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1. Introduction 
In the classical finance model, a basic assumption is that the volatility is constant. 
However, several models proposed in recent years, such as the model found in [1], have 
allowed the volatility to be nonconstant or a stochastic variable [1,3]. Over the past 
decades, several stochastic volatility models have been developed to overcome the 
shortcomings of the Black–Scholes model [4-10], such as a missing smile or skew of the 
volatility. Among these models, the Heston stochastic volatility model [11] plays an 
important role, since it reproduces market smiles and skews and can be calibrated rapidly 
using semi-analytical formulas. 

In this paper we study a jump-type Heston model (also called a stochastic volatility 
with jumps model, SVJ model) 

1 1 1d ( ) ( )d ( ) ( )d ( ) ( )d ( )S t rS t t v t S t W t S t N tγ= + + − % ,                         (1.1) 

0(0)S s= .The variance process { ( ), 0}v t t ≥ driven by another jump-diffusion progress 
satisfy 

1 2 2 2d ( ) ( ( ))d ( )d ( ) ( )d ( )v t v t t v t W t v t N tκ θ σ σ= − + + − % ,                    (1.2) 

1 2 1 2 1 2 1 2d ( ) d ( ) d ( ) d ( ) d ( ) d ( ) d ( ) d ( ) 0W t W t N t N t W t N t N t W t⋅ = ⋅ = ⋅ = ⋅ = , 
where 0(0)v v= , 0v  and 0s  are given positive values, the non negative constants r ,γ , θ  
and κ  represent the interest rate, the volatility of jump diffusion term, the long variance, 
and the rate at which v  reverts to θ . 1σ  and 2σ  have an impact on the volatility of 
variance process. The integrals with respect to the Wiener process { ( ), 0}B t t ≥ and 

compensate Poisson progress { ( ), 0}N t t ≥%  are described as the Ito integral.  
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The main goal of this work is to investigate the existence, uniqueness and continuity of 
solutions to the dynamic model (1.1)-(1.2). The existence and uniqueness are analyzed in 
Section 2. Section 3 studies the continuity of the solution to the dynamic model (1.1)-
(1.2). 
 
2. The existence and uniqueness 
In this section, we prove the existence and uniqueness of solution for the mixed fractional 
CEV model by extending the idea of [11-14]. 
 
Theorem 2.1. The volatility equation of the fractional mixed CEV model has a unique 
positive solution ( )v t  where [0, )t T∈  and inf{ 0 | ( ) 0}T t v t= > = . 
Proof:  First, we confirm the solution existence for the volatility equation (1.2). We first 
define 0

0tY v=  and ( ) ( ) ( )k k
t tY Y ω=  inductively as follows 
( 1) ( ) ( ) ( )

0 1 2 1 20 0 0
( )d d ( ) d ( )

t t tk k k k
t s s sY v Y s Y W s Y N sκ θ σ σ+

−= + − + +∫ ∫ ∫ % .        (2.1) 

Therefore 
2( 1) ( )

2
( ) ( 1) ( ) ( 1) ( ) ( 1)

1 2 2 20 0 0

[ ]

[ d d ( ) d ( ) ].

k k
t t

t t tk k k k k k
s s s s s s

E Y Y

E Y Y s Y Y W s Y Y N sκ σ σ

+

− − −
− −

−

= − + − + −∫ ∫ ∫ %

 

We know that 1( ) 2 (| | | | | | )n n n n na b c a b c−+ + ≤ + + , so  
2( 1) ( )

2 2
2 ( ) ( 1) 2 ( ) ( 1)

1 20 0

2
2 ( ) ( 1)
2 20

[ ]

3 [ ( )d ] 3 [ d ( ) ]

3 [ d ( ) ].

k k
t t

t tk k k k
s s s s

t k k
s s

E Y Y

E Y Y s E Y Y W s

E Y Y N s

κ σ

σ

+

− −

−

−

≤ − + −

+ −

∫ ∫

∫ %

                  (2.2) 

Using the Holder inequality, one derives 
2

( ) ( 1) ( ) ( 1) 2 ( ) ( 1) 2

0 0 0
[ ( )d ] [| | ]d [| | ]d

t t tk k k k k k
t t s s s sE Y Y s t E Y Y s T E Y Y s− − −− ≤ − ≤ −∫ ∫ ∫ .        (2.3) 

Next we consider 
2

( ) ( 1)
20

[ d ( ) ]
t k k

s sE Y Y W s−−∫ . Using the Ito isometry[12], we obtain 

2
( ) ( 1) ( ) ( 1) 2 ( ) ( 1) 2

20 0 0
[ d ( ) ] [| | ]d 4 [| | ]d ,

t t tk k k k k k
s s s s s sE Y Y W s E Y Y s E Y Y s− − −− ≤ − ≤ −∫ ∫ ∫    (2.4) 

2
( ) ( 1) ( ) ( 1) 2 ( ) ( 1) 2

20 0 0
[ d ( ) ] [| | ]d 4 [| | ]d .

t t tk k k k k k
s s s s s sE Y Y N s E Y Y s E Y Y sλ λ− − −
− −− ≤ − ≤ −∫ ∫ ∫%  

Here we used the fact that 2a b a b− ≤ −  for any 0a > , 0b > . Putting together (2.2), 

(2.3), and (2.4), we have 
2( 1) ( ) ( ) ( 1) 2

1 0
[ ] [| | ]d

tk k k k
t t s sE Y Y M E Y Y s+ −− ≤ −∫ ,                              (2.5) 

where 2 2 2
1 1 23 12 12M Tκ σ λσ= + + . 

Next, we pay attention to
2(1)

1 0[ ]th E Y v= − . Taking 0k =  in (2.1), one obtains  
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2

1 0 1 0 2 2 0 20 0 0

2

0 1 0 2 2 0 2

[ ( )d d ( ) d ( ) ]

[ ( ) ( ) ].

t t t
h E v s v W s v N s

E t v t v W t v N t

κ θ σ σ

κθ κ σ σ

= − + +

= − + +

∫ ∫ ∫ %

%

 

Now we use 1( ) 2 (| | | | | | )n n n n na b c a b c−+ + ≤ + +  and Holder inequality to obtain 
2 22

1 0 1 0 2 2 0 2

22 2 2 2 2 2 2 2
0 1 2 0 1 2 2 2

22 2 2 2 2 2
0 1 2 0 1 2

3 [ ] 3 [ ( ) ] 3 [ ( ) ]

3 3 3
3 [ ] ( ) [| |] [| ( ) | ] [| ( ) | ]

2 2 2
3 3 3

3 [ ] ( ) [| |] .
2 2 2

h E t v t E v W t E v N t

E v t E v E W t E N t

E v t E v t t

κθ κ σ σ

κ θ σ σ σ σ

κ θ σ σ σ λσ

≤ − + +

≤ − + + + +

≤ − + + + +

%

%  

Recall that 2
2[| ( ) | ]E W t t= , 2

2[| ( ) | ]E N t tλ=% , 
2

1 2 3 4h M M t M t≤ + + , 

where 2 2
2 1 2 0

3
( ) [| |]

2
M E vσ σ= + , 2 2

3 1 2

3 3

2 2
M σ λσ= + , 22

4 03 [ ]M E vκ θ= − . Similarly, with the 

induction on k  we obtain 
2( 1) ( ) 5

1 [ ]
( 1)!

k k
k k

k t t

M t
h E Y Y

k
+

+ = − ≤
+

. 

for some suitable constant 5M  only depends on iM , 1,2,3,4i = . Thus, the existence 
follows from the Doob martingale inequality and Fatou lemma.  

We now show that the solution of (1.2) is unique. Suppose ( , )Y t ω  and ( , )Z t ω  satisfy 
(1.2), (0, )Y Yω =  and (0, )Z Zω = . Therefore, 

2

0

2
1 2 2 20 0

[| ( , ) ( , ) | ]

[| ( ( , ) ( , ))d

( , ) ( , )d ( ) ( , ) ( , )d ( ) | ].

t

t t

E Y t Z t

E Y Z Y s Z s s

Y s Z s W s Y s Z s N s

ω ω

κ ω ω

σ ω ω σ ω ω

−

= − + −

+ − + − − −

∫

∫ ∫ %

 

We may use Young’s inequality to obtain  

( )
( ) ( )

2

2
2

0

2 2
2 2
1 2 2 20 0

[| ( , ) ( , ) | ]

4 [| | ] 4 [ ( , )) ( , )d ]

4 [ ( , ) ( , )d ( ) ] 4 [ ( , ) ( , )d ( ) ].

t

t t

E Y t Z t

E Y Z E Y s Z s s

E Y s Z s W s E Y s Z s N s

ω ω

κ ω ω

σ ω ω σ ω ω

−

≤ − + −

+ − + − − −

∫

∫ ∫ %

  (2.6) 

Following the similar proof of (2.3), (2.4) and (2.5), we obtian 

( )2
2 2

0 0 0
[ ( , ) ( , )d ] [| ( , ) ( , ) | ]d [| ( , ) ( , ) | ]d

t t t
E Y s Z s s t E Y s Z s s T E Y s Z s sω ω ω ω ω ω− ≤ − ≤ −∫ ∫ ∫ , (2.7) 

and 

( )2
2

20 0
[ ( , ) ( , )d ( ) ] 4 [| ( , ) ( , ) | ]d

t t
E Y s Z s W s E Y s Z s sω ω ω ω− ≤ −∫ ∫ ,              (2.8) 

( )2
2

20 0
[ ( , ) ( , )d ( ) ] 4 [| ( , ) ( , ) | ]d

t t
E Y s Z s N s E Y s Z s sω ω λ ω ω− − − ≤ −∫ ∫% .           (2.9) 

Substituting (2.7) and (2.8) into (2.6) and letting 2 2
6 1 24 16 16M T T Tκ σ λ σ= + + , we have 
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2 2 2
6 0

[| ( , ) ( , ) | ] 4 [| | ] [| ( , ) ( , ) | ]d
t

E Y t Z t E Y Z M E Y s Z s sω ω ω ω− ≤ − + −∫ . 

Using Gronwall inequality, we have 
2 2

5[| ( , ) ( , ) | ] 4 [| | ]exp{ }E Y t Z t E Y Z M tω ω− ≤ − . 
The uniqueness of solution can be proved using 

(0, ) (0, )Y Y Z Zω ω= = = . 
Consequently, the theorem is proved.□ 

Next, we will derive pL  estimate for the solution of the volatility equation.  

 
Lemma 2.1. Assume that Assumption 1 holds, and let 0T >  be fixed. Then for any 
positive constant 7 7 0 1 2( , , , , , , )M M v T p κ θ σ σ= , we have  

7
[0, ]

[ sup ( ) ]
p

t T
E v t M

∈
≤ .                                              (2.10) 

Proof: Since for any [0, ]t T∈ , 

0 1 2 2 20 0 0
( ) ( ( ))d ( )d ( ) ( )d ( )

t t t
v t v v s s v s W s v s N sκ θ σ σ= + − + + −∫ ∫ ∫ % . 

Using Young’ s inequality, we have for any 2p ≥  that 
1

0 1 2 3( ) 4 (| | )
p p pv t v A A A−≤ + + + ,                                     (2.11) 

where 1 0
( ( ))d

pt
A v s sκ θ= −∫ , 2 20

( )d ( )
pt

A v s W s= ∫ , 3 20
( )d ( )

pt
A v s N s= −∫ % . Now, we 

compute 1[ ]E A , 2[ ]E A  and 3[ ]E A . Using Holder inequality, we obtain 

1
1 0 0

[ ] [ ( )d ] 2 [| ( ) | ]d
pt tp p p p p pE A E T v s s T T E v s sκθ κ κ θ κ−≤ + ≤ +∫ ∫ .           (2.12) 

By B-D-G’s inequality[11] and Holder inequality, we obtain 
2

2
2 20 0 0

[ ] [ ( )d ( ) ] [| ( ) |]d [| ( ) | ]d
p pt t t pE A E v s W s E v s s T E v s s= ≤ ≤∫ ∫ ∫ . 

Note that 21x x≤ +  for any 0x ≥ , 

2 0
[ ] [| ( ) | ]d

t pE A T T E v s s≤ + ∫ .                                        (2.13) 

Following the similar proof with (2.13), 

3 0
[ ] [| ( ) | ]d

t pE A T T E v s sλ λ≤ + ∫ .                                      (2.14) 

Substituting (2.12) and (2.13) into (2.11), and letting 
1 1 1

8 04 [| | ] 8 4 (1 )p p p p p p pM E v T Tκ θ λ− − −= + + + , 1 2
9 4 (1 )pM T λ κ−= + + , 

we obtain 

8 9 0
( ) [| ( ) | )]d

tp pv t M M E v s s≤ + ∫ .                                     (2.15) 

Hence the Gronwall inequality implies that 

8 9 10
[0, ]

sup [ ( ) ] exp{ } , 2
p

t T
E v t M M T M p

∈
≤ = ≥ .                              (2.16) 

Second, we prove that (2.10) still holds for any 1 2p≤ < . Using Cauchy inequality, we 
obtain 

1
1 22 22

[0, ]
[ ( ) ] [ ( ) ] sup [ ( ) ]

p p p

t T
E v t E v t E v t

∈

 ≤ ≤  
 

. 
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Considering 2 2p ≥ , and using (2.16), we obtain 

10[ ( ) ]
p

E v t M≤ . 

Because [0, ]t T∈  is arbitrary, (2.10) is proved when1 2p≤ < . 
Finally, if 0 1p< < , note that 

1

{ ( ) 1} { ( ) 1} { ( ) 1} { ( ) 1}( ) ( ) ( ) ( ) ( )
p p p p p

v t v t v t v tv t v t I v t I v t I v t I
+

≥ < ≥ <= + ≤ + . 

Further we have 
1 1

{ ( ) 1}( ) ( ) 1 ( ) 1
p p p

v tv t v t I v t
+ +

≥≤ + ≤ + . 

Hence it follows from the case 0 1p< < , 

10
[0, ]

sup [ ( ) ] 1
p

t T
E v t M

∈
≤ + . 

This completes the proof of the lemma□ 
  Following the proof of Theorem 2.1 and Lemma2.1, we can prove the following lemma 
for stock price equation. 
 
Lemma 2.2. Stock price equation of CEV model has a unique solution. In the case that 

( )β ⋅  and ( )σ ⋅  satisfies Assumption 1, then  

11 0 0 1 2
[0, ]

sup [ ( ) ] ( , , , , , , , , )
p

t T
E S t M v s T p rγ κ σ σ

∈
≤ .                           (2.17) 

 
3. The model 
In this section we discuss the continuity to stock price equation of CEV model.  
 
Theorem 3.1. Stock price process of Black-Scholes model { ( ), 0}S t t≥  is continuous. 
Proof:  Note that for any0 s t T≤ < ≤ , 

1 1( ) ( ) ( )d ( ) ( )d ( ) ( )d ( )
t t t

s s s
S t S s S s s v s S s W s S s N sµ γ− = + +∫ ∫ ∫ % . 

Using 4 3 4 4( ) 2 ( )a b a b+ ≤ + , we obtain 
2

4 5 6( ) ( ) 3 3 3S t S s A A A− ≤ + + ,                   (3.1) 

where 
2

4 ( )d
t

s
A rS s s= ∫ ,

2

5 ( ) ( ) d ( )
t

s
A v s S s w sα= ∫ ,

2

6 ( ) ( ) d ( )
t

s
A v s S s w sα= ∫ . It follows 

Cauchy inequality,  
2

24
4[ ] [ ( )d ] ( ) [ ( ) ]d

t t

s s
E A r E S s s t s E S s s≤ ≤ −∫ ∫ .              (3.2) 

 (2.17) and (3.2) imply that 
22

4 12[ ]E A r M t s≤ − .                       (3.3) 

Now we pay attention to 5[ ]E A . Using B-D-G inequality[11] and Holder inequality we 
obtain 

2 2 4
5[ ] [| ( ) | | ( ) | ]d ] [| ( ) | ] [| ( ) | ]d ]

t t

s s
E A E v s S s s E v s E S s s≤ ⋅ ≤∫ ∫ . 

It follows by (2.10) and (2.17) that 

5 7 11[ ]E A M M t s≤ − , 6 7 11[ ]E A M M t sλ≤ − .              (3.4) 

Substituting (3.3) and (3.4) into (3.1), we yeild 
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4 22

7 11 12[ ( ) ( ) ] 3(1 ) 3 .E S t S s M M t s r M t sλ− ≤ + − + −            (3.5) 

Therefore, the theorem is proved. □ 
 

4. Conclusion  
Stochastic volatility models play an important role in finance modeling. In this paper, we 
proposed a new version of the Heston model with long-range dependence by considering 
the properties of mixed fractional Brownian motion and showed this model has a unique 
solution. Moreover, we proved the continuity and some estimates of the solution. 
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