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1. Introduction

Fuzzy Relations Equations (FRE) were introduced and applied to diagnosis problems in
[5,6], fuzzy relation equations on a finite set were later considered in [1] and structure of
the set of solutions of such equations was studied.

The structure of solution sets of FRE with different composition operators was
given in 1980s, see for instance [2,4,5]. It is well known now that the solution set of finite
FRE with continuous max t-norm is determined by one maximum solution and finite
number of minimal solutions. However, it is not easy to obtain all minimal solutions for
a large scale problem because number of minimal solutions may increase very sharply as
of the problem size increases.

In recent several years, there are still many results on developing a more effective
algorithm for obtaining all minimal solutions of FRE and there has been a growing
interest in a class of minimizing problems with fuzzy relational equation constraints.

We attempt to find an optimal solution to the fuzzy linear programming problem
with fuzzy relational constraints which is illustrated by numerical example.

2. A necessary and sufficient condition for existence of solution definition 2.1
Consider three fuzzy binary relations P(X,Y), Q (Y,Z) and R(X,Z), defined on the sets, X
={xi/iel} ;Y ={yj/jel}; Z={z./ keK} with I = N,, J = Ny, and K=N. Let the

memherchin matricee nfF P O and R he dAennted hy P=I+»..T O=lA.1 R=I+.1 recnecrtivelxs
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Let pij =P (xi,Yj), qik = Q(¥j> z«), Tik = R (X,zi) This means that all entries in the matrices
P,Q and R are real numbers in the unit interval [0,1].
Assume now that the three relations constrained with each other in such a way

that
P,Q=R (1)
where '0' denotes the max-min composition. This means that
max min (pi, i) = Tik 2

jeJ
for all and i€/l and kek. That is, the matrix equation (3) encompasses n X s
simultaneous equations of the form (4). these equations are referred to as fuzzy relation
equations.The set of all particular matrices of the form P that satisfy (1) is called its
solution and denote the set of all solutions as
S (Q,R)={P/P,Q=R} 3)
Necessary condition for existence of solutions, consider equation (2)
1e., max min (p;jqi) = ric  and if max di < i
jeJ jeJ
2.2 Solution Method
Consider matrix equations (1) of the simpler form p,Q =r where p = [p;/j<J], Q=[qjc /
jel, kek], r = [rc / kek] ie., p,Q and r represent a fuzzy set on y, q fuzzy relation on
Y xZ, and a fuzzy set on Z respectively.In our discussion the constraint equation is x O A
=b where x={x;/iel}, A= {a;/icl jeJ}, b={b/je}
Denote the solution set of poQ=x0A=b=r1r asX(A,B)= {x/x04d =25}
When X (A,b) # ¢, the maximum solution X = [X, /i € I]of (1) — (2) is determined as

follows: X, =mn © (aib;) @
jeJ
b, if a,>b,
where o(a;,b;)= J i
i otherwise

When X determined in this way does not satisfy xoA =b, then X (A,b)= ¢.

Assume now that A and b of x0A = b are given, and that we have to determine
the set X (A,b) of all minimal solutions of the equation. Assume further that X has been

determined by (6) and has been verified as the maximum solution. When X, = 0 for some
iel, we may eliminate this component form p as well as i" row from matrix A,
clearly, X, =0implies x, =0 for each xeX (A,b). Furthermore, when b=0 for some

jeJ, We may eliminate this component from b and the j column from matrix A, Since
each x <X (x€ p) must satisfy, in this case, the max — min equation represented by X,
the j" column of Q, and b; = 0.

3. A necessary condition for optimal solution
This section recalls some preliminaries of t-norms. Some properties of max-t- norm
fuzzy relational equations are presented.
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T:[0,17 —»f0,1] such that for all o, 8,8 €[0,1,]

@T(a,p)=T(B,a)

(b) T (e, T(f,6) =T (T (a,p),5)

) T(a,B)<T(a,0)whenever S <06 ,and

@T(a)=a,
Definition 3.2. The fuzzy linear programming problem with fuzzy relational equation
constraint is defined as

Minimize Z(x)= Y ¢x,,i=12..mel (5)
i=1

subjectto x € X (A,b) = {x €[0,1]" / x04 =b} 6)
where ¢; €R is the coefficient associated with variable x;; A=[a;j] is an mxn non-
negative matrix with a;< 1; b=(b; b, ..... b,) is an n-dimensional vector with 0< b; <I,

n._n

j=1,2,...neJ and the operation "o" represents the max- min composition (or the max — T
composition operator.

Lemma 3.3. If x € X(A4,b), then for each je J there exists i,e J such that min (xj,
aioj)=bj and min (x;, a;j) < b; for every I € I
Proof. Since xo A=b, then

max {min(x;,a;)}=b; forjel (7)

iel
That means for each jeJ, min (x;, a;j) < b;. And, in order to satisfy the equality
constraint, there must exist at least one i, € / such that min (Xj,, aioj)=bj

Definition 3.4. For a solution xe X (4,b), we call x;, a binding variable if min (Xio, aio;)
=bj for i, e I and min (x;,a;;) < b; foralliel.

Lemma 3.5. Let X =(X,),_, be the maximum solution, and x =(x,),., be a solution of

iel iel
(6). If x; is binding in the j™ equation, then X, is also binding. However, if X, is not a
binding variable, Xx;is also non binding for any solution x.

Proof. For any solution x =(x,),, € X(4,b) we have

max imin(x,,a,)=b,,VjeJ

iel
This implies min (X;,a;) <b;,Vj € J. If x; is now binding in the j™ equation,
then min(x;aj)=b;. also b=min(x;,a;) <min (X;,a;)<b; This implies that min
(x,,a;)=Db,.
Hence X, is also binding in the j™ equation. On the other hand, if X, is not

binding in any equation then min ()_c,.,aij) <b ;holds for any solution x, we have min

VAR N T oS £ I Sl P FRSR: PN T S OIS i
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Lemma 3.6. Let X =(X,),., be the maximum solution. If the cost co-efficient ¢; <0,

Viel,then X is an optimal solution of problem.
Proof. For any solution x in X (A,b) we have 0 <x <X Since ¢; <0, Vi € [ we have

m m
ZCixi > ZCixi
i=1 i=1

Therefore, X is an optimal solution.

@®)

4. Separation of fuzzy LPP

In this section, we study how to separate problem( 5)-(6)into two sub — problems; and
how to yield an optimal solution from the maximum solution and one of the minimal
solutions.

4.1. Two sub—problems of model (5) — (6)

Fang et al [3] showed that an optimal solution for model (5) — (6) with max — min or max
— product composition can be obtained from two sub- problems, which are formed by
separating the negative and non negative coefficient in the objective function. Consider
the following two problems.

m
Minimize Z'(x) = chl X;
=)

subject to x € X (4,b) = {x €[0,1]" /x0A =b| )

and  Minimize Z°(x) = Z clx!
i=1
subject to x € X (4,b) = {x €[0,1]" /x0A =b| (10)

where

. leife <0 , |oifc <0
_ and ¢ =3

Oif c, 20 ¢, if ¢, 20
problems (9) and (10)are subjected to the original constraint. Furthermore,
C :ci1 +cl.2 ,Viel. The maximum solution X =(X,),,, is an optimal solution for
problem (9) with optimal value Z'(X). Additionally, one minimal solution, say
)_c* = (zj)iel is an optimal solution for problem (10) with optimal value Z*(x"). A new

vector x = (x; ), is now defined by.

. x, if ¢ <0
{* 4 Viel (11)

x, if ¢ 20

1

It follows that x'<x'<X . Hence x  is a solution of equation (6) with objective

value Z(x) = zl(f)+Zz()_c*) .
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The remaining task is to show that x* as defined in (11) is an optimal solution of
the original problem (5)- (6) with optimal value Z(x")

This can be seen from the following inequalities:

z(x)= ZC Z(c +cl) x, —Zc +ici2xi

m

i Zc X, >Zc X, +Zc x
i=1
>3 F 4 a2 ()4 220 = Z(x)

4.2. An equivalent 0-1 integer programming problem.
The following index sets are defined to find a minimal solution from X(A,b) to optimize
problem (10).

I, —(zel/mln(xl,a )=Db, )‘v’jeJ

J, = {]GJ/mln(x,,a )=b, }‘v’ie]

The index set /; 1ndlcates the possible variables of x that may be selected as a
binding variable in the j™ equation. The index set J; indicates those equations that are

satisfied by X,. The following variables are defined to find minimal solution from X(A,b)
to solve problem (10).
1 ifiel,
Yy = Jiel, Viel NjeJ
0 otherwise

Notably, the variable y; =1 corresponds to a possible selection of the i * component of

some minimal solutions that are binding in the j’h equation. Since each solution must

satisfy all equations, a minimal solution can be transformed into the selection of one
variable with value 1 in each equation.
The 0-1 integer programming problem, which is equivalent to problem (10)

Minimize Z7(X)=3(¢> max {b,vu) )

i=1 jeJ
subject to Zyy. =1, VjeJ (12)
y; =0o0rl, Viel,jeJ
yij =0 Vl,] EIJ

Therefore, the objective function becomes

7 (x)= chz max {)?i, Vi }Moreover, only those indices in J; need to be considered.
1 -
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z y; =1, VjeJ.The 0-1 integer programming model for problem (10) is presented
iel;
as follows:
Minimize Z* (x)= Z(Cf max {fiyij }J
i=l1 jeJ;

subject to Zy,.j =1, VjeJ

iel;
y; =0 orl, Viel, jeJ
Yy =0V i, jwith i¢l,
Any optimal solution y* = ( y;) ie1.jey containing the variable y; =1 in problem

(12) corresponds to the situation where the variable x: is binding in the j ™ equation.

5. Rules for reducing problem (10)
Consider the given matrix A=(a;) with ie€/and jeJ .To develop a procedure of

finding an optimal solution, the following index set are given for the value matrix
Ij(A)z{ie]/min(xl.,aij)zbj}.This index set contains i€/ such that x,can be

satisfied the j"™ equation.

Rule 1. If a singleton /; = {z} exists from some jeJ, then X, is assigned to the i"

component of any optimal solution
Proof. The index set / ‘].(A) = {i } implies that the j’h equation only can be satisfied by

variable x,. This implies that the i"™ component of any solution (hence, the variable X;)
must be binding in the j” equation, yields x, = X, (since b . >0) Based on Rule
1, the j " column of M can be deleted from further consideration. The corresponding row
of x; in A can also be deleted.

Rule 2. If Ip(A4) < I,(A) for some p,q € J in the value matrix A, then the g" column

of M can be deleted.
Proof. Rule 2 reveals that if a singleton 7,(A4) = {l} exists for some jeJ in the

matrix A, and /,(4)c 1 (A4) for some g€ J then the g" equation can be deleted.
Furthermore, the deletion can be performed when 7 (A) is not a singleton.

Lemma 5.1.If X (A4,b)# ¢, VjeJ thenl, #¢,NjeJ

Proof. From lemma 3.3, we know that there exists at least one i, € / that can satisfy

constraint j, therefore /, must contain at least one element.



Thangaraj Beaula and Saraswathi .K

Rule 3. If p,qr €/, j € J and does not belongs to any other /,,t€J and 7 # j such
that ¢, x, >c_ X, >c,.X, then any optimal solution x =(x;),, has x, =x,=0
Proof. Given that p,q,re /; This implies x ,,x_,x, satisfied the j™ equation, they does

not satisfy any other equation .Also since ¢,x, >c¢, x, >c,x, .. In order to satisfy the

j’h equation, we need only one variable with minimal cost — coefficient... We set

x; = x; =0.
If Rule 3 is applied in the process of finding an optimal solution then the rows of
matrix A that are associated with x X, can be deleted.

Rule 4. During the process of finding an optimal solution. If x_ is an undecided decision

variable such that s ¢ /,,Vj € J then any optimal solution x =(x;),, has x, =0

iel
Proof. Since x, is an undedicated decision variable and s ¢ /;,Vj € J .This implies x,

does not satisfy any equation..". any optimal solution x = (xl* )., has x: =0.Ifrule 4is
applied then the corresponding rows of A can be deleted.

5.1. An algorithm

Based on the concepts discussed before, we present an algorithm for finding an optimal

solution .

Step 1. Check the necessary condition for existence of solutions.

If max 4, >b,Vj € J, continue, otherwise stop, x(4,b)= ¢ and problem (1) — (2) has
jel

no solution.

Step 2. Compute the vector X = (X,),., by (4).

Step 3. Check the consistency by verifying whether X0A=b stop in case of
inconsistency (If consistent, then X =(X;),_, is the maximum solution)

Step 4. Form two sub problems as problems (9) and (10)
Step 5. Find optimal solution for problem (10)
Step 5.1. Compute index set [; (A) for all j € J for the given value matrix A.

Step 5.2. Apply Rules 1-4 to determine the values of decision variables as many as
possible. Delete the corresponding rows and or columns in A (Thus reducing the size of
the problem) Denote the reduced sub matrix by A again. If all decision variables have
been set, then go to step 6.

Step 5.3. Take the (remaining) value matrix A. Employ the branch and bound method to
solve for the remaining undecided decision variables.

Step 6. Generate optimal solutions for the original problem from optimal solutions of
problems (9) and (10) by (11).

5.2. Numerical example

CAanrncidar tha FAllAavstno Attt atian vrahlarnsy crihiaiact $4a By vralatiAane arttafian x4k
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Minimize z(x) = 5.5x, + 2x, +5.2x; —0.5x, + x5 +1.5x, + 2x, + 3x, +1.25x,

subject to x0A=b
0<x, <1 =123, 9

where x = (X,,X,,X5,X,,X5,Xg,X7,Xg,X,)

1 2 3 4 5 6 7 8 9
X [0.23 0.75 043 0.70 0.65 0.42 0.82 035 0.45]
X, 1056 090 0.56 0.72 092 0.43 0.61 0.68 0.46
X3 1071 0.76 0.56 0.45 0.72 0.40 0.67 043 0.48
Xy 10.62 032 057 0.54 0.61 020 0.65 0.76 0.42
Xs 1080 095 081 0.70 0.53 042 0.80 0.40 0.38
Xe 1093 0.61 059 090 0.78 0.80 0.63 0.55 045
X; 1055 049 080 034 0.82 0.33 0.54 045 043
xg 1055 0.64 056 052 0.62 042 0.76 0.25 0.32
X, (038 0.70 047 0.52 0.73 0.26 0.64 0.48 0.22

b=(0.55,0.70, 0.56, 0.52, 0.72, 0.42, 0.64, 0.48, 0.45)
Step 1. Since gx @; >b; Vj € J, the necessary condition is satisfied.

jed
Step 2. Compute the vector X,
X ={0.52,0.42,0.45,0.48,0.52,0.42, 0.56, 0.64, 0.72}
Step 3. Since XoA=»b
ie, Max (min(@;,x,))=b;,VjeJ
iel

The problem is solvable and X is the maximum solution.

Step 4. Form two sub problems as problems (9) and (10) the following sub — problem
P1, is given as problem (9) with negative co-efficient in the objective function.

P1: Minimize Z'(x) =-0.5x,
subject to x0A=b

The other sub problem, P2, is given as problem (10) with non negative
coefficients in the objective function.
P2:

Minimize z°(x)=5.5x, +2x, +5.2x, +0x, +x; +1.5x, +2x, +3x, +1.25x,
subject to xoA=">b

Step 5. Find optimal solution for problem (10)
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Consider the given matrix.

1 2 3 4 5 6 71 8 9

x, 023 075 043 070" 0.65 042" 082 035 045 |

x, 056 090 056 072 092 043 0.61 0.68 0.46

x, 071 076 056 045 0.72 040 0.67 043 048
4= x, 0.62 032 057 054 0.61 020 0.65 076" 0.42

xs 0.80 095 081 0.70° 0.53 0.42° 0.80° 0.40 0.38
x, 093 0.61 059 090 0.78 0.80 0.63 0.55 0.45

x, 0.55° 049 0.80° 034 0.82 033 0.54 045 0.43
xg 0.55° 0.64 0.56" 0.52" 0.62 042" 0.76" 0.25 0.32
X, 038 0.70" 047 0.52" 0.73° 0.26 0.64" 0.48" 0.22

*

(Since * denote min(xi,a,.j ): b,
We know that ;(4) = {i e l/min(x;,a,)=b, } Therefore
1,(A) = {78} 1,(A) ={9} 1,(4) = { 7.8}, 1,(A) = {1,587}, I,(4) = {9}, [, (4) = {1,2,5,6,8}
L,(A) = {89}, I,(A) = {4,9}, 1,(4) = {13}
Step 5.2. Apply Rules 1-4 to determine the values of as many decision variables as
possible. Delete the corresponding rows and / or columns in A.
For the given matrix A, the index set [,(A4)=1,(A)= {9} indicate that the

variable X, is the only binding variable in the 2" and the 5" equation let x = (x,),., be

any optimal solution of sub problem P2. Then E; = X, can be assigned by rule 1. x, is

also binding in equations 4,7 and 8 (or columns 4,7,8 of A) Hence, these columns and the
corresponding row xy, can be deleted from matrix A. After deletion the reduced matrix A
becomes.

1 3 6 9
x, 023 043 042" 045 ]
X, 056 056 043 0.46
X3 1071  0.56  0.40 0.48°
A= X, 062 057 020 0.42
Xs 1080 081 042" 038
Yo 1093 059 080 0.45
Y7055 0.80° 033 0.43
ns8* 08" nar’ 02
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Since 1,(A) ={7.8}, I,(A4) = {7,8},1,(4) = {1,2,5,6,8},1,(A4) = {13},
The reduced matrix A is equivalent to 4 equations with eight variables. The
index set to the reduced matrix A is such that /,(A4) = 1,(A4). So column 1 or 3 of A can

be deleted by Rule 2. Also since 2,5,6 €/, and 25,6 ¢ [j,j—1,3,9 with
¢,%, =0.84>c.%, =0.63>c.X, =0.52. we set x,=x,=0 by rule 3. Also, the
reduced value matrix A has x, with 4¢ /,,VjeJ. We set gz =0 by rule 4.

After deleting column 1 or 3 and the corresponding rows of the matrix A that are
associated with x,,x, and x, the reduced matrix A becomes,

1 6 9
« 023 042" 045
1
¥ 071 040 048
3
X 0.80 042" 0.38
X, 0.55" 033 0.43
Xg 055 042" 032
1(A) = {781 (4) = {15.8},1,(4) = {L.3}.
Since Rules 1-4 cannot be applied to the current matrix A and five remaining
variables {xl X5, X5, X5 ,xg} are undecided goto the next step.

Step 5.3. Take the (remaining) value matrix A. Employ the branch and bound method to
solve for the remaining undecided decision variables.

Since,
Min Z* =5.5x, +5.2x; + x; +2x, +3x,
x0A=B,0<x,<b i=135,78

where x = (X, X3, X5,X;,Xg)

1 6 9
x, 023 042" 045 ]
x; 071 040 048
x; 080 0427 0.38
x, 0.55 033 043
xg 055 042" 032 |
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L(A) = {78}, 1,(A) = {L5.8}, I,(4) = {1,3};
J,(4) = 16,9, J5(4) = {9}, J5(4) = {6,J,(4) = {1}, J4(4) = {1,6}.
Its corresponding 0-1 integer program is

Minimize zz(x) = S.S(maX (x,, N )+ S.Z(maX ()_63y3j))

JjeJ; jeJ;
¥ max ()_Csysj') +2(max (977)’7,‘) +3(max (fgyg_; )
jed, jed, jed,
Subject to

Y+ ya =1

VietVsg+ Vgs =1
Viot Vs =1

Yy
’ Vs
Yie
y3c
Vi
Vs
Vse Node
St Node 9
op Node Node 8 )
4 5 .
Yie
\ Vi
Node

10
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Now, consider the first constraint equation.

Either y;;, or ys; has to be 1. This yields nodes 1 and 2. If y, =1 then x, =X,
therefore the lower bound of node 1 is 2x0.56=1.12.

Also, if yg, =1 then xg = X;. And the lower bound of node 2 is 3x0.64 =1.92.

From node 1 we can branch further to either node 3 or node 4 or node 5 with
Vie OF Vss or Voo =1 respectively if y, =1 then x, =X, therefore the lower bound of

node 3 is calculated by 1.12+(5.5x0.52) =3.98.

If y,=1 then x;=X; and the lower bound of node 4 is
1.12x(0.52x1) =1.64

If yg, =1 then x;=Xx; and the lower bound of  node 5 is
1.12+(3x0.64) =3.04.

From node 4 we can branch further to either node 6 or node 7 with y,y or y,,=1

respectively. This is equivalent to adding another constraint. Since this added constraint
is the last one, we obtain the exact objective values instead of the lower bounds.

If y,=1 then x, =X and the objective value of node 6 is
1.64 +(5.5x0.52) =4.50

If y,=1 then x,=Xx; and the objective value of node 7 is
1.64+(5.2x0.45)=3.98

Since, Z*(x) at node 6 and 7 is greater than the lower bound of node 2, we can
branch node 2 to either node 8 or node 9 with y,, or y,,=1

If yo,=1 then x, =X, and the objective value of node 8 is
1.92+(5.5x0.52)=4.78

If y,=1 then x;=Xx; and the objective value of node 9 is
1.92+(5.2x0.45)=4.26

Since Z’(x) at node 6,7,8 and 9 is greater than the lower bound of node 5 we
can branch node 5 to either node 10 or node 11 with y,, or y,;,=1.

If y,=1 then x =X and the objective value of node 10 is
3.04+(5.5x0.52) =5.90

If y,=1 then x;=Xx; and the objective value of node 11 is
3.04+(5.2x0.45)=5.38

Since Z 2(x) at node 7 is equal to the lower bound of node 3, we can stop

branching to node 3. Moreover Z 2(x) at node 7 and node 3 yields the optimal value.

Figure shows the B & B of the given problem.
From the above discussion, we get the two optimal solutions.
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x ' =(0,0,0.45,0.52,0,0.56,0,0.72) and x ~ =(0.52,0,0,0,0,0.56, 0, 0.72)

For the sub problem p2 with objective value z* (fl) =z’ (5*2) =4.88.
Now, that all the decision variables have been determined go to the next step.

Step 6. Generate optimal solutions for the original problem from optimal solutions of
problem (9) and (10) by (11).
Notably, only variable x, of the sub — problem P1 has a negative co-efficient in

the objective function. Hence the maximum solution X = (X,),_, is an optimal solution
with optimal value Z'(X)=c,X, =—0.24 for sub — problem p1. on the other hand two

optimal solutions fl and x ? are given for sub problem P2 with optimal value
Z*(x")=Z7(x*2)=4.88.
Combining these optimal solutions derived from sub problems P1 and P2 by (11)
yields two optimal solutions x™' and x™* as follows.
x"'=(0,0,0.45,0.48,0.52,0,0.52, 0, 0,0.56,0,0.72)
and

x?=(0.52,0,0,0.48,0,0,0.56,0,0.72)
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