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Abstract. Fuzzy matrix is a very important topic of fuzzy eltga. In fuzzy matrix, the
elements belong to the unit interd, 1], each element represents the membership value
of an element. In this papemn-polar fuzzy setm-polar fuzzy relationyn-polar fuzzy
matrix is introduced. Inn-polar fuzzy matrix, each element is a vector coitg m
elements and membership values of each elemeristlieeen0 and 1 including 0 and

1. In m-polar fuzzy matrix, the membership values of ramsl columns are crisp, i.e.
rows and columns are certain. But, in many realdifuations they are also uncertain. So
to model these type of uncertain problems, a ng@e tf uncertain problems, a new type
of m-polar fuzzy matrix withm-polar fuzzy rows and columns are defined. Fordhes
matrices, null, identity, equality, complementingpolar, complete, density are defined.
For these matrices, we checked that whether thexmatbalanced, strictly balanced or
not.

Keywords: m-polar fuzzy setsm-polar fuzzy relation, fuzzy matrixm-polar fuzzy
matrix, equality, null, identity, density, balan¢esttictly balanced.
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1. Introduction

Like classical (crisp) matrices, fuzzy matrices @Mare now a very reach topic in
modelling uncertain situations occurred in scienmgtomata theory, logic of binary
relations, medical diagnosis, etc. In FMs, onlye&lements are uncertain, while rows and
columns are certain. But, in many real life sitoa$i we observed that rows and columns
may also be uncertain. For example, in a fuzzy lyrdye vertices and edges both are
uncertain. If we represent a fuzzy graph in mdwixn where the membership values of
vertices and edges represents the membership vaflues/s and columns and elements
represent the membership values of the correspgmdige. That is, in these matrices rows,
columns and elements all are uncertain. We cadigltigpes of matrices are fuzzy matrices
with fuzzy rows and columns (FMFRCs). This is trerwnew concept in fuzzy matrix
theory.

FMs defined first time by Thomson in 1977 [44] adiscussed about the
convergence of the powers of a fuzzy matrix. Theotles of fuzzy matrices were
developed by Kim and Rosh [24] as an extension afl®&n matrices. With max-min
operation the fuzzy algebra and its matrix theogy@nsidered by many authors [5, 15,
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22,28, 29, 40]. Hashimoto [16] studied the canalrfiarm of a transitive fuzzy matrix. Xin
[45] studied controllable fuzzy matrices. Hemashéhaal. [20] investigated iterates of
fuzzy circulant matrices. Determinant theory, pasend nilpotent conditions of matrices
over a distributive lattice are considered by Zhpt@] and Tan [43]. The transitivity of
matrices over path algebriae{ additively idempotent semiring) is discussed bgliianoto
[17, 18, 19]. Generalized fuzzy matrices, matrieesr an incline and some results about
the transitive closer, determinant, adjoint masjamnvergence of powers and conditions
for nilpotency are considered by Duan [14] and éual. [25]. Dehgharet al. [13] give
two ideas for finding the inverse of a fuzzy matviz. scenario-based and arithmetic-
based. Many results are presented for fuzzy maticf87].

There are some limitations in dealing with uncettias by fuzzy set. To overcome
these difficulties, Atanassov [4] introduced theofyintuitionistic fuzzy set in 1993 as a
generalization of fuzzy set. Based on this conPaet al. have defined intuitionistic fuzzy
determinant in 2001 [28] and intuitionistic fuzzyatrces (IFMs) in 2002 [29]. Bhowmik
and Pal [5] introduced some results on IFMs, imdnistic circulant fuzzy matrix and
generalized intuitionistic fuzzy matrix [5, 7, 8, 20, 11, 12]. Shyamal and Pal [39, 41]
defined the distances between IFMs and hence defimaetric on IFMs. They also cited
few applications of IFMs. In [27], the similaritelations, invertibility conditions and
eigenvalues of IFMs are studied. Idempotent, regw/egpermutation matrix and spectral
radius of IFMs are also discussed. The parametenzatool of IFM enhances the
flexibility of its applications. For other works dBMs see [1, 2, 3, 26, 31, 32, 40, 41].

Many types of fuzzy matrices are also developect@ent years such as bipolar
fuzzy matrices [36], picture fuzzy matrices [6;.et

Pal [35] introduced the new concepts of fuzzy matith fuzzy rows and fuzzy
columns. In this fuzzy matrix, we assumed thatrtves and columns are uncertain. The
same approach is extended to interval-valued fuaatrix [34] and intuitionistic fuzzy
matrix [38].

The concept of interval-valued fuzzy matrices (IVEMas a generalization of
fuzzy matrix was introduced and developed in 20p6&baymal and Pal [42] by extending
the max-min operation in fuzzy algebra. For moreksmn IVFMs see [30].

Combining IFMs and IVFMs, a new fuzzy matrix calleédterval-valued
intuitionistic fuzzy matrices (IVIFMs) is define@]]. For other works on IVIFMSs, see [10,
12].

2. m-polar fuzzy setsand their properties
Definition 1. (m-polar fuzzy set (MPFYS))
An m-polar fuzzy set (MPFSW in X is an object of the form
Mz = {(S,11(5), ¥2(S), ..., Y (5))}
where,, ¥,, ..., ¥, : X - [0,1] arem functions represents the membership functions
of the element.

Definition 2. Let W be anm-polar fuzzy set orX and p = (p1, P2, - Pm), 4 =
(91,92, -, qm) be two elements &V wherep,,p,, ..., bm andqq, qz, -, qm € [0,1].
Then for anya € [0,1], we define

1. (Maximum)

pVq= D02 Pm)V @149 - qm) = @1V q, 02V 42, -, Pm V Gm)
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2. (Minimum)
PAq = D102 Pm) ANQ1, 92, qm) = (01 AN G1, D2 A Q25 o, Pm A Qi)

3. (Ring subtraction)

PO q= D102 Pm) © (41,92 ) Gm)
(P1. P2, - :pm): lf (P1. D2, - :pm) > (('h' qz, .- qm)

- {(0,0, .,0), otherwise

4. (Uppera-cut p(®)
p(“) _ {(1,1, 1), if (upz-Hptm) = (aa,..,a)

(0,0,...,0), otherwise
5. (Lower a-cut p(®)
={(p1'p2'---rpm)r if up2-Pm) = (na,..,q)
P@ (0,0, ...,0), otherwise

6. (Complement)
p=11...1) = (1, P2 - Pm) = 1 —p1, 1 =21 — D)

7. (Sum)
p+q=@uP2Pm)+(QuA2 - qm) = @1V q,02V 42 s Pm V Qm)

8. (Product)
p-q = (P1, P25 Pm)- (1, A2+, Gm) = (01 A Q1, D2 N2y s P A Gim)-

The MPFS can be represented as
Mz = {x = (x1,%2, ..., X): X € X},
where xy, x5, ..., X, € [0,1] are them membership values of € X in Mx.

Definition 3. (Equality) Let x,y € Mz , where x = (xq,x5,..,%,) and y =
(y1, Y2, -, Vm), then the equality of two elementsxofind y is denoted by = y and is
defined by x; = y;, fori = 1,2, ..., m.

Definition 4. Let x,y € Mz, wherex = (x1,%3, .., X)) and y = (y4,y,, ..., V) and
X1, X2, «, X @NA Y1, Y5, ..., ¥ € [0,1] then,
1. Thedigunction of x andy is denoted by + y and is defined by
x+y = XX 00 Xm) + (V1 Y20 0 Ym)
= (max{xy, y1}, max{xz, y;}, ..., max{xy, ym})
= (xl Vylle V)’Z: o Xm Vym)

2. Theparallel disunction of x andy is denoted by.y and is defined by
x.y = (X1,%2 0 Xm)- (Y1, Y2) -o0) Ym)
= (min{xy, y1}, min{xz, y2}, ..., min{x,, ym})
= (X1 AY1, X2 AN Y2, ooy X A V).
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3. Thenegation of x is denoted by-x and is defined by
—x = —(X1,%3, e, Xm)
= (=Xm, —Xm—1, =) —X2, =X1).

4. Theimplication of x andy is denoted bycy and is defined by
(xy) =x+y

5. Thecomplement of x is denoted by ¢ and is defined by
x€ = (1, X, ey Xm)€
= (X1, X3, ) Xm)
=(1—x,1—x5,..,1—=xp).

Definition 5. (Zero element) The zero element of a MPFS is denoted by
om = (0,0, ...,0).

Definition 6. (Unit element) The unit element of a MPFS is denoted hy= (1,1, ...,1).

Proposition 1. Let Mz be any MPFS and a,b& Mz, wherea = (aq,as,...,an,); b =
(b1,by, ..., b)) and c = (cy, ¢y ey Cm) | Qq,Qz, -, A, b1, by, ooy by, €1, Coy oy Oy €
[0,1] then the following properties are satisfied:
1. a+b=b+a,

a.b=b.a;
2. a+(b+c)=(a+Db)+c,

a.(b.c) = (a.b).c;

3. at+o,=0,+a=a,

A.ly =ip-a = a;
4. a.(b+c)=a.b+a.c;
5. a-b#b—a;
6. a(b—c)#*ab—-a.c

Theorem 1. De Morgan’s laws are satisfied on MPE#. That is, if
a = (aq,ay,...,a,) and b = (by, by, ..., by) € M5

1. (a+b)¢ =a‘.b¢ and

2. (a.b)¢ =a®+b°.

Examplel. Let a = (0.5,0.3,0.8,0.9) and b = (0.6,0.1,0.2,0.4) be two elements d¥(.
Thena® = (0.5,0.7,0.2,0.1) and b = (0.4,0.9,0.8,0.6).
a+ b = (0.6,0.3,0.8,0.9), (a + b)¢ = (0.4,0.7,0.2,0.1),a’. b€ = (0.4,0.7,0.2,0.1).
Therefore, (a + b)¢ = a‘.b".

Again, a.b =(0.5,0.1,0.2,0.4)
and (a.b)¢ =(0.5,0.9,0.8,0.6), a® + b¢ = (0.5,0.9,0.8,0.6).
Therefore, (a.b)t = a‘+ b°.

3. m-polar fuzzy relation
In this section, we define Cartesian product of BARFSs, and relation. Also several basic
properties are investigated.
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Definition 7. (Cartesian product of MPFSs) Let X; and X, be two universe of
discourses andl = {x = (xq,x5, ..., xp):x € X1} and B = {y = (1, V2, -, Vn): Y € X3}
be two MPFSs. The cartesian productofand B is given by

AXB={(x,y):x € Xy and y EX,}

Definition 8. (m-polar fuzzy relation) An m-polar fuzzy relation (MPFR) between two
MPFSsA and B is defined as a MPFS iA x B. If R is a relation betweed and B,

x €A andy € B and if r;(x, ), 12 (x,y), ..., hn(x, ) are them membership values to
which x isin relationR with y, thenr = (14,13, ...,13;,) € R.

Definition 9. (Inclusion) Let Mz be a MPFS oveX and letx,y € Mz wherex =
(x1, %2, ., X)) ANA Y = (¥1,¥2, -, ¥m), thenx <y if and only ifx; <y; for all i =
1,2,..,m. Thatis if and only ifc + y = y.

Definition 10. Let Mz be a MPFS oveX and letx,y € My where
x = (X1, X2, 0, X)) ANAY = (¥1,V5, .., ¥m), thenx <y iff x <y andx # y.

Proposition 2. The relation £’ is partial order relation in a MPFS.
Proof: We have to prove the relatiog” is partial order relation. That is to prove tlia¢
relation <’ is reflexive, anti-symmetric and transitive. ](i)
1. Sincea; < a4, a; < ay, ..., ay < Ay,
Thatisa; < q; foralli =1,2,...,m.
So we writea < a for all a € M.
That is, the relationg’ is reflexive.
2. Leta<b andb < a foranya,b € M.
Thena; < by, a; < by, ...,a, < by, and
also,b; < aq, by < ay, ...,by < apy,.
This impliesa; = by, a, = by, ...,y = by
That is, (a4, az, ..., @) = (b1, by, ..., by).
Thatis,a = b.
Thus,a < b andb < a impliesa = b foranya,b € Mx.
That is, the relationg’ is anti-symmetric.
3. Leta<b andb < c foranya,b,c € M.
Thena; < by, a; < by, ...,a;,;, < b, and
by <cq, by ¢y oy byy SOy
or,a; <by <c,a, by, <y, e, Oy < by < Oy
Or,a; < ¢, Ay S Cpy v, Ay < Oy
or, (aq,az, ..., Ay) < (€1,Cq, wor) C)
Thatisa < c.
Thusa < b andb < ¢ impliesa < c foranya,b,c € Mr.
That is the relation<’ is transitive.
Hence, the relatiorg’ in a MPFS is a partial order relation.

Proposition 3. Let My be a MPFS overX and let a,b,c € Mr where, a =
(ai,ay, ., @), b = (by, by, ..., b)), ¢ = (€q1,C3, ..., Cp), then [(1)]
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1. oy < x < iy, foranyx,

2. fa<bthena+c<b+canda.c <bh.c,

3. a<a+bandb<a+b, a+b is the least upper bound afand b. In other
words, if there is an element satisfyinga < ¢ andb < ¢ thena + b <,

4. a.b <a anda.b < b. Thatis,a.b is a lower bound oft and b,

5. a.b.c <a.b.

4. m-polar fuzzy matrix
In order to develop the theory ei-polar fuzzy matrix (MPFM), we begin with the copte
of m-polar fuzzy algebra. Amn-polar fuzzy algebra is a mathematical syst@¥iz, +,.)
with two binary operations + and . defined dfi- satisfying the following properties: [i)]
1. ldempotent: a+a=a , aa=a
2. Commutativity: a+b=b+a , a.b=b.a
3. Associativity: a4+ (b+c)=(a+b)+c
a.(b.c) =(a.b).c
4. Absorption: a+ (a.b)=a , a.(a+b)=a
5. Distributivity: a + (b.c) = (a+ b).(a+¢)
a.(b+c)=(a.b)+ (a+c)
6. Universal bounds: a+o0, =a, a+i, =iy,
Al =iy, ip-a=a,
wherea = (a4, a,, ..., a,,) , b = (by,by,...,by,) , ¢ =(c1,C2, e Cp) € M.

Definition 11. (m-polar fuzzy matrix) An m-polar fuzzy matrix (MPFM)is the matrix
over them-polar fuzzy algebra. The zero matitk, of orderm x m is the matrix where
all the elements are,, = (0,0, ...,0) and the identity matrix,, of orderm x m is the
matrix where all the diagonal entries aig, = (1,1, ...,1) and all other entries are,, =
(0,0, ...,0).

The set of all rectangular MPFMs of ordex m is denoted byM;,,, and that of
square MPFMs of ordet x m is denoted byM,,,.

From the definition, we conclude that & = (a;;)ixm € Mixm, thena;; =

@.a?,..,a") € Mz wherea?,a?, ..., a” € [0,1] are the membership values

of the eIemen'aU, respectively.

Operationson MPFM
Some operations on MPFM are defined as follows:

Definition 12. Let A = (a;j)mxn and B = (b;j)mxn € Mmn be is m-polar fuzzy

(€Y} (2) (m)) blj — (b(l) b(z) b(m)) )

matrices (MPFMSs) Whereau = (au VA e ij 2 bii s by

Thereforea,;, b;j € M, then
A+B = (aij +bij)mxn
— (a(l) Vi b(]l), 1(12) Vi bl(JZ)' (m) Vv b(m))

and,
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A.B

Definition 13. Let A = (a;;)ixm € My and B = (b;j)mxq € Mpmq b€ ism- polar fuzzy
matrices (MPFMs), wherea;; = (a;

Thereforea;;, b;j € Mg, then

AQB = (Z (aik.bk]-)>

Ixq

(rl?af([mln{a(l) b(l)}] ma1)<[m1n{a

ik’
and,

A®B = (I, (ag + b))

®»

m
= (rl?=1£1[max{al et

Proposition 4. In the MPFMsA, B, C are conformal for corresponding operations, then
A.B =B.A,
2. A+(B+CO)=(A+B)+C ,

1. A+B=B+A4,

3. A(B+C)=A.B+A.C ,

4.

if O be the zero
with appropriate

5. AOB+B(®OA,

6. AOBOO=MAOBOC,

7. AQI=10A=4,
if I be the

Ixq

b( )}] ml?[max{a

= (- bij)mxn
1 1 2 2
= (ai’ AbY,aP Ab, .. al” ABTY)

® 4@

ij ,a ijore

(2)
ik’

(2
ik’

1) .2
a”) by = (b b,
b(z)}] max[mln{a(m)
b (2)}] mln[max{a(m)

A.(B.C) = (A.B).C,
A+ (B.C)=(A+B).(A+0),

A+0=0+A=A4,
matrix,
order,
AQB+#BQ®A ,in general,
AQBR®CO)=(AQB)QC,
ARI=1RQRA=A4,
identity matrix, with

8. AOBRO#AOBK®MUOLO) ,

Example 2. Let

and,

then

(0.3,0.5,0.8)

(0.4,0.7,0.6)
(0.5,0.3,0.2)

(0.9,0.8,0.7)

(0.5,0.6,0.2)
(0.1,0.4,0.7)

67

(0.1,0.2,0.9)
(0.2,0.3,0.4)
(0.3,0.2,0.1)

(0.5,0.4,0.3)
(0.1,0.2,0.3)
(0.2,0.5,0.8)

appropriate

AQ (B.C)# (A®B).(AQ C).

(0.6,0.7,0.8)
(0.3,0.4,0.1)
(0.6,0.1,0.9)

(0.2,0.6,0.4)T
(0.5,0.7,0.9)
(0.3,0.6,0.9)

),

wOn),

AO0O=0A=4,

order,




AOB=

and,

BOA=

Again,

AR B=

and,

BQRA=
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(0.3,0.5,0.7)
(0.4,0.7,0.6)
(0.5,0.3,0.7)

(0.4,0.5,0.7)
(0.5,0.5,0.3)
(0.3,0.5,0.7)

Note that,

(0.5,0.6,0.8)
(0.3,0.4,0.4)
(0.5,0.4,0.2)

(0.5,0.6,0.4)
(0.5,0.6,0.6)
(0.3,0.5,0.8)

(0.3,0.5,0.8)
(0.4,0.4,0.3)
(0.5,0.3,0.8)

(0.2,0.3,0.7)
(0.3,0.2,0.3)
(0.3,0.3,0.7)

(0.3,0.6,0.9)
(0.3,0.6,0.4)
(0.3,0.3,0.9)

(0.6,0.7,0.7)]
(0.5,0.6,0.9)
(0.3,0.4,0.9)

AOB+BQOA.

(0.1,0.2,0.8)
(0.2,0.3,0.4)
(0.3,0.2,0.3)

(0.3,0.4,0.4)
(0.2,0.3,0.4)
(0.1,0.4,0.8)

(0.3,0.6,0.8)
(0.3,0.6,0.6)
(0.5,0.6,0.4)

(0.5,0.4,0.3)]
(0.3,0.4,0.3)
(0.3,0.5,0.8)

Here also, AQ B + B Q A.

5. m-polar fuzzy matrix with m-polar fuzzy rowsand columns

Definition 14. Let A = (14(0))(ca(j))(aij)pxq be am-polar fuzzy matrix withn-polar
fuzzy rows and columns, wherey(i) = (ri(0),72(0), .. 7"{@) ; ci() =
() E0) - O @y = (@), aly, o a™).

Here, a;;, i=12,..,p;j =12,..,q represents thej™® element ofA,
r4(i), c4(j) represent the membership values®f row and;j"* column respectively for
i=12,..,p;j=12,..,q.[()]

1. Whenr()=1, i=12,..,p; cu(j)=1, j=12,..,q and a;; €[0,1], i =
1,2,..,p; j=12,..,q, thenA is am-polar fuzzy matrix (MPFM).

2. When (i) € [0,1], i =1.2,..,p; ca() €[0,1], j=1.2,..,q and q;; € [0,1],
i=12,..,p;j=12,..,q, then4 is called am-polar fuzzy matrix withm-polar
fuzzy rows and columns.

5.1. Equality of m-polar fuzzy matrix with m-polar fuzzy rows and columns
The equality of twam-polar fuzzy matrix withm-polar fuzzy rows and columns can be
defined in three different ways.

Let A= (ra())(ca())(@ij)pxq and B = (rg(1))(cp())(bij)pxq be twom-
polar fuzzy matrix withm-polar fuzzy rows and columns, where
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@ =080 0,
rp() = (.75 (D, .75 (@),
ORI CIORADIRIH())
ORI CIOR O H O}
= @®,q® (m))

aij ij ’ u r
1 2
bij —(bl(]),bl(]),--- (m))

Type-l
If ry(i) = rg(i) [Thatis, vt (i) = rd (D), 72 () = rz (D), .., /" () = ri* () 1and c,(j) =
c()) [ Thatis,c;()) = cA(), c3() = cB(), ., () = cB() 1for i =12,...,p; j =
1,2, ...,q. Whatever may be the relation betwece,p and b;;, then we say thad and B
are RC-equal and it is denoted Ay=x. B

If ry() #rg(i) [ That is, at least one ofri(i) # ri(),r2@{) #
r2(0), o, (D) # rg."(i) ] or c4(j) #cg(j) [ That is, at least one oti(j) #
cg(N, c2(J) # cE(), ., () # cB(j) ] for at least oné or j, then we say thatl # B
in RC-equal sense.
This is the weak equality between two-polar fuzzy matrix with fuzzy rows and columns.

ijs

Type-l1
If a;; = b;; [Thatisaj; = b}, af; = bf;, ..., al} = b]} 1forall i andj, whatever may be
the values ot (i), rb(l), ca(f), CB(I) thenA and B are E-equal and it is denoted by
A =g B. This type of equality occurs im-polar fuzzy matrix also.

If a;; # b;; [ Thatisaj; # b, af; # bf;, ..., alt # b]} ] for at least one or j,
thenwe sayd #; B or A +# B |n E-equal sense.

Type-lll

Ifybpoth A =p B and A =g B, then we say thad andB are equal and it is denoted as
A =B.Thatis, if [i)]

1. a; = by [ aj; = b}, af; = bf;, ...,al} = b]} 1forall i andj,

2. 74i) = (@) [ (D) = T (D), 720 = 1R (D), o () = r(0) for all

3. ca() =cs() [ () = c5(), cA() = &G, ., ¢4 () = c§*(j) 1forall j.

Then A is equal toB and is denoted a4 = B. If A and B are not equal, then it
is denoted byd # B. Thatis,A #z B and / orA #¢ B, then we writed + B.

5.2. Null m-polar fuzzy matrix with m-polar fuzzy rows and columns
Based on the membership values of rows, columnseterdents, three types of nui-
polar fuzzy matrix withm-polar fuzzy rows and columns are defined.

Type-l

If 74 = L@@, o (@D) = (00,..,0) , ca() = (€a(D, Z(), s () =
(0,0,...,0) and a;; = (al(]l), a?, ..M = (00 .,0) for all i andj, thenm-polar
fuzzy matrix withm-polar fuzzy rows and columns df is called p-null, denoted bg,.
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For example,
(0,0,0) (0,0,0) (0,0,0)
(0,0,0) 1(0,0,0) (0,0,0) (0,0,0)
(0,0,0) |(0,0,0) (0,0,0) (0,0,0)
(0,0,0) L(0,0,0) (0,0,0) (0,0,0)

is a3 x 3 orderp-null m-polar fuzzy matrix withm-polar fuzzy rows and columns.

Type-l1

If a;; = (afjl), sz) (m)) = (0,0,...,0) forall i andj, whatever may be the values of
r,(1) andc,()), then them polar fuzzy matrix withm-polar fuzzy rows and columng
is called E-null and it is denoted lf};. For example,
(0.1,0.5,0.3) (0.2,0.4,0.7) (0.9,0.3,0.2)
(0.2,0.4,0.6) (0,0.0) (0,0,0) (0,0,0)
(0.3,0.5,0.7) (0,0.0) (0,0,0) (0,0,0)
(0.8,0.9,0.4) (0,0,0) (0,0,0) (0,0,0)

is a3 x 3 order E-nullm-polar fuzzy matrix withm-polar fuzzy rows and columns.

Type-lll
If (D) = @A, 72D, o, D) = (0,0,,0) 1 cal) = (€A(), G, s T (D) =
(0,0,...,0) for all i andj, whatever may be the values @f;, then them-polar fuzzy
matrix with m-polar fuzzy rows and column4 is called RC-null and it is denoted by
Ogc. For example,

(0.0,0.0,0.0) (0.0,0.0,0.0) (0.0,0.0,0.0)
(0.0,0.0,0.0) 1(0.2,0.5,0.3) (0.1,0.3,0.5) (0.8,0.9.0.2)
8)

)

)
(0.0,0.0,0.0) {(0.4,0.6,0.8) (0.6,0.7,0.1) (0.5,0.3,0.1)
(0.0,0.0.0.0) L(0.9.0.7,0.5) (0.5.0.4,0.3) (0.6,0.4,0.3)

is a3 x 3 order RC-nullm-polar fuzzy matrix withm-polar fuzzy rows and columns.

5.3. Identity m-polar fuzzy matrix with m-polar fuzzy rows and columns
Two types of identitym-polar fuzzy matrix withm-polar fuzzy rows and columns are
defined here.

Type-l

A squarem-polar fuzzy matrix withm-polar fuzzy rows and columns of orderx n is
called p-identity m-polar fuzzy matrix withm-polar fuzzy rows and columns, if; (i) =
CHORACK @»4ummqw=@mdwmwwhummnw

all i andj and a; = (au D flz) g")) =(1,1,..,1) and

= @®,a?, ... (m)) = (0,0,...,0), i #j for all { andj. It is denoted byi,. For

3] a ij
example
(1,1,1) (1,1,1) (1,1,1)
(1,1,1) r(1,1,1) (0,0,0) (0,0,0)
(1,1,1) [(0,0,0) (1,1,1) (0,0,0)
(1,1,1) [(0,0,0) (0,0,0) (1,1,1)

is a3 x 3 order p-identitym-polar fuzzy matrix withm-polar fuzzy rows and columns.
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Type-l1
A squarem-polar fuzzy matrix withm-polar fuzzy rows and columns of orderx n is
called f-identitym-polar fuzzy matrix withm-polar fuzzy rows and columns, df; =

@ e, ...a”) =11,..1) and a; = (@’,a?,...a”) = (0,0,..,0), i#]
for all i and], whatever may be the valuesmf(i) and CA(l) and itis denoted by;. For
example,

(0.5,0.6,0.7)

) (0.2,0.3,0.1) (0.9,0.8,0.7)
(1.0,1.0,1.0)
)

(0

(0.2,0.4,0.6) (0.0,0.0,0.0) (0.0, 0.0, 0.0)
(0.5,0.8,0.7) {(0.0,0.0,0.0) (1.0,1.0,1.0) (0.0.0.0,0.0)
(0.9,0.5,0.3) L(0.0,0.0,0.0) (0.0,0.0,0.0) (1.0.1.0,1.0)

is a3 x 3 order f-identity m-polar fuzzy matrix withm-polar fuzzy rows and columns.

Definition 15. If @l <7 () Ack(), al < T2 AZ(), - aP <T@ ACR()
for all i, j, then them-polar fuzzy matrlx withm-polar fuzzy rows and columns=
(ra(0))(C4a())(a;j)pxq is calledg-m-polar fuzzy matrix withm-polar fuzzy rows and
columns

For example,

(0.1,0.3,0.7)
(0.0,0.2,0.6)
(0.1,0.2,0.1)
(0.0,0.2,0.1)

(0.1,0.5,0.7)
(0.2,0.9,0.3)
(0.4,0.6,0.3)

(0.8,0.5,0.4)
(0.1,0.3,0.2)
(0.1,0.4,0.2)
(0.3,0.2,0.1)

(0.9,0.6.0.3)
(0.0,0.3,0.2)
(0.1,0.5,0.2)
(0.1,0.5,0.2)

is a3 x 3 order gm-polar fuzzy matrix withm-polar fuzzy rows and columns.

Definition 16. If a = ri() Aci(), aif =12(0) Ac()). -
for all i, j, then them -polar fuzzy matrlx withm-polar fuzzy rows and columns=
(ra()(ca())(aij)pxq is calledcompletem-polar fuzzy matrix withm-polar fuzzy rows

and columns

L ag) =T AC()

From the definition it is obvious that every coniplen-polar fuzzy matrix with
m-polar fuzzy rows and columns isng-polar fuzzy matrix withm-polar fuzzy rows and

columns.
But the converse is not true.

For example,

(0.2,0.4,0.6)
(0.9,0.7.0.5) 1(0.2,0.4,0.5)
(0.5,0.3,0.1) {(0.2,0.3,0.1)
(0.2,0.8,0.7) L(0.2,0.4,0.6)

(0.3,0.5,0.7)
(0.3.0.5.0.5)
(0.3,0.3,0.1)
(0.2,0.5,0.7)

(0.1,0.3,0.5)
(0.1,0.3,0.5)
(0.1,0.3,0.1)
(0.1,0.3,0.5)

is a completen-polar fuzzy matrix withm-polar fuzzy rows and columns.

Definition 17. If a{) <7d(i).cA(j), aif <12().c2().
all i, j, then them-polar fuzzy matrlx withm -polar fuzzy rows and columné =
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(ra(D)(Ca())(aij)pxq is called adot m-polar fuzzy matrix withm-polar fuzzy rows
and columns where'.” denotes ordinary multiplication.

For example,

(0.1,0.3,0.7) (0. s 0.5,0.4) (0.9,0.6,0.3)
(0.1,0.5,0.7) 1(0.0,0.2,0.6) (0.1,0.3,0.2) (0.0,0.3,0.2)
A= (0.2,0.9,0.3) |(0.1,0.2,0.1) (0. 1 0.4,0.2) (0.1,0.5,0.2)
(0.4,0.6,0.3) L(0.0,0.2,0.1) (0.3,0.2,0.1) (0.1,0.5,0.2)
Lemma 1. Every dotm-polar fuzzy matrix withn-polar fuzzy rows and columns is a g-
m-polar fuzzy matrix withm-polar fuzzy rows and columns.
Proof: Since0 < 7X(i) <1,0<cf() <1 forall i,j,k=1.2,..,m
rR@).ck() S Rk Ak@) forall i,j,k=12,..,m
If A is a dotm-polar fuzzy matrix withm-polar fuzzy rows and columns, then
al? <Tk(@).ck() forall i,j,k =12,..,m
Therefore, for alli, j.
al? <T@ ck() < TF@) Ack(), wherek = 1,2, .., m
That |s,ag.‘) <X Ack(); forall i,j,k=1,2,..,m
Hence,A is g4n-polar fuzzy matrix withm-polar fuzzy rows and columns.

Definition 18. Let A = (14(0))(c4(j))(a;j)pxq b€ am-polar fuzzy matrix withm-polar
fuzzy rows and columns. templements denoted byi¢ and it is defined as
A= (1 =12(D)A = ca(D)(A = aij)pxq

where,

@) = @@ @, O,

ca() = () cZG), (G

al] _ (af]l), EJZ), e (m))
1 =(1,1,..,1).

Definition 19. A m-polar fuzzy matrix withm-polar fuzzy rows and columns is called
self-complementf A€ = A.

Theorem 2. If A is am-polar fuzzy matrix withm-polar fuzzy rows and columns, then
(A9° = A.
Proof: Let A = (TA(i))(CAU))(aij)pxqv wherer, (i) = (3 (D), 74 (@), .., 77" (D)
ca() = € 0) G s TG g = (af),al, .. ™).
Let B = A°.

() =1-—1,00)
XV B CHORAOINE0)
=1 - ()1 -1, .1 =1 @),

Then,
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cg(l) =1=ca())
= (1,1, ..,1) = (4G, E G, s (D)
=1 -cGM1-ci(), .1 =G

ij =1l-a;

1 2
=(11,...1) - (@,a?, .., al™)
—(1-a®1-a®,.1-a™)

l] ) U I"'I
If D = B¢ = (A°)".
Then
dij =1- b
1 2
= (1,L,..,1) = (b, bZ, ... b™)
=(1- bfjl),l A b.(’."))

=(1-(1-aN)1-A-a),..1-(1-al")

—_ D (2) (m)
(al] [t § B )

= ;.

Similarly, rp (D) = r4(i), ¢p () = c,(j) forall i,j.
Hence,D = A,i.e. (A5)* =A

Theorem 3. If an m-polar fuzzy matrix withm-polar fuzzy rows and columns
A= (rA(i))(CAU))(aij)pxqv wherer, (i) = (3 (D), 72 (@), ..., 7A" ();
() = (A EG), s FG) 5 @iy = (a,ap, ., ("”) then
k@) = k() = a{‘j = E’ forall i,j wherek = 1,2, ...,
Proof: By the definition of complement,
af. = (1’1’ ) ( (1) (2) (m))

ij l] 1] l] 1]
1 2
=(1-a1-a, .. 1-a")

Since A is self complement, therefordf = A.
Thatis,af; = a;;

. 1 2 1 2
Thatis,(1-a{’,1-a,...1 —a”) = (a?, fj), e a™)
This glves 1-— (k) l(]k) forall i,j,k =1,2,...,

a® = ;
a;;” = —, for aII l,],k =12,...,m

Similarly, r£ (i) = ck(j) = % foralli,j,k=12,..,m

6. Density of a m-polar fuzzy matrix with m-polar fuzzy rows and columns
Definition 20. Let A= (a;j))mxn be a m -polar fuzzy matrix wherea;; =

(af]l), 1(12) (m)) Thedensity of A is denoted by (4) and is defined a® (A)
(D1(4), DZ(A) ,D™(A)) where

1 k
DK(A) =—%;; a a k=12,

73



Purbasha Giri

From definition it follows that) < D(4) < 1 for a m-polar fuzzy matrixA. Actually,
D(A) represents the average membership of the elennethits MPFM A.

Example 3. Let
(0.2,0.4,0.6) (0.7,0.5,0.1) (0.3,0.2,0.5)

(0.8,0.9,0.2) (0.1,0.3,04) (0.7,0.6,0.5)

A=1030201) (040507) (0.80.7.03)

Now,

Di(4) = 3><32U (1)
= 5(0.2 +07+03+08+0.1+0.7+0.3+0.4+0.8)
=0. 4778

D*(4) = 3><3ZU (2)
= 5(0.4 +05+02+09+03+06+0.2+05+0.7)
= 0. 4778

D) = 3><3Z‘1
= 5(0.6 +01+05+02+04+05+0.1+0.7+0.3)
= 0.3778

Thus, density of4,
D(A) = (D*(A),D?(A),D3(A)) = (0.4778,0.4778,0.3778).

Using this example, we see thai< D(A) < 1 for a m-polar fuzzy matrixA (MPFMs).
But, in m-polar fuzzy matrix withm-polar fuzzy rows and columns, rows and columns
are not certain and hence the density is to bdinsgkfor m-polar fuzzy matrix withm-
polar fuzzy rows and columns. The definition isegivbelow.

Definition 21. Let A = (TA(i))(CA(i))(aij)pxq be am-polar fuzzy matrix withn-polar
fuzzy rows and columns Whevr,g(i) = (ri(),r} (i) 10 (0));

ca() = (30D, (), s GD); @iy = (af, a 5,2).. Lai).
The density of A is denoted by D(A) and is defined asD(4)=
(D1(A),D?(4), ..., D™(A)) where

%yl
D¥(A)=—r"Lr——, k=12,...m
ZL,]rA(l)ACA(])
providedY; ; 74()) A ck(j) # 0.
Example 4.
(0.6,0.9,0.5) (0.5,0.5,0.2) (0.3,0.2,0.1)
(0.2,0.5,0.3) (0.5,0.6,0.7) (0.2,0.3,0.5) (0.1,0.2,0.4)
A= (0.3,08,0.1) [(0.6,0.4,0.3) (0.8,0.6,0.4) (0.9,0.6,0.3)
(0.6,0.8,0.5) 1(0.3,0.2,0.3) (0.5,0.6,0.7) (0.2,0.1,0.5)
Now,
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Yij ay 0.540.2+0.140.6+0.8+0.9+0.3+0.5+0.2

D'(4) = — = =1.5769
Sij  TaAMACi()  0.240.2+0.2+0.3+0.3+0.3+0.6+0.5+0.3
ij a? 0.6+0.3+0.2+0.4+0.6+0.6+0.2+0.6+0.1

D?*(4) = S/ =0.8571
Zi_j T'A(l)/\CA(]) 0.54+0.5+0.2+0.84+0.54+0.2+0.8+0.5+0.2
Xij ay 0.74+0.5+0.4+0.3+0.4+0.3+0.3+0.7+0.5

D3(4) ' =2.41176

X rSWOACG()  0.3+0.2+0.14+0.1+0.1+0.14+0.5+0.2+0.1

Thus, density of AD(4) = (D*(4),D?(A),D3(A)) = (1.5769,0.8571,2.41176).

Note: If A is am-polar fuzzy matrix withm-polar fuzzy rows and columns, the density
of A may be greater than 1, that is the componeni(df) = (D'(4), D?(A), ..., D™(A))
may be greater than 1, that is there is no uppandho

Theorem 4. If A is a gm-polar fuzzy matrix withm-polar fuzzy rows and columns, then
0 < D(A) <1 thatis(0,0,...,0) < (D*(4),D?(4),..,D™(4)) < (1,1, ...,1).
Proof: SinceA is a gm polar fuzzy matrix withm-polar fuzzy rows and columns,

0 < ak STA (D) Ack@) forall i,j,k=1,2,..,m
Therefore,
0<3;; aﬁ‘j <V tA(OACK() ; where  k=12,..,m.
That is,
O<Laikj<1' where k=12,..,m
T Ly rAOACKG) T T e
That is,

0<Dk¥A)<1; where k=12,..,m
Hence, ifA is a gm-polar fuzzy matrix withm-polar fuzzy rows and columns, thén<
D(A) <1 thatis(0,0,...,0) < (D'(4),D?(A4),..,D™(4)) < (1,1, ...,1).

Example 5. Let A be a gm-polar fuzzy matrix with gr-polar fuzzy rows and columns,
where

(0.5,0.6,0.9) (0.2,0.3,0.5) (0.7,0.8,0.5)
(0.2,0.4,0.6) 1(0.1,0.2,0.5) (0.1,0.2,0.4) (0.5,0.4,0.3)
A= (0.7,0.5,0.3) 1(0.4,0.3,0.2) (0.1.0.2,0.2) (0.5,0.3,0.2)
(0.8,0.9,0.1) 1(0.4,0.7.0.1) (0.1.0.2,0.1) (0.5,0.7,0.1)
Now,
a®
Dl(A) _ Yij a;j = 0.1+0.140.5+0.4+0.14+0.5+0.4+0.1+0.5 — 07941
Yij TA(l)/\CA(]) 0.2+0.24+0.2+0.5+0.2+0.74+0.5+0.2+0.7
. @
DZ(A) _ i _ .al-j = 0.2+0.240.4+0.3+0.24+0.3+0.7+0.2+0.7 — 07805
Yij  TadAcg() 0.4+0.34+0.4+0.5+0.3+0.5+0.6+0.3+0.8
3)
D3(A) _ i j a;j __ 0.5+0.4+0.3+0.2+0.2+0.24+0.1+0.1+0.1 — 0.7500

TEERAOLAC)) " 0.6+0.5+0.5+0.3+0.3+0.34+0.1+0.1+0.1

Thus, density ofd, D(4) = (D1(4), D%(A4), D3(A)) = (0.7941,0.7805,0.75).
Here we see that0,0, ...,0) < (D1(4),D?(4),D3(4)) < (1,1, ...,1).
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Theorem 5. If A is a complete gr-polar fuzzy matrix withm-polar fuzzy rows and
columns, then the density 4f D(A) = (D*(A), D?(4),...,D™(4)) = (1,1,...,1) = 1.
Proof: Since,A is a complete gn-polar fuzzy matrix withm-polar fuzzy rows and
columns, theruf; = (i) Ack(j) forall i,j,k = 1,2,...,m.

Therefore,
Zi,j a%‘j = Zi_j r/{‘(i) /\c}f(j) ;. where k=12, .. m
That is,
Tyay o _
m =1 ; where k = 1,2, e, ML
Hence,

Dk(A) =1 ; where k=1,2,.. m.
Hence, ifA is a complete gr-polar fuzzy matrix withm-polar fuzzy rows and
columns, thenD (A) = (D*(A4),D%(A),...,D™(4)) = (1,1,..,1) = 1.

Example 6. Let A be a complete gt-polar fuzzy matrix withn-polar fuzzy rows and
columns, where

(0.2,0.5.0.8) (0.3,0.7.0.8) (0.5,0.9,0.3)
(0.1,0.6,0.5) 1(0.1,0.5.0.5) (0.1.0.6,0.5) (0.1,0.6,0.3)
A= (0.3,0.4,0.6) [(0.2,0.4.0.6) (0.3.0.4,0.6) (0.3,0.4,0.3)
(0.2,0.5,0.7) L(0.2,0.5,0.7) (0.2,0.5,0.7) (0.2,0.5,0.3)
Now,
1 Yij a,(}) 0.1+0.1+0.140.2+0.3+0.340.2+0.2+0.2
D (A) = 1, Iy =
Yij TAMACL() ~ 0.140.14+0.1+0.2+0.3+0.3+0.2+0.2+0.2
D2(4) = Xij agf) _ 0.5+0.6+0.6+0.4+0.4+0.4+0.5+0.5+0.5
T Yij  T2OACE()  0.5+0.6+0.6+0.4+0.4+0.4+0.5+0.5+0.5
(3)
Yij  a;; 0.5+0.5+0.3+0.6+0.6+0.3+0.7+0.7+0.3
DS(A) _ 2 ij — —

T %ij 1iOACE(U)  0.5+0.5+0.3+0.6+0.6+0.3+0.7+0.7+0.3
Thus, density ofd, D(A) = (D'(A),D?(A),D3(4)) = (1,1,1).

Definition 22. An m-polar fuzzy matrix withm-polar fuzzy rows and columns is called
balanced ifD*(S) < D*(A) wherek = 1,2,...,m and for all subm-polar fuzzy matrix
with m-polar fuzzy rows and columiss of A.

Example 7. Let
(0.8,0.5,0.7) (0.3,0.9,0.2)
_ (0.2,0.4,0.6) [(0.3,0.2,0.5) (0.6,0.4,0.3)
(0.1,0.3,0.5) (0.9,0.2,0.1) (0.3,0.7, 0.5)}

Now,
Di(4) = Zij a}}) _ 03406409403 _ 5
T X rAACR()  02+02+01+01
Sy ay 240.4+0.240.
DZ(A) _ J o %ij _0.240.4+0.2+0.7 —1.071

T X r3(MACZ()  0.4+0.4+03+03
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3

D3(A) _ Lij agj) _0.5+0.3+0.1+0.5
.. 37 3.

Yij TadAci()  0.6+0.24+0.5+0.2

=0.933

Let S;,5,,55,5, be the sub-3-polar fuzzy matrix with 3-polar fuaoys and columns,
where

(0.8,0.5.0.7) (0.3,0.9.0.2)
S1= (0.2,0.4,0.6) [(0.3,0.2.0.5)] S2= (0.2,0.4,0.6) [(0.6,0.4,0.3)]
(0.8,0.5,0.7) g o (880.9,0.2)
Si= (01,03.05) [(0.9.02.0.1) Si= (0.1,0.3,0.5) [(0.3,0.7,0.5)]
Therefore,
0.3 0.2 05
D(Sl) - (E;a:&) - (1'550-510'83)
0.6 04 0.3
D(S,) = (a'a'ﬁ) = (3,1,1.5)
09 0.2 0.1
D(S;) = (H'E'E) = (9,0.67,0.2)
0.3 0.7 05
DSy = (52,52, = (3,233,2.5)
Note that,

D'(S3) =9>D'(4)
D%(S,) =2.33>D?(4)
D3(S,) =1.5>D3(4)
D3(S,) =2.5>D3(4)
Hence,A is not a balancedh-polar fuzzy matrix withm-polar fuzzy rows and
columns.

Definition 23. An m-polar fuzzy matrix withm-polar fuzzy rows and column is called
strictly balancedif D*¥(S) = D¥(4) where k = 1,2,...,m for all sub-m-polar fuzzy
matrix with m-polar fuzzy rows and columrss of A.

Example 8. Let
(0.4,0.6,0.8) (0.1,0.3,0.6)
4~ (02,04,08) [(04,04,0.0) (0.2,0.3,0.0)
(0.3,0.6,0.9) |(0.6,0.6,0.0) (0.2,0.3,0.0)

Now,
DlA) = Xij 1 ‘al(]-l)l _ _ 04+02+06+02 _
2ij  ra@nrcg() 0.2+0.14+0.3+0.1
D2(4) = 2ij ag-) _ 04+0.3+0.6+03

Yij T3(DACZ()  04+03+0.6+03

i) - i o) 00400400400
Yy @ ACG(G) 08+06+08+06
Let S4,5,,55,S, be the sub-3-polar fuzzy matrix with 3-polar fuabyvs and columns,
where
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' (0.4,0.6.0.8) ' (0.1,0.3,0.6)
Si= (0.2.0.4,0.8) [(0.4,0.4,0.0)] Sp= (0.2.0.4,0.8) [(0.2,0.3.0.0)]
Si= (0.3,0.6,0.9) [(0.6,0.6,0.0)] Ys= (0.3,0.6,0.9) [(0-2,0.3,0.0)]
Therefore,
0.4 04 0.0
D(Sy) = (E'aﬁ) = (2,1,0);
0.2 0.3 0.0
D(S,) = (E'E'E) = (2,1,0);
0.6 0.6 0.0
D(S,) = (g,ﬁ,ﬁ) = (2,1,0);

0.2 03 0.0

DSy = (32.52.52) = (21,0)
Since,D(S;) = D(S,) = D(S3) = D(S4) = D(A) = (2,1,0).
Hence, A is strictly balancedm-polar fuzzy matrix withm-polar fuzzy rows and
columns.

7. Conclusion

It is well known thatm-polar fuzzy concept is very important and essémtianodel a
large number of problems that occur in scienceinerging, medical science and also on
real life. In this paper, we first introduced thencept of fuzzy setsn-polar fuzzy sets,
m-polar fuzzy relationyn-polar fuzzy matrix and their operation basedmpolar fuzzy
algebras. Very new kind ah-polar fuzzy matrix withm-polar fuzzy rows and columns
has been introduced. Null, equality, identity, céenpent of m-polar fuzzy matrix with
m-polar fuzzy rows and columns. Also, several typedensity ofm-polar fuzzy matrix
with m-polar fuzzy rows and columns are defined. Morelltescan be done aboutrg-
polar fuzzy matrix withm-polar fuzzy rows and columns, balanced and syrizlanced
on m-polar fuzzy matrix withm-polar fuzzy rows and columns.
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