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1. Introduction   
The following properties for the fuzzy subgroups of G were known. 

    1.  The level sets of a fuzzy subset of a finite set form a chain.  
    2.  λ  is a fuzzy subgroup of G iff its level sets are subgroups of G'  
    3.  The relation :  is an equivalence relation on fuzzy subgroups of G,where 

for fuzzy subgroups νµ,  of G , νµ :  iff ))(>)()(>)((,, yxiffyxGyx ννµµ∈∀   
Some related algebraic structures are discussed in [7-10]. 
   

2. Priliminaries 
Suppose that ),,( eG ⋅  is a group with identity e. Let )(GS  denote the collection of all 

fuzzy subsets of G . An element )(GS∈λ  is said to be a fuzzy subgroup of G  if the 
following two conditions are sat.   

    1.  Gbabaab ∈∀≥∈ ,)},(),({)( λλλ ;  

    2.  )(( 1 aa λλ ≥−  for any Ga∈ .  

 And, since aa =)( 11 −− , we have that )(=)( 1 aa λλ − , for any Ga∈ . 

Also, by this notation and definition, )(sup=)( Ge λλ . (Marius [3] and [4]). 

Now, concerning the subgroups, the set )(GFL  possessing all fuzzy subgroups 

of G  forms a lattice under the usual ordering of fuzzy set inclusion. This is called the 
fuzzy subgroup lattice of G . 

In what follows, the method that will be used in counting the chains of fuzzy 
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subgroups of an arbitrary finite p -group G  is described. Suppose that tMMM ,,, 21 …  

are the maximal subgroups of G . Let )(Gh  denote the number of chains of subgroups 

of G  which ends in G . The method of computing )(Gh  is based on the application of 

the Inclusion-Exclusion Principle. If A  is the set of chains in G  of type 
GCCC r =21 ⊂⊂⊂ ⋯ , and A′  represents the set of chains of A′  which are contained 

in rM , tr ,1,= … . 
Then we have:  
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(3) was used to obtain the explicit formulas of )( 2nDh  for some positive integers n . 

  

Theorem 1. The number of distinct fuzzy subgroups of a finite p -group of order np  
which have a cyclic maximal subgroup is:   

    1.  n
np

h 2=)(Z   

    2.  12

2
2=)( −n

nDh   

    3.  22

2
2=)( −n

nh ϕ   

    4.  32

2
3.2=)( −n

nSh   

    5.  ]1)([22=)(=)( 1
1 pnMhh n

npnpp −+× −
−ZZ   

Following our paper[1](Also see [2] and [5]) the following equation(#) based on 
the usual Inclusive-Exclusive technique is appliied :  

 )(#1)()()(2=)(
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     In [4], (1) was used to obtain the explicit formulas of )( 2nDh  for some positive 

integers n . 
 

Theorem 2. [3] The number of distinct fuzzy subgroups of a finite p -group of order np  
which have a cyclic maximal subgroup is:   

(i)  n
np

h 2=)(Z   

(ii) 12

2
2=)( −n

nDh  

(iii) 22

2
2=)( −n

nh ϕ  

(iv) 32

2
3.2=)( −n

nSh   

(v) ]1)([22=)(=)( 1
1 pnMhh n

npnpp −+× −
−ZZ   

 
3. The Cartesian product of the quaternion group of order 2n and a cyclic group of 
order 2 
We begin from the simplest form of it, putting 3=n . 
By the application of equation (1), we have:  

 

88=)(8)(2)(12)(4)(3=)(
2

1
2222232222 ZZZZZZ hhhQhhGh +×−−+×  

 176.=882=)( 232
××∴ CQh    

  
4. Computation of the Fuzzy Subgroups of 242

CQ ×  
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Let 242
= CQG × . Then, by equation (c)  

�

�
ℎ(�) = ℎ(�� × ��	) + 2ℎ(��	 × �) + 4ℎ(���) − 8ℎ(��	) − 2ℎ(�� × ���) −

4ℎ(��	) + 8ℎ(���) = 496  
992.=4962=)( 242

××∴ CQh  

By observing the structure of the nilpotent group 22
CQ n × , in general, the group possesses 

seven maximal subgroups. And so, by using equation (c), putting 22
= CQG n × , we have 

)(222=)(
2

1
212

12 CQhGh n
nn ×++ −

−    

3,2.2=)( 12
22

≥−×∴ + nnCQh nn
n . 

  
  

Theorem 3.  Let ,= 22
CQG n ×  the nilpotent group obtained by taking the cartesian 

product of the generalised quaternion group of order ,2n  and a cyclic group of order 2. 

Then, the number of distinct fuzzy subgroups of G  is :  

,22=)( 12 +−⋅ nnnGh  for 3>n   

Proof: One maximal subgroup of this group is isomorphic to ,122 −× nZZ  two of the 

maximal subgroups are isomorphic to ,212
CQ n ×−  while 22  of the maximal subgroups 

are isomorphic to .
2nQ  And so, by using equation (3.2.1), putting 22

= CQG n × , we have 

�

�
ℎ(�) = ℎ(�� × �����) + 2ℎ(����� × �) + 4ℎ(���) − 6ℎ(�����) − 3ℎ(�� × �����) −

12ℎ(�����) + 28ℎ(�����) + 2ℎ(�����) + ℎ(�� × �����) + 4ℎ(�����) − 20ℎ(�����) 
Putting in the values of the surfacing structures from we have that :  

3.,2.2=)( 12
22

≥−× + nnCQh nn
n  Applying induction on ,n  by setting F(n) = 

),( 22
CQh n ×  ascertaining the truth of  

F(k) = 3,,2.2=)(422 12
212

21 ≥−×++ +
−

+ kkCQh kk
k
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we show that F(k+1) is also true. 

Hence, F(k+1) = ].21)2[(2=)(422 22
22

1)2(2 kk
k

kk kCQh −+×++ ++   

  
Theorem 4. ( see [2] and [6]) Suppose that .= 42

CDG n ×  Then, the number of distinct 

fuzzy subgroups of G  is given by :  

 )21(223173)(642 )1(
3

1=

2)2( jnn jn
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−

−   

6. Conclusion 

Finally, the product of the generalised quarternion p -group of order n2  and a cyclic 
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group of order 2 have been successfully classified and the number of distinct fuzzy 
subgroups were directly computed using comprehensive analysis and the application of 
GAP(Group Algorithms and Programming, Version 4.8.7; https:www.gap-system.org)   
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