Intern. J. Fuzzy Mathematical Archive Vol. 18, No. 1, 2020, 1-6 *ISSN: 2320 – 3242 (P), 2320 – 3250 (online) Published on 17 March 2020 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/ijfma.v18n1a01212*

International Journal of **Fuzzy Mathematical Archive**

Irreducible and Strongly Irreducible Bi-ideals of a Near-Algebra

B. Jyothi¹ and P. Narasimha Swamy²

¹Department of Mathematics, University College for Women, Osmania University Hyderabad – 500095, Telangana, India. E-mail: <u>jyothireddydumbala@gmail.com</u>

²Department of Mathematics, GITAM Deemed to be University Hyderabad Campus – 502329, Telangana, India. E-mail: <u>swamy.pasham@gmail.com</u>

Corresponding author. Emai: swamy.pasham@gmail.com

Received 5 February 2020; accepted 12 March 2020

Abstract. The aim of this paper is to study the notion of irreducible and strongly irreducible bi-ideal of a near-algebra and fuzzy concepts of a near-algebra. Also, some characterizations are presented.

Keywords: Irreducible bi-ideal, strongly irreducible bi-ideal, fuzzy set, near algebra.

AMS Mathematics Subject Classification (2010): 03E72, 16Y30, 16Y99

1. Introduction

Generalization of ideals is necessary for further development in the study of algebraic systems. The notion of quasi-ideals in near-rings was pioneered by Yakabe [16]. Lajos and Szasz [6] introduced the concept of quasi-ideals in associate near-rings. The quasi ideals are generalization of left and right ideals, whereas bi-ideals are generalization of quasi-ideals. We refer to Chelvam and Ganesan [15] for bi-ideals. Abbassi and Rizivi [1] studied the prime ideals in near rings. The ideals in fuzzy sub near rings was introduced by Zaid [2]. A near-algebra is a near ring which admits a field as a right operator domain. Pilz [9] wrote a monograph on near-rings. Brown [3], Srinivas [12], Irish [4], Swamy [7,8] have studied certain properties of near-algebras. The notion fuzzy set was introduced by Zadeh [17]. The concept of prime ideals and fuzzy prime ideals is initiated in [5,10,11,13,14]. In this paper, we introduce the concept of irreducible, strongly irreducible bi-ideals of a near algebra, and obtain certain characterizations. Also, we studied the fuzzy concepts of irreducible, strongly irreducible bi-ideals for a near algebra.

2. Preliminaries

Definition 2.1. A (right) near-algebra Y over a field X is a linear space Y over X on which multiplication is defined such that

(i) Y forms a semi-group under multiplication

(ii) Multiplication is right distributive over addition, that is(a + b)c = ac + bc for every $a,b,c \in Y$ and

(iii) $\lambda(ab) = (\lambda a)b$ for every $a, b \in Y$ and $\lambda \in X$.

B. Jyothi and P. Narasimha Swamy

Definition 2.2. A subset D of a near algebra Y over a field X is said to be a sub near algebra of Y if

(i) D is a linear subspace of Y

(ii) (D, .) is a semi-group.

Definition 2.3. A nonempty subset I of a near algebra Y is called a near algebra ideal of Y if

(i) I is a linear subspace of the linear space Y
(ii) ix ∈I, for every x ∈ Y, i∈ I
(iii) y (x +i) - y x ∈ I for every x, y ∈ Y, i∈ I.
If I satisfies conditions (i) and (ii), then I is called a right ideal of Y.
If I satisfies conditions (i) and (iii), then I is called a left ideal of Y.

Definition 2.4. Let Y be a near-algebra over a field X. Then the set $Y_0 = \{a \in Y/a0 = 0\}$ is called the zero-symmetric part of Y, $Y_c = \{a \in Y/a0 = a\}$ is called the constant part of Y. Y is called zero-symmetric near-algebra if $Y = Y_0$, Y is called constant near-algebra if $Y = Y_c$.

Definition 2.5. Let X be a non empty set. A fuzzy subset η of X is a function $\eta: X \to [0,1]$. The number $\eta(x)$ is the degree of membership of $x \in X$.

Definition 2.6. Let μ be a fuzzy subset of N and $t \in [0,1]$. Then the set $\mu_t = \{x \in N \mid \mu(x) \ge t\}$ is called a level set (or level sub set) of μ . It is denoted by μ_t .

Definition 2.7. A fuzzy subset F of a field X is called a fuzzy field of X, if it satisfies the following four conditions for every x, $y \in Y$: (i) $F(x+y) \ge \min(F(x), F(y))$, (ii) $F(-x) \ge F(x)$, (iii) $F(x+y) \ge \min(F(x), F(y))$, (iv) $F(x^{-1}) \ge F(x)$ for every non-zero $x \in X$. A fuzzy field *F* of X is denoted by (F,X).

Definition 2.8. Let Y be a near algebra over a field X and (F,X) be a fuzzy field. A fuzzy subset μ of Y is called a fuzzy near algebra of Y over a fuzzy field (F,X) if (i) $\mu(x+y) \ge \min(\mu(x), \mu(y))$, (ii) $\mu(\lambda x) \ge \min(F(\lambda), \mu(x))$, (iii) $\mu(xy) \ge \min(\mu(x), \mu(y))$, (iv) $F(1) \ge \mu(x)$ for every x, $y \in Y$, $\lambda \in X$. A fuzzy near algebra μ of Y is denoted by (μ , Y).

Definition 2.9. Let (μ, Y) be a fuzzy near algebra over a fuzzy field (F,X). Then μ is a fuzzy ideal of Y if (i) $\mu(xy) \ge \mu(x)$ for every x, $y \in Y$ (ii) $\mu(y(x + i) - y x) \ge \mu(i)$ for every x, y, $i \in Y$. A is a fuzzy right ideal of Y if $\mu(x y) \ge \mu(x)$ for every x, $y \in Y$. Irreducible and Strongly Irreducible Bi-Ideals of a Near-Algebra

A is a fuzzy left ideal of Y if $\mu(y(x + i) - y x) \ge \mu(i)$ for every x, y, $i \in Y$.

Definition 2.10. A fuzzy subset μ of a near-algebra Y over a fuzzy field (F,X) is called a fuzzy bi-ideal of Y, if $\mu(x + y) \ge \min{\{\mu(x), \mu(y)\}}, \mu(\lambda x) \ge \min{\{F(\lambda), \mu(x)\}}$ and $(\mu o \chi o \mu) \cap ((\mu o \chi) * \mu) \subseteq \mu$ for every $x, y \in Y, \lambda \in X$.

Throughout this article Y denotes a right near-algebra and X denotes a field.

3. Irreducible and strongly irreducible bi-ideals

In this section we introduce irreducible bi-ideal of a near-algebra Y and strongly irreducible bi-ideal of a near-algebra Y. Further provided some properties along with proofs.

Definition 3.1. A bi-ideal I of a near algebra Y is called an irreducible bi-ideal of Y, if for any bi-ideals I_1, I_2 of Y, $I_1 \cap I_2 = I$ implies $I_1 = I$ or $I_2 = I$.

Definition 3.2. A bi-ideal I of a near algebra Y is called strongly irreducible bi-ideal of Y, if for any bi-ideals I_1, I_2 of Y, $I_1 \cap I_2 \subseteq I$ implies either $I_1 \subseteq I$ or $I_2 \subseteq I$.

Definition 3.3. A bi-ideal I of a near algebra Y is called strongly irreducible semiprime bi-ideal of Y, if for any bi-ideals I_1, I_2 of Y, $(I_1 \cap I_2)^2 \subseteq I$ implies either $I_1 \subseteq I$ or $I_2 \subseteq I$.

Definition 3.4. A bi-ideal D of a near algebra Y is called a prime bi-ideal of Y, if $P_1P_2 \subseteq D$ implies $P_1 \subseteq D$ or $P_2 \subseteq D$ for any bi-ideals P_1, P_2 of Y.

Definition 3.5. A bi-ideal P of a near algebra Y is a semiprime bi-ideal of Y, if for any bi-ideal P_1 of Y, $P_1^2 \subseteq P$ implies $P_1 \subseteq P$.

Definition 3.6. A bi-ideal P of a near algebra Y is called a strongly prime bi-ideal of Y, if $P_1P_2 \cap P_2P_1 \subseteq P$ implies $P_1 \subseteq P$ or $P_2 \subseteq P$ for any bi-ideals of P_1, P_2 of Y.

Theorem 3.7. Every strongly irreducible semiprime bi-ideal of near algebra Y is a strongly prime bi-ideal of Y.

Proof. Let I be strongly irreducible semiprime bi-ideal of near algebra Y. Let I_1 and I_2 be two bi-ideals of Y such that $I_1I_2 \cap I_2I_1 \subseteq I$. Then we have to show that either $I_1 \subseteq I$ or $I_2 \subseteq I$. Since $I_1 \cap I_2 \subseteq I_1$ and $I_1 \cap I_2 \subseteq I_2$,

Implies $(I_1 \cap I_2)^2 \subseteq I_1 I_2$ and $(\overline{I_1} \cap I_2)^2 \subseteq I_2 I_1$. Thus $(I_1 \cap I_2)^2 \subseteq I_1 I_2 \cap I_2 I_1 \subseteq I$. It is clear that $(I_1 \cap I_2)$ is also a bi-ideal of Y. So $(I_1 \cap I_2)^2 \subseteq I$. This implies $(I_1 \cap I_2) \subseteq I$, because I is a semiprime bi-ideal of Y. Also $I_1 \subseteq I$ or $I_2 \subseteq I$, because I is strongly irreducible bi-ideal of Y. Hence, I is a strongly prime bi-ideal of Y.

Proposition 3.8. Let D be a bi-ideal of a near-algebra Y and $x \in Y$ such that $x \notin D$. Then there exists an irreducible bi-ideal I of Y such that $D \subseteq I$ and $x \notin I$.

Theorem 3.9. For a near-algebra Y, the following statements are equivalent:

B. Jyothi and P. Narasimha Swamy

(a) $D^2 = D$ for every bi-ideal D of Y.

(b) $D_1D_2 \cap D_2D_1 = D_1 \cap D_2$ for any bi-ideas D_1, D_2 of Y.

(c) Each bi-ideal of Y is semiprime.

(d) Each proper bi-ideal of Y is the intersection of irreducible semiprime bi-ideals of Y which contain it.

Proof. (a) \Rightarrow (b): Let D_1 and D_2 be any two bi-ideals of Y. Then $D_1 \cap D_2$ is also a biideal of Y. By hypothesis we have $(D_1 \cap D_2) = (D_1 \cap D_2)^2 = (D_1 \cap D_2)(D_1 \cap D_2) \subseteq D_1D_2$. Similarly,

 $\begin{array}{l} D_1 \cap D_2 \subseteq D_2 D_1. \text{ So } D_1 \cap D_2 \subseteq D_1 D_2 \cap D_2 D_1. \text{ Since } D_1 D_2, D_2 D_1, D_1 D_2 \cap D_2 D_1 \text{ bi-}\\ \text{ideals of Y, then } D_1 D_2 \cap D_2 D_1 = (D_1 D_2 \cap D_2 D_1) (D_1 D_2 \cap D_2 D_1) \subseteq D_1 D_2. D_2 D_1 = \\ D_1 D_2^2 D_1 \subseteq D_1 D_2 D_1 \subseteq D_1 \text{YD}_1 \subseteq D_1 \text{Similarly } D_1 D_2 \cap D_2 D_1 \subseteq D_2. \text{ Thus } D_1 D_2 \cap \\ D_2 D_1 \subseteq D_1 \cap D_2. \text{ Hence } D_1 D_2 \cap D_2 D_1 = D_1 \cap D_2. \end{array}$

(b) \Rightarrow (c): Let D be a bi-ideal of Y such that $D_1^2 \subseteq D$ for any bi-ideal D_1 of Y. Then $D_1 = D_1 \cap D_1 = D_1 D_1 \cap D_1 D_1 = D_1^2 \subseteq D$. This shows that B is a semiprime bi-ideal of Y. Hence every bi-ideal of Y is a semiprime bi-ideal of Y.

(c) \Rightarrow (d): Suppose that each bi-ideal of Y is semiprime. Let D be a proper bi-ideal of Y. Then there exists an irreducible bi-ideal of Y containing D. If $\bigcap_{\alpha} I_{\alpha}$ be the intersection of all irreducible bi-ideals of Y containing D, then $D \subseteq \bigcap_{\alpha} I_{\alpha}$, as $D \subseteq I_{\alpha}$ for all α . If this inclusion is proper, then there exists $x \in \bigcap_{\alpha} I_{\alpha}$ such that $x \notin D$. This implies $a \in I_{\alpha}$ for all α . As $x \notin D$, then there exist an irreducible bi-ideal I of Y such that $D \subseteq I$ and $x \notin I$. This is a contradiction to the fact that $x \in I_{\alpha}$ for all α . So $D = \bigcap_{\alpha} I_{\alpha}$. Thus each proper bi-ideal of Y is the intersection of irreducible semiprime bi-ideals of Y which contains it.

(d) \Rightarrow (a): Let each proper bi-ideal of Y is the intersection of irreducible semiprime biideals of Y which contain it. Let D be a bi-ideal of Y, then $DD = D^2$. If $D^2 = Y$ is an improper bi-ideal, then $Y \subseteq D^2$, implies $D \subseteq Y \subseteq D^2$. Also $D^2 \subseteq D$. So $D^2 = D$ for each bi-ideal of D of Y. Now if D^2 is a proper bi-ideal of Y that is $D^2 \neq Y$, then $D^2 =$ $\bigcap_{\alpha} \{D_{\alpha} : D_{\alpha} \text{ is an irreducible semiprime bi-ideal of Y such that <math>D^2 \subseteq D_{\alpha}$ for all α } implies $D \subseteq D_{\alpha}$ for all α , because each D_{α} is a semiprime bi-ideal of Y. Thus $D \subseteq \cap D_{\alpha} = D^2$. Also $D^2 \subseteq D$. Hence $D^2 = D$ for each bi-ideal D of Y.

Theorem 3.10. If every bi-ideal of near algebra Y is an idempotent then the following assertions are equivalent: (a) D is strongly irreducible (b) D is strongly prime.

Proof. (a) \Rightarrow (b): Let D_1 and D_2 be any two bi-ideals of Y such that $D_1D_2 \cap D_2D_1 \subseteq D$. Each bi-ideal of Y is idempotent, then we have $D_1 \cap D_2 = D_1D_2 \cap D_2D_1 \subseteq D$, this implies $D_1 \cap D_2 \subseteq D$. But D is strongly irreducible bi-ideal of Y. Thus $D_1 \subseteq D$ or $D_2 \subseteq D$. Hence D is strongly prime bi-ideal of Y.

(b) \Rightarrow (a): Let D_1 and D_2 be any two bi-ideals of Y such that $D_1 \cap D_2 \subseteq D$. Then $D_1D_2 \cap D_2D_1 \subseteq D_1 \cap D_2 \subseteq D$, this implies $D_1D_2 \cap D_2D_1 \subseteq D$. But D is strongly prime bi-ideals of Y. Thus we have $D_1 \subseteq D$ or $D_2 \subseteq D$. Hence D is strongly irreducible bi-ideal of Y. Irreducible and Strongly Irreducible Bi-Ideals of a Near-Algebra

4. Irreducible and Strongly Irreducible Fuzzy Bi-ideal

Definition 4.1. A fuzzy bi-ideal λ of a near algebra Y is said to be an irreducible fuzzy bi-ideal of Y if for any fuzzy bi-ideals μ and γ of Y, $\mu \cap \gamma = \lambda \implies \mu = \lambda$ or $\gamma = \lambda$.

Definition 4.2. A fuzzy bi-ideal λ of a near algebra Y is said to be strongly irreducible fuzzy bi-ideal of Y if for any fuzzy bi-ideals μ and γ of Y, $\mu \cap \gamma \leq \lambda \implies \mu \leq \lambda$ or $\gamma \leq \lambda$.

Theorem 4.3. Every strongly irreducible semiprime fuzzy bi-ideal of near algebra Y is a strongly prime fuzzy bi-ideal of Y.

Proof: Let λ be a strongly irreducible semiprime fuzzy bi-ideals of near algebra Y. Let μ and γ be two fuzzy bi-ideals of Y such that $(\mu \circ \gamma) \cap (\gamma \circ \mu) \leq \lambda$. As $(\mu \cap \gamma) \circ (\mu \cap \gamma) = (\mu \cap \gamma)^2 \leq (\mu \circ \gamma)$ and $(\mu \cap \gamma) \circ (\mu \cap \gamma) = (\mu \cap \gamma)^2 \leq (\gamma \circ \mu) \Longrightarrow (\mu \cap \gamma)^2 \leq (\mu \circ \gamma) \cap (\gamma \circ \mu) \leq \lambda$, so $\mu \cap \gamma \leq \lambda$.

Since λ is a semiprime fuzzy bi-ideal of Y, then $\mu \leq \lambda$ or $\gamma \leq \lambda$. Hence λ is a strongly prime fuzzy bi-ideal of near algebra Y.

Theorem 4.4. For a Near algebra Y, the following statements are equivalent:

- (a) $\lambda o \lambda = \lambda$ for each bi-ideal of Y.
- (b) $(\mu \cap \gamma) = (\mu \circ \gamma) \cap (\gamma \circ \mu)$ for all fuzzy bi-ideals μ and γ of Y.
- (c) Every fuzzy bi-ideal of Y is fuzzy semiprime.
- (d) Each proper fuzzy bi-ideal of Y is the intersection of irreducible semiprime fuzzy bi-ideal of Y which contain it.

Theorem 4.5. If every fuzzy bi-ideal λ of a near-algebra Y is idempotent, then the following statements are equivalent: (a) λ is strongly irreducible (b) λ is strongly prime. **Proof.** (a) \Rightarrow (b): Let $(\mu o \gamma) \cap (\gamma o \mu) \leq \lambda$ for any two fuzzy bi-ideals μ and γ of Y. Then $\mu \cap \gamma = (\mu o \gamma) \cap (\gamma o \mu) \leq \lambda \Rightarrow \mu \leq \lambda o r \gamma \leq \lambda$, as λ is strongly irreducible. So λ is strongly prime fuzzy bi-ideal of Y.

(b) \Rightarrow (a): Let μ and γ be two fuzzy bi-ideals of Y such that $\mu \cap \gamma \subseteq \lambda$. Then $(\mu \circ \gamma) \cap (\gamma \circ \mu) = \mu \cap \gamma \subseteq \lambda$. So $(\mu \circ \gamma) \cap (\gamma \circ \mu) \subseteq \lambda$. This implies that either $\mu \subseteq \lambda$ or $\gamma \subseteq \lambda$, as λ is strongly prime fuzzy bi-ideal of Y. Thus λ is strongly irreducible.

REFERENCES

- 1. J.Abbassi and A.Z.Rizvi, Study of prime ideals in near-rings, *Journal of Engineering and Sciences*, 2(1) (2008) 65-66.
- 2. S.A.Zaid, On fuzzy sub near-rings and ideals, *Fuzzy Sets and Systems*, 44 (1991) 139-146.
- 3. H.Brown, Near-algebra, *Illinios J. Math.*, 12 (1965) 215-227.
- 4. J.W.Irish, *Normed near-algebras and finite dimensional near-algebras of continuous functions*, Doctoral thesis, University of New Hampshire (1975).
- 5. Y.B.Jun and H.S.Kim, A characterization theorem for fuzzy prime ideals in nearrings, *Soochow J Math.*, 28(1) (2002) 93-99.
- S.Lajos and F.Szasz, bi-ideals in associative rings, Acta. Sci. Math., 32 (1971) 185-93.
- 7. P.Narsimha Swamy, A note on fuzzy near-algebras, *International Journal of Algebra*, 5(22) (2011) 1085-1098.

B. Jyothi and P. Narasimha Swamy

- P.Narasimha Swamy, B.Jyothi, R.Deshumukh and T.Srinivas, Quasi-ideals and biideals of near-algebra, *Intern. Journal of Engineering, Science and Mathematics*, 7(3) (2018) 380-386.
- 9. G.Pilz, Near-ring, North Holland, Amsterdam (1983).
- 10. M.Shabir, Y.B.Jun and M.Bano, On prime fuzzy bi-ideals of semigroups, *Iranian J. Fuzzy Systems*, 7(3) (2010) 115-128.
- 11. S.Bashir, Prime bi-ideals and strongly prime fuzzy bi-ideals in near rings, *Annals of Fuzzy Mathematics and Informatics*, 9(1) (2015) 125-140, 121-129.
- 12. T.Srinivas, *Near-rings and application to function spaces*, Doctoral Dissertation, Kakatiya University (1996).
- 13. O.Steinfeld, On ideal-quotients and prime ideals, *Acta Math. Acad. Sci. Hung.*, 4 (1953) 289-298.
- 14. K.Syam Prasad and B.Satyanarayana, Fuzzy prime ideals of Gamma-near-rings, *Soochow J. Mathematics*, 31(1) (2005) 121-129.
- 15. T.Tamizh Chelvam and N. Ganesan, On bi-ideals of near ring, *Indian J. Pure Appl. Math.*, 18 (11) (1987) 1002-1005.
- 16. I.Yakabe, Quasi-ideals in near-rings, Math. Rep., XIV (1983) 41-46.
- 17. L.A.Zadeh, Fuzzy sets, Inform. and Control, 8 (1965) 338-353.