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1. Introduction 
The theory of fuzzy sets was first introduced by Zadeh [18] in 1965. Since then, due to 
the wide applicability of this notion in various fields, many authors have expansively 
developed the theory of fuzzy sets and its applications. In this context Deng [4], Erceg, 
[5], Fang  and Gao  [6], Kaleva  and Seikkala [10], Kramosil and Michalek [11] have 
introduced the concept of fuzzy metric spaces in different ways. In 1994 George and 
Veeramani [7] modified this concept of fuzzy metric space and obtain a Hausdroff 
topology for this kind of fuzzy metric spaces. It appears that the study of Kramosil and 
Michalek [11] of fuzzy metric spaces paves the way for developing the smooth 
machinery in the field of fixed point theory for the study of contractive maps. Sessa [13] 
initiated the tradition of improving commutativity conditions in fixed point theorems by 
introducing the notion of weakly commuting maps in metric spaces. Jungck [9] soon 
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enlarged this concept to compatible maps. The notion of compatible mappings in fuzzy 
metric spaces was introduced by Cho [2].  Vasuki [17] introduced the concept of R – 
weakly commuting map and proved a fixed point theorem for fuzzy metric space using 
this concept. In 2000, Singh and Chauhan [14] introduced the concept of compatibility in 
fuzzy metric spaces. Singh and Jain [15] studied the notions of semi compatibility and 
weak compatibility of maps in fuzzy metric spaces. Popa [12] established some results on 
fixed point theorems for weakly compatible non continuous mappings using implicit 
relations. Imdad and Khan [8] extended the work of Popa [12]. Cho et al. [3] introduced 
the concept of � −chainable fuzzy metric space and obtained common fixed point 
theorems for four weakly compatible mappings of � −chainable fuzzy metric spaces. 
Singh and Bhadauriya [16] proved a fixed point theorem in � −chainable fuzzy metric 
spaces using implicit relations.  

In this Paper we establish a common fixed point theorem for weakly compatible 
maps on complete � −chainable fuzzy metric space satisfying a class of implicit relations. 
The established results generalize, extend, unify and fuzzify several existing fixed point 
results in metric space and fuzzy metric space.   

 
2. Preliminaries 
Definition 1. A binary operation ∗∶ �0, 1	 × �0, 1	 → �0, 1	 is a continuous � − ��� if ∗ 
satisfies following conditions: 

(i) ∗ is commutative and associative; 
(ii)  ∗ is continuous; 
(iii)  � ∗ 1 = � for all � ∈ �0, 1	; 
(iv) � ∗ � ≤ � ∗ � whenever � ≤ �and � ≤ �, and �, �, �, � ∈ �0, 1	. 

Examples of continuous � − ��� are: � ∗ � = �� � ∗ � = min(�, �) 
 
Definition 2. A 3 – tuple (�,ℳ,∗) is called a ℳ− fuzzy metric space if � is an arbitrary 
(non - empty) set, ∗ is a continuous � − ���, and ℳ is a fuzzy set on �� × (0,∞), 
satisfying the following conditions for each  , !, " ∈ � and �, # > 0, 

(i) ℳ( , !, �) > 	0	, 
(ii)  ℳ( , !, �) = 1		&'	��	�(!	&'	 = !, 
(iii)  ℳ( , !, �) = 	ℳ(!,  , �),  
(iv) ℳ( , !, �) ∗ℳ(!, ", #) ≤ ℳ( , ", � + #), 
(v) ℳ( , !, . ) ∶ (0,∞) → �0, 1	 is continuous. 

 
Example 1. Let 	(�, �) be a metric space. Define	� ∗ � = min(�, �), and ℳ	( , !, �) = 	 �� + �	( , !) 
 induced by the metric 	� is often called the standard fuzzy metric. 
 
Definition 3. Let (�,ℳ,∗) be a ℳ− fuzzy metric space. For	� > 0, the open ball +ℳ	( , �, �) with center  ∈ � and radius 	0 < � < 1 is defined by +ℳ( , �, �) =	-! ∈ � ∶ 	ℳ( , !, �) > 1 − �.. 
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A subset / of � is called an open set if for each  ∈ / there exist � > 0 and 	0 < � < 1 
such that +ℳ( , �, �) ⊆ /. 
 
Definition 4. A sequence 	- 1. in a fuzzy metric space (�,ℳ,∗) is said to be a Cauchy 
sequence if for each 	� > 0 and � > 0, there exists 2 	 ∈ 	ℕ such that  ℳ	( 1,  4, �) > 1 − 	� for all 	,�	 ≥ 	2. 
A sequence 	- 1. in a fuzzy metric space (�,ℳ,∗) is said to be convergent to 	 	 ∈ � if 
for each 	� > 0 there exists 2 	 ∈ 	ℕ such that lim1	→	∞ℳ	( 1,  , �) > 	1 − 	� for all � > 0	&	 ≥	2. George and Veeramani [7] proved that a sequence - 1. in a fuzzy 
metric space (�,ℳ,∗) converges to a point  	 ∈ � if and only if ℳ	( 1,  , �) = 1, for all � > 0. 

A fuzzy metric space (�,ℳ,∗) is said to be complete if every Cauchy sequence 
in � converges to a point in �. 
 
Definition 5. Two self mappings/ and 	+ of a fuzzy metric space (�,ℳ,∗) are said to be 
compatible if there exists a sequence 	- 1. in � such that  lim1	→	∞ℳ	(/+ 1, +/ 1 , �) = 1, for all � > 0,  
whenever lim1	→	∞ / 1 = lim1	→	∞ +  1 =   for some 	 	 ∈ �.  
 
Definition 6. Two self mappings/ and 	+ of a fuzzy metric space (�,ℳ,∗) are said to be 
weakly compatible if 	/+ = +/  whenever / = +  for some	 	 ∈ �. If the self 
mappings / and 	+ of a fuzzy metric space (�,ℳ,∗) are compatible, then they are 
weakly compatible, but the converse is not necessarily true. 
 
Example 2. Let 	� = �0, 4	 and 	� ∗ � = min-�, �.. Let ℳ be the standard fuzzy metric 
induced by 	�, where 	�	( , !) = 	 | − !| for  , !	 ∈ �. Define two self mappings / and 	+ of the fuzzy metric space (�,ℳ,∗) by: 	/ = 	 : 4 −  ,				0	 ≤  	 ≤ 2							4,										2	 ≤  	 ≤ 4					< + = 	 : 			 ,												0	 ≤  	 ≤ 2								4,											2	 ≤  	 ≤ 4					< 
Let - 1. = -1 − (1 = ).. Then it can be easily proved that the self mappings / and 	+ are 
weakly compatible but they are not compatible. 
 
Definition 7. A finite sequence 	 =  2,  >,⋯ ,  1 = ! in a fuzzy metric space (�,ℳ,∗) 
is called � −	chain from 	  to ! if there exists 	� > 0 such that 	ℳ	( @,  @A>, �) > 1 − 	� 
for all � > 0 and 	& = 1, 2,⋯ , . 

A fuzzy metric space (�,ℳ,∗) is called � −	chainable if there exists an � −	chain 
from 	  to !, for any 	 , !	 ∈ �. 
 
Lemma 1. ℳ	( , !, . ) is non-decreasing for all	 , !	 ∈ �. 
Proof: Suppose  	ℳ	( , !, �) > 	B	( , !, #) for some	0 < � < #.  
Then ℳ	( , !, �) ∗ 	ℳ	(!, !, # − 	�) 	≤ 	ℳ	( , !, #) < 	B	( , !, �).                                     
Since	ℳ	(!, !, # − 	�) = 1, therefore, ℳ	( , !, �) 	≤ 	ℳ	( , !, #) < 	B	( , !, �), which is 
a contradiction. Thus, ℳ	( , !, . ) is non-decreasing for all	 , !	 ∈ �. 
 
Lemma 2. If for all  , !	 ∈ �, � > 0 and	0 < C < 1,  
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 ℳ	( , !, C�) 	≥ 	ℳ	( , !, �), then 	 = !. 
Proof: Suppose that there exists 	0 < C < 1 such that ℳ	( , !, C�) 	≥ 	ℳ	( , !, �) for all  , !	 ∈ � and	� > 0. 
 Then,	ℳ	( , !, �) 	≥ 	ℳ	( , !, �/C), 
 and  ℳ	( , !, �) 	≥ 	ℳ	( , !, �/C1) 
for positive integer	. Taking limit as		 → 	∞, ℳ	( , !, �) 	≥ 	1 and hence	 = !. 
 
Definition 8. [1] A Class of Implicit Relations 
Let 	E be the set of all real and continuous functions 	F:	ℝIJ 	→ 	ℝ, non decreasing in the 
first argument satisfying the following conditions: 

(a) For 	K, L	 ≥ 0, F(K, L, 1, L, 1, K) ≥ 0 implies that 	K	 ≥ L. 
(b) 	F(K, 1, 1, 1, 1, K) ≥ 0 or F(K, 1, K, K, K, 1) ≥ 0 or F(K, K, K, 1, K, 1) ≥ 0 implies 

that 	K	 ≥ 1. 
 
Example 3. Let F:	ℝIJ 	→ 	ℝ be defined by 	F(�>, ��, �M, �N, �O, �J) = 	20�> − 	18�� +	�M − 	14�N −	�O + 	12�J 
Then we see that F(K, L, 1, L, 1, K) ≥ 0	 ⟹ 32(K	– 	L) ≥ 0	 ⟹ K	 ≥ L F(K, 1, 1, 1, 1, K) ≥ 0	 ⟹ 32(K − 1) ≥ 0	 ⟹ K	 ≥ 1 F(K, 1, K, K, K, 1) ≥ 0	 ⟹ 6(K − 1) ≥ 0	 ⟹ K	 ≥ 1 F(K, K, K, 1, K, 1) ≥ 0	 ⟹ 2(K − 1) ≥ 0	 ⟹ K	 ≥ 1 
Therefore,		F ∈ 	E. 

Ali et al. [1] proved the following fixed point theorem for weakly compatible 
maps on complete � −chainable fuzzy metric spaces satisfying an implicit relation 
 
Theorem 1. Let 	(�,ℳ,∗) be a complete 	� −	chainable fuzzy metric space and let 	/, +, U	��	V be the self mappings of	�, satisfying the following conditions: 

(1) 	/�	 ⊂ V�and B�	 ⊂ U�; 
(2)  The pair 	(/, V) and 	(+, U) are weakly compatible; 
(3) 	V	(�) or U	(�) is complete; 
(4)  There exists 	C	 ∈ (0, 1) such that 

	F	 Xℳ	(/ , +!, C�),ℳ	(U , V!, �),ℳ	(/ , V!, �),ℳ	(U , / , �),�	ℳ	(/ , +!, �) + 	�	ℳ	(/ , V!, �)�ℳ	(+!, V!, �) + � ,ℳ	(+!, V!, �) Y ≥ 0	 
for every  , ! ∈ �	and	� > 0, where �, � ≥ 0  with �	&	� cannot be simultaneously 0. 
Then, /, +, U	and V have a unique common fixed point in �. 
We are now extending Ali et al. [1] work as the following results. 
 
3. The main results                                                                                   
Definition 9. A class of implicit relations 
Let 	E be the set of all real and continuous functions 	F:	ℝIZ 	→ 	ℝ, non decreasing in the 
first argument satisfying the following conditions: 

(a) For 	K, L	 ≥ 0, F(K, 1, L, 1, L, K, K) ≥ 0 implies that 	K	 ≥ L. 
(b) 	F(K, 1, 1, 1, 1, K, K) ≥ 0 or  F(K, K, 1, K, K, 1, 1) ≥ 0 or F(K, K, K, K, 1, 1,1) ≥ 0 

implies that 	K	 ≥ 1. 

Example 4. Let F:	ℝIZ 	→ 	ℝ be defined by 
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 	F(�>, ��, �M, �N, �O, �J, �Z) = 	22�> +	�� − 	18�M −	�N − 14	�O − 	2�J + 12�Z 

Then we see that F(K, 1, L, 1, L, K, K) ≥ 0	 ⟹ 32(K	– 	L) ≥ 0	 ⟹ K	 ≥ L F(K, 1, 1, 1, 1, K, K) ≥ 0	 ⟹ 32(K − 1) ≥ 0	 ⟹ K	 ≥ 1 F(K, K, 1, K, K, 1, 1) ≥ 0	 ⟹ 8(K − 1) ≥ 0	 ⟹ K	 ≥ 1 F(K, K, K, K, 1, 1, 1) ≥ 0	 ⟹ 4(K − 1) ≥ 0	 ⟹ K	 ≥ 1 

Therefore,	F ∈ 	E. 

Theorem 2. Let 	(�,ℳ,∗) be a complete 	� −	chainable fuzzy metric space and let 	/, +, U	��	V be the self mappings of	�, satisfying the following conditions: 
(1) 	/�	 ⊂ V� and B�	 ⊂ U�; 
(2)  The pair 	(/, V) and 	(+, U) are weakly compatible; 
(3) 	V	(�) or U	(�) is complete; 
(4)  There exists 	C	 ∈ (0, 1) such that  

F
[
\\\
\]

ℳ	(/ , +!, C�),ℳ	(/ , V!, �),ℳ	(U , V!, �), �	ℳ	(/ , +!, �) + 	�	ℳ	(/ , V!, �)�	ℳ	(+!, V!, �) + � 	,
ℳ	(U , / , �), �	ℳ	(/ , +!, �) + 	�	ℳ	(+!, V!, �)�	ℳ	(/ , V!, �) + � ,ℳ	(+!, V!, �) ^

___
_̀ ≥ 0 

for all 	 , !	 ∈ � and 	� > 0, where 	C	 ∈ (0, 1) and 	�, �, �, � ≥ 0 with 	�	&	�and �	&	�  
cannot be simultaneously 	0. Then /, +, U	and V have a unique common fixed point in �. 
Proof:  Let  2 be any arbitrary point. As /�	 ⊂ V�, B�	 ⊂ U� so, there exists  >		,  � ∈� such that 	/ 2 = V > and 	+ > = U �. Inductively we construct the sequences 	-!1. 
and 	- 1. in 	� such that  !�1 = V �1I> = / �1 !�1I> = U �1I� = + �1I> 
For 	 = 0, 1, 2,⋯.Now using condition (4) with 	 =  �1, ! =  �1I>, we get 
 

F
[
\\\
] ℳ	(/ �1, + �1I>, C�),ℳ	(/ �1, V �1I>, �),ℳ	(U �1, V �1I>, �),ℳ	(U �1, V �1I>, �), �	ℳ	(/ �1, + �1I>, �) + 	�	ℳ	(/ �1, V �1I>, �)�	ℳ	(+ �1I>, V �1I>, �) + � ,
ℳ	(U �1, / �1, �), �	ℳ	(/ �1, + �1I>, �) + 	�	ℳ	(+ �1I>, V �1I>, �)�	ℳ	(/ �1, V �1I>, �) + �	 ,	ℳ	(+ �1I>, V �1I>, �) ^

___̀ ≥ 0 
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that is F
[
\\]

ℳ	(!�1, !�1I>, C�),ℳ	(!�1, !�1, �),ℳ	(!�1A>, !�1 , �), a	ℳ	(bcd,bcdef,g)I	h	ℳ	(bcd,bcd,g)a	ℳ	(bcdef,bcd,g)Ih ,ℳ	(!�1A>, !�1 , �), i	ℳ	(bcd,bcdef,g)I	j	ℳ	(bcdef,bcd,g)i	ℳ	(bcd,bcd,g)Ij	 ,ℳ	(!�1I>, !�1, �) ^
__̀ ≥ 0 

that is F
[
\\]

ℳ	(!�1, !�1I>, C�),ℳ	(!�1, !�1, �),ℳ	(!�1A>, !�1, �), a	ℳ	(bcd,bcdef,g)I	h	a	ℳ	(bcdef,bcd,g)Ih ,ℳ	(!�1A>, !�1 , �), i	ℳ	(bcd,bcdef,g)I	j	ℳ	(bcdef,bcd,g)i	Ij	 ,ℳ	(!�1I>, !�1, �) ^
__̀ ≥ 0	

that is F[]
ℳ	(!�1, !�1I>, C�), 1,	ℳ	(!�1A>, !�1, �), 1,ℳ	(!�1A>, !�1 , �),ℳ	(!�1, !�1I>, �),ℳ	(!�1, !�1I>, �) ^̀ ≥ 0 

Thus we have ℳ	(!�1, !�1I>, C�) 	≥ 	ℳ	(!�1, !�1A>, �) ∗ 	ℳ	(!�1I>, !�1, �) 
that is ℳ	(!�1, !�1I>, C�) 	≥ 	ℳ	(!�1, !�1A>, �) 
Similarly, we have ℳ	(!�1I>, !�1I�, C�) 	≥ 	ℳ	(!�1I>, !�1, �) 
Therefore, for all even and odd	, we have ℳ	(!1, !1I>, C�) 	≥ 	ℳ	(!1, !1A>, �) 
Thus, for any  and	�, we have ℳ	(!1, !1I>, C�) 	≥ 	ℳ	(!1, !1A>, �) ℳ	(!1I>, !1, �) 	≥ 	ℳ	 k!1, !1A>, �Cl 	≥ 	ℳ	 k!1A>, !1A�, �C�l 	≥ 	⋯	 				≥ 	ℳ	 m!>, !2, gndo 	→ 1	�#		 → 	∞. So, the result holds for	� = 1. As our induction 

hypothesis suppose that the result holds for 	� = q.  
Now, ℳ	r!1, !1AsI>, �t 	≥ 	ℳ	 m!1, !1As, g�o ∗ 	ℳ	 m!1I>, !1AsI>, g�o 	→ 1 ∗ 1 = 1. Thus, the 
result holds for	� = q + 1. Hence 	-!1. is a Cauchy sequence in	�, which is complete. 
Therefore, -!1. converges to	", that is !1 	→ " for some "	 ∈ �. Then it follows that the sequences -/ �1.,-U �1., -+ �1I>. and -V �1I>. also 
converge to ". Now, we prove that 	- 1. is a Cauchy sequence in	�. Since � is � −	chainable, there exists an � −	chain from  1 to 1I>, that is, there exists a finite sequence  1 =	!>, !�, ⋯ , !1 =	 1I> such that ℳ	(!4, !4A>, �) > (1 − 	�) for all 	� > 0 and 	& = 1, 2,⋯ ,�. Thus, we have ℳ	( 1,  1I>, �) 	≥ 	ℳ	 k!>, !�, �(l ∗ 	ℳ	 k!�, !M, �(l ∗ ⋯∗ 	ℳ	 k!4A>, !4, �(l 

 												≥ 	 (1 − 	�) ∗ 	 (1 − 	�) ∗ 	⋯∗ 	(1 − 	�) ≥ 	 (1 − 	�) 
For 	� > , ℳ( 1,  4 , �) ≥ ℳk 1,  1I>, �� − l ∗ 	ℳ k 1I>,  1I�, �� − l ∗ ⋯∗ 	ℳ k 4A>,  4, �� − l 
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 																									≥ 	 (1 − 	�) ∗ 	 (1 − 	�) ∗ 	⋯∗	(1 − 	�) ≥ 	 (1 − 	�) 
Hence - 1. is a Cauchy sequence in	�, which is complete. Therefore, - 1. converges 
to	", that is  1 	→ " for some	"	 ∈ �. Then it follows that its sub sequences-/ �1., -U �1., -+ �1I>. and -V �1I>. also converge to ". 
Case I: When 	V	(�) is complete. 
If we take	"	 ∈ V	(�), then there exists	K	 ∈ �, such that	" = VK. 
Step I: Put 	 =  �1 and 	! = K in condition (4), we obtain, 

F
[
\\\
\]

ℳ	(/ �1, +K, C�),ℳ	(/ �1, VK, �),ℳ	(U �1, VK, �), �	ℳ	(/ �1, +K, �) + 	�	ℳ	(/ �1, VK, �)�	ℳ	(+K, VK, �) + � 	,
ℳ	(U �1, / �1, �), �	ℳ	(/ �1, +K, �) + 	�	ℳ	(+K, VK, �)�	ℳ	(/ �1, VK, �) + � ,ℳ	(+K, VK, �) ^

___
_̀ ≥ 0 

 
Taking limit 		 → 	∞ in the above, we get 
 

F
[
\\\
\]

ℳ	(", +K, C�),ℳ	(", VK, �),ℳ	(", VK, �), �	ℳ	(", +K, �) + 	�	ℳ	(", VK, �)�	ℳ	(+K, VK, �) + � 	,
ℳ	(", ", �), �	ℳ	(", +K, �) + 	�	ℳ	(+K, VK, �)�	ℳ	(", VK, �) + � ,ℳ	(+K, VK, �) ^

___
_̀ ≥ 0 

 

⟹ F
[
\\\
\]

ℳ	(", +K, C�),ℳ	(", ", �),ℳ	(", ", �), �	ℳ	(", +K, �) + 	�	ℳ	(", ", �)�	ℳ	(+K, ", �) + � 	,
ℳ	(", ", �), �	ℳ	(", +K, �) + 	�	ℳ	(+K, ", �)�	ℳ	(", ", �) + � ,ℳ	(+K, ", �) ^

___
_̀ ≥ 0 

 

⟹ F
[
\\\
\]

ℳ	(", +K, C�), 1,1, �	ℳ	(", +K, �) + 	�	�	ℳ	(+K, ", �) + � 	 ,
1, �	ℳ	(", +K, �) + 	�	ℳ	(+K, ", �)�	 + � ,ℳ	(+K, ", �) ^

___
_̀ ≥ 0 
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⟹ Fuℳ	(", +K, C�), 1,1,1,1,ℳ	(+K, ", �),ℳ	(+K, ", �) v ≥ 0 

Since 	F is non-decreasing in the first argument, therefore, F	rℳ	(", +K, C�), 1, 1,1,1,ℳ	(+K, ", �),ℳ	(+K, ", �)t ≥ 0 
So that	ℳ	(", +K, �) 	≥ 1. Hence " = +K. Since,	+	 ⊂ U, therefore, " = +K	 ∈ U and so " = +K = UK. Therefore," = +K = UK = VK. Now, (+, U) is weakly compatible, so +UK = U+K and so	+" = U". 
Step II: Put 	 =  �1 and 	! = " in condition (4), we obtain, 

F
[
\\\
\]

ℳ	(/ �1, +", C�),ℳ	(/ �1, V", �),ℳ	(U �1, V", �), �	ℳ	(/ �1, +", �) + 	�	ℳ	(/ �1, V", �)�	ℳ	(+", V", �) + � 	,
ℳ	(U �1, / �1, �), �	ℳ	(/ �1, +", �) + 	�	ℳ	(+", V", �)�	ℳ	(/ �1, V", �) + � ,ℳ	(+", V", �) ^

___
_̀ ≥ 0 

Taking limit 		 → 	∞ in the above, we get 

F
[
\\\
\]

ℳ	(", +", C�),ℳ	(", V", �),ℳ	(", V", �), �	ℳ	(", +", �) + 	�	ℳ	(", V", �)�	ℳ	(+", V", �) + � 	 ,
ℳ	(", ", �), �	ℳ	(", +", �) + 	�	ℳ	(+", V", �)�	ℳ	(", V", �) + � ,ℳ	(+", V", �) ^

___
_̀ ≥ 0 

Since 	F is non-decreasing in the first argument, 	" = V" and 	"	 ∈ V	(�), therefore, 

F
[
\\\
\]

ℳ	(", +", C�),ℳ	(", ", �),ℳ	(", ", �), �	ℳ	(", +", �) + 	�	ℳ	(", ", �)�	ℳ	(+", ", �) + � 	,
ℳ	(", ", �), �	ℳ	(", +", �) + 	�	ℳ	(+", ", �)�	ℳ	(", ", �) + � ,ℳ	(+", ", �) ^

___
_̀ ≥ 0 

⟹ 	F
[
\\\
\]

ℳ	(", +", C�), 1,1, �	ℳ	(", +", �) + 	�	�	ℳ	(+", ", �) + � 	,
1, �	ℳ	(", +", �) + 	�	ℳ	(+", ", �)�	 + � ,ℳ	(+", ", �) ^

___
_̀ ≥ 0 

⟹ 	Fuℳ	(", +", C�), 1,1,1,1,ℳ	(+", ", �),ℳ	(+", ", �) v ≥ 0 
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 ⟹ Frℳ	(", +", C�), 1,1,1,1,ℳ(+", ", �),ℳ	(+", ", �)t ≥ 0 
So that	ℳ	(", +", �) 	≥ 1. Hence " = +" and so  " = +" = V". 
Step III: As	+	(�) ⊂ U	(�), there exists 	L	 ∈ � such that 	" = +" = UL. 
Put 	 = L and 	! = " in condition (4), we obtain, 

F
[
\\\
\]

ℳ	(/L, +", C�),ℳ	(/L, V", �),ℳ	(UL, V", �), �	ℳ	(/L, +", �) + 	�	ℳ	(/L, V", �)�	ℳ	(+", V", �) + � 	 ,
ℳ	(UL, /L, �), �	ℳ	(/L, +", �) + 	�	ℳ	(+", V", �)�	ℳ	(/L, V", �) + � ,ℳ	(+", V", �) ^

___
_̀ ≥ 0 

that is F
[
\\\
] ℳ	(/L, ", C�),ℳ	(/L, ", �),ℳ	(", ", �), a	ℳ	(wx,y,g)I	h	ℳ	(wx,y,g)a	ℳ	(y,y,g)Ih 	 ,
ℳ	(", /L, �), i	ℳ	(wx,y,g)I	j	ℳ	(y,y,g)i	ℳ	(wx,y,g)Ij ,ℳ	(", ", �) ^

___̀ ≥ 0 

⟹ F
[
\\\
] ℳ	(/L, ", C�),ℳ	(/L, ", �),1, �	ℳ	(/L, ", �) + 	�	ℳ	(/L, ", �)�	 + � 	,

ℳ	(", /L, �), �	ℳ	(/L, ", �) + 	�	�	ℳ	(/L, ", �) + � ,1 ^
___̀ ≥ 0 

⟹ Fuℳ	(/L, ", C�),ℳ	(/L, ", �),1,ℳ	(/L, ", �),ℳ	(/L, ", �), 1,1 v ≥ 0 

⟹ 	F	-ℳ	(/L, ", C�),ℳ	(/L, ", �), 1,ℳ	(/L, ", �),ℳ	(/L, ", �), 1, 1. ≥ 0 
Since 	F is non-decreasing in the first argument, we have ⟹ 	F	-ℳ	(/L, ", �),ℳ	(/L, ", �), 1,ℳ	(/L, ", �),ℳ	(/L, ", �), 1, 1. ≥ 0 
that is 	ℳ	(/L, ", �) 	≥ 1. So, 	" = /L. Now, since 	/	 ⊂ V, therefore 	" = /L ∈ V and so " = /L = VL. As 	(/, V) is weakly compatible, therefore, 	/VL = V/L so that 	/" = V". 
Combining all the results, we have /" = V" = +" = U" = ". 
Step IV: Put 	 = U" and 	! = " in condition (4), we obtain, 

F
[
\\\
\]

ℳ	(/U", +", C�),ℳ	(/U", V", �),ℳ	(UU", V", �), �	ℳ	(/U", +", �) + 	�	ℳ	(/U", V", �)�	ℳ	(+", V", �) + � 	,
ℳ	(UU", /U", �), �	ℳ	(/U", +", �) + 	�	ℳ	(+", V", �)�	ℳ	(/U", V", �) + � ,ℳ	(+", V", �) ^

___
_̀ ≥ 0 
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that isF
[
\\\
] ℳ	(/", +", C�),ℳ	(/", V", �),ℳ	(U", V", �), a	ℳ	(wy,zy,g)I	h	ℳ	(wy,{y,g)a	ℳ	(zy,{y,g)Ih 	 ,
ℳ	(U", /", �), i	ℳ	(wy,zy,g)I	j	ℳ	(zy,{y,g)i	ℳ	(wy,{y,g)Ij ,ℳ	(+", V", �) ^

___̀ ≥ 0 

 

F
[
\\\
\]

ℳ	(/", ", C�),ℳ	(/", ", �),ℳ	(U", ", �), �	ℳ	(/", ", �) + 	�	ℳ	(/", ", �)�	ℳ	(", ", �) + � 	 ,
ℳ	(U", /", �), �	ℳ	(/", ", �) + 	�	ℳ	(", ", �)�	ℳ	(/", ", �) + � ,ℳ	(", ", �) ^

___
_̀ ≥ 0 

 

	⟹ F
[
\\\
\]

ℳ	(/", ", C�),ℳ	(/", ", �),ℳ	(", ", �), �	ℳ	(/", ", �) + 	�	ℳ	(/", ", �)�	ℳ	(", ", �) + � 	,
ℳ	(", /", �), �	ℳ	(/", ", �) + 	�	ℳ	(", ", �)�	ℳ	(/", ", �) + � ,ℳ	(", ", �) ^

___
_̀ ≥ 0 

 

⟹ F
[
\\\
] ℳ	(/", ", C�),ℳ	(/", ", �),1, �	ℳ	(/", ", �) + 	�	ℳ	(/", ", �)�	 + � 	,

ℳ	(", /", �), �	ℳ	(/", ", �) + 	�	�	ℳ	(/", ", �) + � ,1 ^
___̀ ≥ 0 

⟹ Fuℳ	(/", ", C�),ℳ	(/", ", �),1,ℳ	(/", ", �),ℳ	(", /", �), 1,1 v ≥ 0 

⟹ 	F	-ℳ	(/", ", C�),ℳ	(/", ", �), 1,ℳ	(/", ", �),ℳ	(", /", �), 1, 1. ≥ 0 
Since 	F is non-decreasing in the first argument, we have ⟹ 	F	-ℳ	(/", ", �),ℳ	(/", ", �), 1,ℳ	(/", ", �),ℳ	(", /", �), 1, 1. ≥ 0 
that is 	ℳ	(/", ", �) 	≥ 1. Therefore, 	/" = ". Similarly, we can show that +" = ", V" = " and U" = ". Hence 	" = /" = V" = +" = U". 
Case II: When 	U	(�) is complete. 
If we take	"	 ∈ U	(�), then there exists	|	 ∈ �, such that	" = V|. Proceeding exactly as 
in case I, we can show that /" = ", +" = ", V" = " and U" = ". Hence, 	" = /" = V" =+" = U". Thus " is the common fixed point of /, +, U	and V. 
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Uniqueness: Let 	| and 	" be two common fixed points of the mappings /, +, U	and V. 
Put 	 = " and 	! = | in condition (4), we obtain, 		
F
[
\\\
\]

ℳ	(/", +|, C�),ℳ	(/", V|, �),ℳ	(U", V|, �), �	ℳ	(/", +|, �) + 	�	ℳ	(/", V|, �)�	ℳ	(+|, V|, �) + � 	,
ℳ	(U", /", �), �	ℳ	(/", +|, �) + 	�	ℳ	(+|, V|, �)�	ℳ	(/", V|, �) + � ,ℳ	(+|, V|, �) ^

___
_̀ ≥ 0 

 

that isF
[
\\\
] ℳ	(", |, C�),ℳ	(", |, �),ℳ	(", |, �), a	ℳ	(y,},g)I	h	ℳ	(y,},g)a	ℳ	(},},g)Ih 	 ,
ℳ	(", ", �), i	ℳ	(y,},g)I	j	ℳ	(},},g)i	ℳ	(y,},g)Ij ,ℳ	(|,|, �) ^

___̀ ≥ 0 

	⟹ 	F
[
\\\
] ℳ	(", |, C�),ℳ	(", |, �),ℳ	(", |, �), �	ℳ	(", |, �) + 	�	ℳ	(", |, �)�	 + � 	,

1, �	ℳ	(", |, �) + 	�	�	ℳ	(", |, �) + � ,1 ^
___̀ ≥ 0 

⟹ 	F
[\
]ℳ	(", |, C�),ℳ	(", |, �),ℳ	(", |, �),ℳ	(", |, �),

1, 1,1 _̀̂ ≥ 0 

Since 	F is non-decreasing in the first argument, we have ⟹ 	F(ℳ	(", |, C�),ℳ	(", |, C�),ℳ	(", |, C�),ℳ	(", |, C�), 1,1,1) ≥ 0 
that is 	ℳ	(", |, �) 	≥ 1. 
Thus 	" = |. Hence " is the unique common fixed point of /, +, U	and V. 
 
4. Conclusion 
In this chapter we have extended the work of Ali et al. [1] and established a common 
fixed point theorem for four weakly compatible maps on complete � −chainable fuzzy 
metric space satisfying a class of implicit relations. The established results can be 
extended for more number of maps satisfying a more complex class of implicit relations. 
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