zadeh’s extengidnciple, one can
extend

gto E*x E?— E%by the formulag(wl, w2)(2) =sup=g(z1,22)min {wl(zl), ®2(2)} . It is
well known that ifg is continuous theng[w1, w2)]’= g([wl1]*, [w2]")for all w1, w2 €ET,

a € [0, 1]. Especially, for addition and scalar multiplicationfuzzy set spac&d, we
have pl + w2]"= [w1]*+ [02]", [Awl]*=A[wl1]". The notation §]’= [w(a), w(a)]. We
refer tow andw as the lower and upper branchesofespectively.

Forw €EY, we define the length @f aslen(w) =w(a) - w(a)In the casel = 1, we have
len(w) = w(a) - w(a). Let us denotdy[wl, w2] = sup{du([0wl]”, [w2]) : 0<a < 1}

the distance betweenl andw?2 in EY, wheredy([w1]®, [02]) is Hausdorff distance
between two seifl]’, [w2]* of (K,R). Then E° d) is a complete space. Some
properties of metri® are as follows.

Do[wl + 3, w2 + w3] = Dy[wl, w2],Do[iwl, iw2] = RIDo[wl, @w2],Do[wl, w2] <
Dy[wl, @3] + Dy[w3, w2], for all wl, w2, ®3 €Eand i €R. Letwl, w2 €E”. If there
existsw3 eE¥such thatwl = w2 + w3 thenw3 is called the difference ofl, »2 and it is
denotedw16w?2. Let us remark thabl 6w?2 # wl + (-1)w?2.

Remark 2.1. If for fuzzy numberswl, w2, 3 €E® there exist Hukuhara difference
®010w2, wl Bw3 theMy[wlOw?2, 0] = Dy[wl, 2] and Dy[wl w2, w1Ow3] = Dy[w2,
®3].

The strongly generalized differentiability wadroduced in [17] and studied in
[18, 23, 42].

Definition 2.1. (See [17]) Letx: (a, b — E%andt €(a, b). We say thak is strongly
generalized differentiable att, if there exists Dng(t)eEd, such that either
() for all h >0 sufficiently small, the differences(t + h) 6x(t), x(t) 6x(t - h) exist and the
limits (in the metricD,)
lim X+ Ox(®) _  |im xE+h)Ox(t) _ DY x(t
h\ 0* n = hNoO* h = Dy x(®)

or
(ii) for all h >0 sufficiently small, the difference(t) ©x(t + h), Xt - h) 6x(t) exist and the
limits
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im X)) x(t+h) im x({t—h) B x(t)
hlin(lﬁ —h = hlin(lﬁ —h = Dy x(®)

or
(i) for all h >0 sufficiently small, the difference(t + h) 6x(t),ax(t - h) 6x(t) exist and
the limits
lim XM OxX®) _ im xE-MOx®) _ 4
hN O h ~ hNoOt "y = Dy x(6)
(iv) for all h >0 sufficiently small, the difference(t) 6x(t + h), Ix(t) 6x(t - h) exist and
the limits

lim @O x(t+h)  m xO)OSx(t—-h) _ DY
hNO* "y = ot = Dy x(0).
In this definition, case (i) ((i)-differentiabilityfor short) corresponds to the classic
derivative, so this differentiability concept iganeralization of the Hukuhara derivative.
In Ref. [17], Bede and Gal consider four casesdfmivative. In this paper we consider
only the two first of Definition 2.1. In the otheases, the derivative is trivial because it is
reduced to a crisp element.

Lemma 2.1. (Bede and Gal [17]) If x(t) =(z1(t), z2(t), z3(t§) triangular number valued
function, then

(i) if x is (i)-differentiable (i.e. Hukuhara diffentiable) then DH g x(t) = (z" 1(t), z"2(t),
z'3(t));

(ii) if x is (ii)-differentiable then DH g x(t) =z’ 3(t),z" 2(t), 2" 1(t)).

Lemma 2.2. (see [23]) Let >éE*and put [x()h =[x(t, ), X(t, o] for eacha € [0, 1].

® If x is (i)-differentiable then x(ty), X(t, a) are differentiable functions and we
e [DF x()]* = [x(t.a). X (t.a)] - (2.4)
(i) If x is (ii)-differentiable then x(tg), X(t, o) are differentiable functions and we
Zﬁ)v : [DF x()]* = [x'(t.@). x'(t. a)] (2.5)

Definition 2.2. [52] A pointt € (a, b), is a switching for the differentiability of, if in
any neighborhoo¥ of t there exist pointsl < t < t2 such that

(typel) attl (2.4) holds while (2.5) does not hold and?af2.5) holds and (2.4) not hold,
or

(typell) attl (2.5) holds while (2.4) does not hold and?af2.4) holds and (2.5) not
hold.

Lemma 2.3. Let a(t),b(t) and c(t) be real valued nonnegativant;uous functions
defined on R, d> QOis a constant for which the inequality

t t
a(t)<d+ f [b Sa (S) + b(S)f c(r)a (r)dr] ds
hold for all teR+. Then ’ ’
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a(t)<d+ [1 + f b (s)exp <f b(r)+c (r))dr) ds ]
0 0

3. Main results
Foro >0 letCo= C([-0, 0], Ed denote the space of continuous mappings frefO]-to
Ed. Define a metri®gs in Co by

sup
Do‘[x- Y] “te [—T. O)DO[x(t)y(t)] '

Let p >0. Denotd = [to, to+ p], J=[to- o, o] Ul = [to- o, to+ p]. For anyt €l denote by the

element of Co defined by x(9= xt + s for s €0 0.

Let us consider the fuzzy functional integrationl aifferential equations (FFIDES) with

generalized Hukuhara derivative under form

{ Dy x(t) = f (t.x) + f;g(t. s.xg)ds.t >t
x(t) =@t —ty) = @y € Cs.tyg 2t=tyg—0
wheref :I x Co— E° g: 1 x | x Co— EY ¢ €Co and the symboD,? denotes the
generalized Hukuhara derivative from Definitionl(2 By a solution to equation (3.1) we
mean a fuzzy mappingeC(J, EY), that satisfies:

X(t) = ¢(t - t0) fort €[to-0, o], xis differentiable ont], ty+ p] and

Dy x(O)=f (t.x;) + f;g(t.s.xs)ds.for t €1

(3.1)

Lemma 3.1. Assume thatéC(l x Co, E%), g€C(I x | x Co, E*) and xeC(J, E*). Then the
fuzzy mapping
t
t = f (t.xg)+ f g(t.s.xg)ds
to

Belongs to @, EY).

Remark 3.1. Under assumptions of the lemma above we have tippima
t

t = f (t.x)+ f g(t.s.xg)ds
to
Is integrable over the interval

Remark 3.2. If f: | x Co— E° g: | x | x Co—E"are jointly continuous functions and

€C(J, Ed, then the mapping
t

t = f (t.x)+ f g(t.s.xg)ds
to
Is bounded on each compact intevallso, the function
t

t = f (t.x)+ f g(t.s.xg)ds
t
is bounded o ’

Lemma 3.2. A fuzzy mapping:xJ — E%is called to be a local solution to the problem

(3.1) on J if and only if x is a continuous fuzzgpwing and it satisfies to one of the
following fuzzy integral equations
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x(t) = p(t.ty) fort €[ty — a.ty]

x(t) = ¢(0) ft’; (f(s.xs) + fti)g(t.s.xs)ds) ds tel
if x is (i)-differentiable or (iii)-differentiable.
x(t) = p(t —ty) fort € [ty — o0.ty]
x(t) =¢(0) ©(-1) (3.5)
X ftt; (f(s.xs) + fti)g(t.s.xs)ds) ds tel
if x is (ii)-differentiable or (iv)-differentiabld.et us remark that in (3.5) it is hidden the
following statement: there exists Hukuhara diffeef(0)o

t t
-1 (f(s. Xs) + f g(t.s.xs)ds> ds
to to

(3.4)

Definition 3.1. Let x :J — E° be a fuzzy function such that (i)-differentiablexland its
derivative satisfy problem (3.1), we say thatis a (i)-solution of problem(3.1).

Definition 3.2. Let x :J — E%be a fuzzy function such that (ii)-differentiablex and its
derivative satisfy problem (3.1), we say thatis a (ii)-solution of problem (3.1).

Definition 3.3. A solutionx :J — E%is unique if it holdDO[x(t), y(t)] = O, for anyy : J —
E%which is a solution of (3.1).

Theorem 3.1. Let¢(t - to) €Co and suppose thatefC(l x Co, E%),g €C(l x | x Cg, E?)
satisfy the condition: there exists a constantd.sech that for every, w €Co it holds

max{Dy[f (¢.§). f(t.Y)]. Dolg(¢.s5.8). g(t.s. )]} <La [§. 9]
Moreover, there exists a MOsuch thaimax{D[f(t, £),0], Do[g(t,s£),0}<=M

Assume that the sequero®} “n=0, X": J — E%given by
0ren _ (@t —to).t €[ty —0.t0]
()= { 0(0).t € 1.
andforn=1,2, ...

xnt1 (t):
@t —tp).t € [to — 0.to]
p(0) © (-1, (Fis.xty + NGRS xy)dr) ds tel
is well defined, i.e. the foregoing Hukuhara diffiece do exist. Then the FFIDE (3.1) has

a unique for each case ((i)-differentiable or @iifferentiable).
Proof: From assumptions of this Theorem we have

DolX'(t), %(t)]= Dolx (). x°(£)]
=D, [p(0) © (1) X J,. (f(s.x9) + [} g(s.7.x)dr) ds.p(0)]
< ft’; (Do[f(s. x2).0] + f:o Dolg(s. 7. x2). ﬁ]dr) ds

t—ty)?
SM(t—t0)+M%.

Fortel. Further for everyi > 2 andt €1 we getD[X™(t), X'(t)]

(3.4)
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t s
=Dy [© (-1) <f(s. x) + f g(s.T. x?)dt) ds.
to t

0

O (-1 f; (fls-x™) + [ g(s.m.op ")) ds]

t s
< Lf (Da[xg.xgl_l] + f Da[x?.x?_l]dr> ds.
t t

0 0

t
<L fto (9 Es[zipo_l 0] Dy [x™(s + 0).x" (s + 0]

¥ f 59 estlipa. 01 Do [¥"(@ + ). X" (z + 6)]dD)ds
to

t
=1L -fto (T' € [iuf . S] DO [xn(’)").xn—l(r)]

" f v € [t 0.7 o "W). 2 ) )dv)ar

In particular, from (3.4), we get
t —tg)? t—ty)3 (t—ty)*
Do[x2(t).x1(0)] < LM (( 2'0) +2 ( 3'0) + ( 4'0) )

Therefore, by mathematical induction, for evergN andt €l
Do[x™*1(£). x™ ()]
(t — to)n+1 . (t — to)n+2 ") (t— t0)2n+1 (t — t0)2n+2
(n+ 1)! Tty T M T (2n + 2)! )
In the inequality (3.5)1, . . . in are balancing constants. We observe that for every
ne {0, 1, 2, .. }, the functionxn(-) : J — E%are continuous. Indeed, sineeCo, X(t) is
continuous oneE[-g, to+ p]. We see that

SLM"(

p(0) ©(-1
(f(s.xg) + | (g(s.7. x?)dr) ds.
_ t+h to
Dol (£ + M- x* (O] = Do | f 9(0) O (-1)
to t s
X | (f(s.xD)+ | (g(s.t.x2)dr)ds
tO to .

Thus, by mathematical induction, for every 2, we deduce that

Do[X(t + h), X'(t)] — 0 ash — 0. A similar inequality is obtained fdD[X"(t - h), X'(t)]
— 0 ash — 0. In the sequel we shall show that for th&t)} the Cauchy convergence
condition is satisfied uniformly ity and as a consequeng¥{)} is uniformly convergent.

Forn > m >0, from (3.5) we obtain

tSZPIDo [x™(£).x™(t)] = :ZPJDO [x™ (). x™ ()]

n-1

< ) Le Dol . X @]

k=m
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t _ to)k+1 (t _ to)k+2 (t _ t0)2k+1 (t _ t0)2k+2
<MZ < G T h g TV R g o T a2kt o )

The convergence of this series implies that foram@we findnyeN large enough such
that forn, m>ny

Do[x™(t).x™ ()] < € (3.6)
Since EY D,) is a complete metric space and (3.6)holds, ttgueseme £'(-)} is
uniformly convergent to a mappingeC(J, E%). We shall thai is a solution to (3.1).
Sincex'(t) = ¢(t - to) for everyn =0, 1, 2, ..and everyt €[ty o, 1], we easily have(t) =
@(t -tp). Forsel andn eN

t t
Dy [ (f(s.xMds. f (f (s. xs)ds)]
to to

£ sup .
= Lft 0 €[s—o.5] Dy[x™(6).x (6)]d6 — 0
And

Dy [f:( f:g(s.r. x?).dr)ds.f:( f:g(s. T.%7). dt)ds]

t
<L f(fto 0 e [iuf 0.1] Do[x™(v).x (v)]dv)ds - 0

0
As n— o for anyt €l. Consequently, we have
t

t
Do[@(0).x(t) + (~1) f (F(s.x5) + f (g(t.5.x5)ds)ds]
to to

< Do[x™(0). x ()]

+ f Do [f (s a0 + f(5.%5)]
to

+ f(DO [g(s.T.xP ). g(s.7.x,)dT])ds
We infer that

t t
Do |0(0).x(t) + (—1) f(f(s.xs) + f(g(t.s.xs)ds)ds] =0

0 0
for everyt €l. Thereforex is the solution of (3.3), due to Lemma (3.2) weénthatx is a
(ii)-solution of (3.1). For the uniqueness of tldugion x let us assume that yeC(J, E)
are two solution of (3.3). By definition of the stbn we havex(t) = y(t) if t €[to- o, tg].
Note that fortel

Do[x (8).y ()]
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t
<1 [Gefor 5. gPolx@y©)
to
t

+ f (v . [iuf . T]Do[x(V)-y(V)]d‘r) ds

to
If we leta(s) = supres.,gDO [X(r), V()] , s€ [tO, t] c[to, to+ p], then we have
t N

a(t) <L f (a(s) + fa(r)dr) ds
to to

and by Lemma 2.3 we obtain theft) = 0 onl. This prove the uniqueness of the solution

for (3.1).

Remark 3.3. The existence and uniqueness theorem for the prolfiel) can be
obtained using the contraction principle.

Now, we shall prove existence and uniqueness eefit(3.1) by using the contraction
principle, which studied in [34]. In the followinépr a givenk >0, we consider the s&
of all continuous fuzzy functions

X €C([to- o, ), E% such thak(t) = ¢(t - to) =% 0n [to- 7, tg] and

SURst0.{ DO[X(t, w), 0] exp( "~ kt) <co.

OnSwe can define the following metric

sup
Dlx-y1= ¢ 5 ¢, — 5 (Dolx(®). y(®O)lexp(—kt)}  (3.7)
Wherek>0 is chosen suitably later. We easily prove thatgpace$k, DR of continuous
fuzzy functionsx: [to, ) — E%is a complete metric space with distance (3.7).

Theorem 3.2. Assume that
(i) f €C([to, ) x Co, E%), g €C([to, ) X[to, ) X Ca, E%) and there exists a constant
L >0 such that
(i) max (Do[f(t.8). fF(t.)].{Dolg(t.5.8). g(t.5.9)] < LD,[E.9]
for all ¢, w €eCo and t, s> t0;
(i) there exists constants Md=and b >0 such that
max {D, [f(t. f)). 0].D, g(t. s. f)). 0]} < M exp (bt)
for all t > to, where b < k. Then the FFIDE (3.1) has a uniquieitsan for each case on
[to, o0).
Proof: Since the way of the proof is similar for all faxases, we only consider case (ii)-
differential forx. In this case, we consider the complete metricesi@, Dy), and define
an operator TSk— Sk ¥ TX
given by
{ot —to) if t €[ty —0.t0]

p(0)© (-1
(Tx)(t) = ‘ ;

X f(f(s. xs) + f(g(s.‘r. xs)dt)ds
t to to
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We can choose a big enough valuekfsuch that T is a contraction, so the Banach fixed
point theorem provides the existence of a uniguedfipoint for T, that is, a unique
solution for (3.1).

Step 1: We shall prove thatgJc S, with assumptiork > b. Indeed, lek €S.. For each
> to, We get

Dy [ (Tx)(1). 0]

- ti‘ﬁo {Do[9(0) © (-1) f (f (5. x5)
to

+ fg(s. 1.x,)dt)ds. 0] esp (—kt)}

to

t
< o (Dolp(0).0+ f {Do[f (5. %5). £ (5.0)] +Dolf (5. 0). 01}ds
to

+ f(f{DO[g(S'T' xT).g(s.T. 6)] + Do[g(s.r. ﬁ).ﬁ]} dr)ds)exp (—kt)}

to to

t
< tsgiio {(Do[(0).0 + L f {Dy[x5.0]ds

to

t

M ; ~ M

+Fexp(bt) +L f <f Da[xr. 0]dT> ds + ﬁexp(bt)) exp(—kt)}
t t

Sincex €S, there existp su(::h t?]at SURo.{ Do[X(t), O] exp(kt)} < p <. Therefore, for

all t > to, we obtainD,, [ (Tx)(t).0]

sup ~ 1\pL
St> to {(Do[9(0).0 + (1 + E>7exp(kt)

M
+ (1 + E)Fexp(bt)) exp(—kt)}
~ 1\ 1
< Do[(0).0] + (1 + E)E(M + L)

1\ 1
SK+(1+E)E(M+}9L)< (o

We infer that kcS.

» Step 2: The following steps, we shall prove thi a contraction by metrid,. The
first, we consider Lext, yeS.. Then for & <s< 0, Do[(TX)(to+S), (TY)(to+ S)] = 0. For
eacht > ty, we hav®, [(Tx)(t). (Ty)(t)]

5t Dol(T(©). (TY) )] exp(—kt)

IA

N

t
e D6 1) [0+ [ gl xands
to

to

IA
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N

t
0(0) © (-1) f (F(s.y) + f 9(5.7.y2)dr)ds] x exp(—kt)}
to

to
s

t
2@ [0l + [ Dyl yeldnds) x exp-k0)
to

to

g sup
= tt, {(L f@e[—a. O]Do[x(s +0).y(s +6)]ds

to

t s sup
+L f f fe[—o. O]Do[x(r + 0).y(t + 6)])ds) X exp(—kt)}

to to

t
= i‘l;(l)? {(L J’ ‘r‘g[ssvlipo'_ s]DO [X(T). y(T)] dr

to
t S
4 [ o ety oL@ y@)]dv)ds) x exp(—ke)
to  to

t
su
< LDy [x.y]; 220 (f(exp (k(r—t) + f exp(k (v —t)) dv)dr)
to to

(1 + k)LDy, [x.y]
< 2
Choosingk > b and (1 +k) LA2 <1, we have the operator T &is a contraction by
using Banach fixed point theorem provides the erist of a unique fixed point for T
and the unique fixed of T is in the sp&kethat is a unique solution for (3.1) in case (ii)-
differentiable and for each case.

4. lllustrations
In this section, we shall present some examplagsmple illustrations of the theory of
FFIDE. We will consider the FFIDE (3.1) with (i) @uii) derivative, respectively. Let us
start the illustrations with considering the foliogy fuzzy functional integration and
differential equation:

{D,{’, x(t) = f(t.x,) + ffok(t. S)xeds. t =t

x(t) = p(t—ty) € t.t € [—0a.ty].

wheref ;1 x E'— EY k(t, 9 : | x | — R. Letx()]*= [x(t, @), X(t, a)]. By using Zadeh’s
extension principle, we obtain(t, x0]*= [f (t, a, X{(c), X{(a)), f (t, a, X{(a), x{(a))], for a
€[0, 1]. By using Lemma 2.2, we have the following two casHsx(t) is (i)-
differentiable, theny? x(t)]“=[X"(t, &), X'(t, «)] and (4.1) is translated into the following
delay integration and differential system:

(4.2)
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{g’(t. a) = ]_‘(t.a.gt(a).ft(a)) + fttok(t.s)xs(oc) ds.
t>t,
x(t.a) = p(t—ty.a).—o <t <t
xX(t.a)=p(t—tya)—0 <t<t,
If x(t) is (ii)-differentiable, theny® x(t)]*=[X"(t, &), X'(t, «)] and (4.1) is translated into
the following delay integration and differentiaksym:

(4.2)

x'(t.a) = z(t.a.gt(a).ft(a)) + ftt; k(t.s)xs(a) ds.
t>t,
Jx'(t@) = F(tax@.%@)+ [} kE9)x(@ ds. @.3)
t>t,
x(t.a) = p(t—tyg.a).—0 <t<t,
\ x(t.a)=p(t—tya)—0c <t<t,

k(t.s)xs(a). k(t.s) = 0.

k(t.s)xs(a) = { —
————= | k(t.s)x,(a).k(t.5).< 0

————  [k(t.s)xs(a). k(t.5) = 0.

fe(t. s)xs(a) = { k(t. s)x,(@). k(L.5). < 0
Example 4.1. Let us consider the linear fuzzy functional intdigna and differential
equation under two kinds Hukuhara derivative

Dy x(t) = (t— %)+ A fe(s_t)x (s— %)ds
o (4.4)
x(t) = ().t € [_5 .O].

wherek(t, 9 = 1e®?, p(t) = (1 -t, 2 -t, 3 1), A ER{0}. In this example we shall solve
(4.4) on [Q1/2].
Case 1: (A >0 ork(t, 9 >0) From (4.2), we get

( t

1 1
x'(t.a) = £<t.—z.a)+/1 fe(s_t)g(s— E.a)ds.
0
0

[ 3
\%

X (t.a) = E(t 1 a)+/'l e(s_t)7<s— 1 a)ds
. =3 5 . (4.5)

o
o'\“_’

[ 3

=

1
x(t.a) = 1+a—t.—EStSO

-1
x(t.a) = 3—a—t.73t30
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whereo€[0, 1]. By solving delay integration and differentigstems (4.5), we obtain (i)-

solution
2

x®]*=[1+a+ (1 +a)t— %—Ae(‘f) 2+ a)
2
+A(2+a—t).3—a+(3—a)t—%

—2eDU—-a)+ 1 (4 —a—1t)].

it

25
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1.5

—
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1
-0.5 -0.4 0.3 -0.2 -0.1

0o 041

0.2 03 04 05

t

Figure 1: Graphs ok(t) for t €[1-251/2-], 2 = 0.1.
te [0, 1/2]. The (i)-solution of (4.4) on [{2, 1/2] are illustrated in Fig. 1.From (4.3), we
obtain

Xta)=1+a (4.6)
t>0

-1
x(t.a) = 1+a—t.7StS0

-1
L x(t.a) = 3—(X—t.7StSO
By solving delay integration and differential syste(4.6), we obtain (ii)-solution
2

x@®)]*=[14+a+B—-a)t— %— 1eCD (4—a)
2

t
+)l(4—a—t).3—a+(1+a)t—?

21eD2+a)+ 212+ a—1t)].
te [0, 1/2]. The (ii)-solution of (4.4) on [4R, 1/2] are illustrated in Fig. 2.

34



Existence and Uniqueness Solutions of Fuzzy Matkieatd@roblem

3.5

x(t)

"
-05-04 -03-02-01 0 01 02 03 04 05
1

Figure 2: Graphs ok(t) for t €[1-251/2-], 1 = 0.1.
Case2: (A<0 ork(t, 9 <O) From (4.2), we get
f t
g’(t.a)=£ t——a /'lfe(s t)x s——a)ds
0
0
t

t=>

_ _ 1 . 1
<x(t.(){)=x(t—§.o:)+/1fe(s )g(s—z.a>ds.
0
t=>0
x(ta)=14+a—-t .%StSO
L x(t.a)=3—a—t .TStSO

By solving delay integration and differential syate(4.7), we obtain (i)-solution
2

t
x@®)]*=[1+a+ 1+ a)t— >~ 1eCD (4—a)
2

t
+A(4—a—-t).3—a+(B—a)t— ?—)le(_t)(2+a)+ AQ2+a-1t)].

te [0, /2]. The (i)-solution of (4.4) on [{2, 1/2] are illustrated in Fig. 3.
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5 ! ! !

0 01 02 03 04 05

t
Figure 3: Graphs ok(t) fort € [1/251/2-], A = 0.1

0
=05 -04 -0.3 -0.2 -0.1

t
x'(t.a) = t —= a +/1 fe(s t)x .a)ds.
0
t=0
t
_ 1 1
g’(t.a)=x(t—z.a)+/1 fe(s_t)£<s— E.a)ds.

0
t=0

-1
x(t.a) = 1+a—t.TStSO

X(t.a) = 3—oc—t._7StSO

t
[x@®]*=[1+a+B—a)t— >~ 1eCD 2+ a)
2

(4.8)

By solving delay integration and differential syate(4.7), we obtain (ii)-solution
2

t
+A(2+a—t)3—a+(1+a)t—?—le( D4-a)+ 2 (4—a—1t)]

te [0, 1/2]. The (ii)-solution of (4.4) on [{R, 1/2]are illustrated in Fig. 4.From Example
4.1, we notice that, the solutions under classi&utiara derivative ((i) differentiable)

have increasing length of its values. Indeed, weses the Figs. 1 and 3
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3.5 (=—

1
-0.5 0 0.5

Figure 4: Graphs ok(t) for t €[ 1/251/2-], A = 0.1.
The Figs. 1 and 3. However, if we consider the seédype Hukuhara derivative ((ii)-
differentiable) the length of solutions change. &ndhe second type Hukuhara
differentiable solutions have non-increasing lerajths values (see Figs. 2 and 4).

5. Conclusions

In this paper, we have obtained a global existemteuniqueness result for a solution to
fuzzy functional integration and differential eqoas. Also, we have proved a local
existence and uniqueness results using the methsdcoessive approximation. Results
here might be used in further research on fuzzygtfanal integration and differential
equations. Other possible directions of researchldcdoe an approach for fuzzy
differential equations using other concepts of Walk for fuzzy functions and derivative
for fuzzy functions (see [3, 8]).
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