Intern. J. Fuzzy Mathematical Archive Vol. 2, 2013, 17-25 ISSN: 2320–3242 (P), 2320–3250 (online) Published on 29 July 2013 www.researchmathsci.org

International Journal of **Fuzzy Mathematical Archive**

Somewhat *b-continuous and Somewhat *b-open Functions in Topological spaces

K.Rekha^{*1} and T.Indira²

¹PG and Research Department of Mathematics, Bishop Heber College (Autonomous), Trichy–620017. India. Email: rekhamath84@gmail.com *Corresponding Author

²PG and Research Department of Mathematics, Seetha Lakshmi Ramaswami College (Autonomous), Trichy-620 002, India. E-mail: drtindira.chandru@gmail.com

Received 1 July 2013; accepted 18 July 2013

Abstract. In this paper, we introduced and studied new classes of functions by making use of pre open sets, *b-open sets, D(c,*b)-sets. We established relationship between the new classes and other classes of functions and also given examples, counterexamples, properties and characterizations.

Keywords: *b-open, somewhat pre continuous, somewhat *b-continuous, somewhat D(c,*b)-continuous, somewhat *b-open

AMS Mathematics Subject Classification (2010): 18B30, 28C15

1. Introduction

Andrijevic [1] introduced and studied the concept of b-open sets in topological spaces. Mashhour [5] introduced pre open sets in topological spaces. Rekha and Indira [4, 6] introduced D(c,*b)-set, *b-open set in topological spaces. Gentry and Hoyle [3] introduced and studied the concept of somewhat continuous and somewhat open functions in topological spaces. Bechalli and Bansali [2] somewhat b-continuous functions and somewhat b-open functions in topological spaces. Santhileela and Balasubramanian [7] have made a similar study on semi continuous functions in Topological spaces. In this paper we introduced somewhat pre (*b, D(c,*b)) continuous, somewhat pre (*b, D(c,*b)) open functions,*b-dense set, *b-separable space. We established characterizations of somewhat *b-continuous functions. All throughout this paper, All spaces X, Y and Z are always topological spaces with no separation axioms assumed, unless otherwise stated. Let $A \subseteq X$, the closure of A and the interior of A will be denoted by Cl(A) and Int(A), respectively.

2. Preliminaries

Definition 2.1. A subset A of a space X is said to be 1. pre open[5] if $A \subseteq Int(Cl(A))$

2. *b-open [4]if $A \subseteq Cl(Int(A)) \cap Int(Cl(A))$ 3. D(c,*b)-set[6] if Int(A) = *bInt(A).

Definition 2.2. [3] A function $f: X \to Y$ is said to be somewhat continuous if for $U \in \sigma$ and $f^{-1}(U) \neq \phi$ there exists an open set V in X such that $V \neq \phi$ and $V \subseteq f^{-1}(U)$.

Definition 2.3. A function $f: X \to Y$ is said to be somewhat pre continuous if for $U \in \sigma$ and $f^{-1}(U) \neq \phi$ there exists a pre open set V in X such that $V \neq \phi$ and $V \subseteq f^{-1}(U)$.

Example 2.4. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}\}, Y = \{1, 2, 3\}, \sigma = \{Y, \phi, \{2, 3\}\}.$ Define a function $f: (X, \tau) \to (Y, \sigma)$ by f(a) = 2; f(b) = 1; f(c) = 3. Then f is somewhat pre continuous.

Theorem 2.5. Every somewhat continuous function is somewhat pre continuous function.

Proof: Let $f: X \to Y$ be somewhat continuous function. Let U be any open set in Y such that $f^{-1}(U) \neq \phi$. Since f is somewhat continuous, there exists an open set V in X such that $V \neq \phi$ and $V \subseteq f^{-1}(U)$. Since every open set is pre open, there exists a pre open set V in X such that $V \neq \phi$ and $V \subseteq f^{-1}(U)$, which implies that f is somewhat pre continuous function.

Remark 2.6. Converse of the above theorem is not true.

Example 2.7. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a, b\}\}, Y = \{1, 2, 3\}, \sigma = \{Y, \phi, \{2, 3\}\}.$ Define a function $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = 1; f(b) = 2; f(c) = 3. Then f is a somewhat pre continuous function but not a somewhat continuous function.

Definition 2.8. [3] A function $f: X \to Y$ is said to be somewhat open function provided that for $U \in \tau$ and $U \neq \phi$, there exists an open set V in Y such that $V \neq \phi$ and $V \subseteq f(U)$.

Definition 2.9. A function $f: X \to Y$ is said to be somewhat pre open function provided that for $U \in \tau$ and $U \neq \phi$, there exists a pre open set V in Y such that $V \neq \phi$ and $V \subseteq f(U)$.

Example 2.10: Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a, b\}\}, Y = \{1, 2, 3\}, \sigma = \{Y, \phi, \{1, 3\}\}.$ Define a function $f: (X, \tau) \to (Y, \sigma)$ by f(a) = 2; f(b) = 3; f(c) = 1. Then f is somewhat pre open function.

Theorem 2.11. Every somewhat open function is somewhat pre open function.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be a somewhat open function. Let $U \in \tau$ and $U \neq \phi$.Since f is somewhat open, there exists an open set V in Y such that $V \neq \phi$ and $V \subseteq f(U)$.But every open set is pre open. Therefore there exists a pre open set V in Y such that $V \neq \phi$ and $V \subseteq f(U)$, which implies that f is somewhat pre open function.

Remark 2.12. Converse of the above theorem is not true.

Example 2.13. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a, b\}\}, Y = \{1, 2, 3\}, \sigma = \{Y, \phi, \{2, 3\}\}.$ Define a function $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = 1; f(b) = 2; f(c) = 3. Then f is somewhat pre open function but not a somewhat open function.

3. Somewhat *b - Continuous Functions

Definition 3.1. A function $f: X \to Y$ is said to be somewhat *b - continuous if for $U \in \sigma$ and $f^{-1}(U) \neq \phi$ there exists a *b - open set V in X such that $V \neq \phi$ and $V \subseteq f^{-1}(U)$.

Example 3.2. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, c\}\}, Y = \{1, 2, 3\}, \sigma = \{Y, \phi, \{1, 3\}\}.$ Define a function $f: (X, \tau) \to (Y, \sigma)$ by f(a) = 3; f(b) = 1; f(c) = 2. Then f is somewhat *b-continuous function.

Definition 3.3. A function $f: X \to Y$ is said to be somewhat D(c,*b) - continuous if for $U \in \sigma$ and $f^{-1}(U) \neq \phi$ there exists a D(c,*b) - open set V in X such that $V \neq \phi$ and $V \subseteq f^{-1}(U)$.

Example 3.4. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}\}, \sigma = \{X, \phi, \{b\}\}.$

Then the identity function $f:(X,\tau) \to (X,\sigma)$ is somewhat D(c,*b)-continuous.

Theorem 3.5. Every somewhat *b-continuous function is somewhat pre continuous function

Proof: Let $f: X \to Y$ be somewhat *b-continuous function. Let U be any open set in Y such that $f^{-1}(U) \neq \phi$. Since f is somewhat *b-continuous, there exists a *b- open set V in X such that $V \neq \phi$ and $V \subseteq f^{-1}(U)$. Since every *b-open set is pre open, there exists a pre open set V in X such that $V \neq \phi$ and $V \subseteq f^{-1}(U)$, which implies that f is somewhat pre continuous function.

Remark 3.6. Converse of the above theorem is not true.

Example 3.7. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a, b\}\}, Y = \{1, 2, 3\}, \sigma = \{Y, \phi, \{2, 3\}\}$. Define a function $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = 1; f(b) = 2; f(c) = 3. Then f is somewhat pre continuous function but not a somewhat *b-continuous function.

Theorem 3.8. For a function $f: X \to Y$, the following are equivalent 1) *f* is somewhat continuous

2)f is some what *b-continuous and somewhat D(c,*b)-continuous

Proof: To prove: (i) \Rightarrow (ii)Let $f: X \to Y$ be somewhat continuous function. Let U be any open set in Y such that $f^{-1}(U) \neq \phi$. Since f is somewhat continuous, there exists an open set V in X such that $V \neq \phi$ and $V \subseteq f^{-1}(U)$. Since every open set is *b-open and D(c,*b)-set, there exists a *b-open and D(c,*b)-set V in X such that $V \neq \phi$ and $V \subseteq f^{-1}(U)$, which implies that f is somewhat *b-continuous and D(c,*b)- continuous. To prove: (ii) \Rightarrow (i)Let $f: X \to Y$ be somewhat *b-continuous and D(c,*b)-continuous function. Let U be any open set in Y such that $f^{-1}(U) \neq \phi$. Since f is somewhat *bcontinuous and D(c,*b)-continuous, there exists a *b- open and D(c,*b)-set V in X such that $V \neq \phi$ and $V \subseteq f^{-1}(U)$. Since every *b-open and D(c,*b)-set is open, there exists an open set V in X such that $V \neq \phi$ and $V \subseteq f^{-1}(U)$, which implies that f is somewhat continuous function.

Theorem 3.9. Let $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\eta)$ be any two functions. If f is somewhat *b-continuous function and g is continuous function, then $g \circ f$ is somewhat *b-continuous function.

Proof: Let $U \in \eta$. Suppose that $g^{-1}(U) \neq \phi$. Since $U \in \eta$ and g is continuous function. Therefore $g^{-1}(U) \in \sigma$. Suppose that $f^{-1}(g^{-1}(U)) \neq \phi$. Since by hypothesis f is somewhat *b-continuous function, there exists a *b-open set V in X such that $V \neq \phi$ and $V \subseteq f^{-1}(g^{-1}(U))$. But $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$, which implies that $V \subseteq (g \circ f)^{-1}(U)$. Therefore $g \circ f$ is somewhat *b-continuous function.

Definition 3.10. Let *M* be a subset of a topological space (X, τ) . Then *M* is said to be *b-dense in *X* if there is no proper *b-closed set *C* in *X* such that $M \subset C \subset X$

Theorem 3.11. Let $f: (X, \tau) \to (Y, \sigma)$ be a function .Then the following are equivalent: (i) f is somewhat *b-continuous function.

(ii) If C is a closed subset of Y such that $f^{-1}(C) \neq X$, then there is a proper *b-closed subset D of X such that $D \supseteq f^{-1}(C)$.

(iii) If M is a *b-dense subset of X then f(M) is a dense subset of Y.

Proof: To prove: $(i) \Rightarrow (ii)$ Let *C* be a closed subset of *Y* such that $f^{-1}(C) \neq X$. Then Y - C is an open set in *Y* such that $f^{-1}(Y - C) = X - f^{-1}(C) \neq \phi$. By hypothesis there exists a *b-open set *V* in *X* such that $V \neq \phi$ and $V \subseteq f^{-1}(Y - C) = X - f^{-1}(C)$. This implies that $f^{-1}(C) \subset X - V$ and X - V = D is a *b-closed set in *X*. Hence there is a proper *b-closed subset *D* of *X* such that $D \supset f^{-1}(C)$.

To prove: $(ii) \Rightarrow (iii)$ Let M be a *b-dense set in X. We have to prove that f(M) is dense in Y. Suppose that f(M) is not dense in Y. Then there exists a proper closed set C in Y such that $f(M) \subset C \subset Y$. Since $f^{-1}(C) \neq X$. By (ii) there exists a proper *b-closed set D such that $M \subset f^{-1}(C) \subseteq D \subset X$, which is a contradiction to our assumption that M is *b-dense in X. Hence f(M) is dense in Y.

To prove: $(iii) \Rightarrow (ii)$ Suppose we assume that (ii) is not true. That is there exists a closed set C in Y such that $f^{-1}(C) \neq X$. But there is no proper *b-closed set D in X such that $f^{-1}(C) \subseteq D$. This means that $f^{-1}(C)$ is *b-dense in X. By (iii) $f(f^{-1}(C)) = C$ must be dense in Y, which is a contradiction to our assumption C is closed in Y. Hence (ii) is true.

To prove: $(ii) \Rightarrow (i)$ We have to prove that f is somewhat *b-continuous. Let $U \in \sigma$ and $f^{-1}(U) \neq \phi$. Then Y - U is closed and $f^{-1}(Y - U) = X - f^{-1}(U) \neq \phi$. By our assumption there exists a proper *b-closed set D such that $D \supseteq f^{-1}(Y - U)$. This implies that there exists a *b-open set X - D and $X - D \neq \phi$ such that $X - D \subseteq f^{-1}(U)$. Hence f is somewhat *b-continuous.

Theorem 3.12. Let (X,τ) and (Y,σ) be any two topological spaces, $X = A \cup B$ where A and B are open subsets of X and $f:(X,\tau) \to (Y,\sigma)$ be a function such that f/A and f/B are somewhat *b-continuous functions. Then f is somewhat *b-continuous function.

Proof: We have to prove that f is somewhat *b-continuous. Let $U \in \sigma$ and $f^{-1}(U) \neq \phi$. Then $(f/A)^{-1}(U) \neq \phi$ or $(f/B)^{-1}(U) \neq \phi$ or $(f/A)^{-1}(U) \neq \phi$ and $(f/B)^{-1}(U) \neq \phi$ Case (i): Suppose $(f/A)^{-1}(U) \neq \phi$

Since f/A is somewhat *b-continuous, there exists a *b-open set V in A such that $V \neq \phi$ and $V \subseteq (f/A)^{-1}(U) \subseteq f^{-1}(U)$. Since V is *b-open in A and A is open in X, which implies that V is *b-open in X. Thus f is somewhat *b-continuous function. Case (ii): Suppose $(f/B)^{-1}(U) \neq \phi$

Since f/B is somewhat *b-continuous, there exists a *b-open set V in B such that $V \neq \phi$ and $V \subseteq (f/B)^{-1}(U) \subseteq f^{-1}(U)$. Since V is *b-open in B and B is open in X, which implies that V is *b-open in X. Thus f is somewhat *b-continuous function. Case (iii): Suppose $(f/A)^{-1}(U) \neq \phi$ and $(f/B)^{-1}(U) \neq \phi$

From case(i) and (ii), f is somewhat *b-continuous function.

Definition 3.13. A topological space X is said to be *b-separable if there exists a countable subset B of X which is *b-dense in X.

Example 3.14. Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$. The space X is *b-separable.

Theorem 3.15. If f is somewhat *b-continuous function from X onto Y and if X is *b-separable, then Y is separable.

Proof: Let $f: X \to Y$ be somewhat *b-continuous function such that X is *b-separable. Then by definition there exists a countable subset B of X which is *b-dense in X. Then by theorem 3.11, f(B) is dense in Y. Since B is countable. Then f(B) is also countable which is dense in Y. Hence Y is separable.

4. *b-Weakly Equivalent Topologies

Definition 4.1.[3] If X is a set and τ and σ are topologies for X, then τ is said to be weakly equivalent to σ provided if $U \in \tau$ and $U \neq \phi$, then there is an open set V in (X, σ) such that $V \neq \phi$ and $V \subset U$ and if $U \in \sigma$ and $U \neq \phi$, then there is an open set V in (X, τ) such that $V \neq \phi$ and $V \subset U$.

Definition 4.2. If X is a set and τ and σ are topologies for X, then τ is said to be *bweakly equivalent to σ provided if $U \in \tau$ and $U \neq \phi$, then there is a *b- open set V in (X, σ) such that $V \neq \phi$ and $V \subset U$ and if $U \in \sigma$ and $U \neq \phi$, then there is a *b- open set V in (X, τ) such that $V \neq \phi$ and $V \subset U$.

Theorem 4.3. Let $f:(X,\tau) \to (Y,\sigma)$ be somewhat continuous function and let τ^* be a topology for X, which is *b-weakly equivalent to τ then the function $f:(X,\tau^*) \to (Y,\sigma)$ is somewhat *b-continuous function.

Proof: Let $U \in \sigma$ and $f^{-1}(U) \neq \phi$. Since by hypothesis $f:(X,\tau) \to (Y,\sigma)$ is somewhat continuous. By definition there exists an open set O in (X,τ) such that $O \neq \phi$ and $O \subseteq f^{-1}(U)$. Since O is an open set in (X,τ) such that $O \neq \phi$ and since by hypothesis τ is *b-weakly equivalent to τ^* by definition there exists a *b-open set V in (X,τ^*) such that $V \neq \phi$ and $V \subset O \subseteq f^{-1}(U)$. This implies $O \subseteq f^{-1}(U)$. Thus for any open set $U \in \sigma$ such that $f^{-1}(U) \neq \phi$ there exists a *b-open set V in (X,τ^*) such that $V \subseteq f^{-1}(U)$. Hence $f:(X,\tau^*) \to (Y,\sigma)$ is somewhat *b-continuous function.

Theorem 4.4. Let $f:(X,\tau) \to (Y,\sigma)$ be somewhat *b-continuous function and let σ^* be a topology for Y, which is weakly equivalent to σ . Then the function $f:(X,\tau) \to (Y,\sigma^*)$ is somewhat *b-continuous function.

Proof: Let $U \in \sigma^*$ and $f^{-1}(U) \neq \phi$ which implies $U \neq \phi$. Since σ and σ^* are weakly equivalent there exists an open set W in (Y, σ) such that $W \neq \phi$ and $W \subset U$. Since W is an open set in (Y, σ) such that $W \neq \phi$, which implies $f^{-1}(W) \neq \phi$. By hypothesis $f:(X, \tau) \to (Y, \sigma)$ be somewhat *b-continuous function. Therefore there exists a *b-

open set V in X, such that $V \subseteq f^{-1}(W)$. Now $W \subset U$ implies $f^{-1}(W) \subset f^{-1}(U)$. We have $V \subseteq f^{-1}(U)$. Hence $f:(X,\tau) \to (Y,\sigma^*)$ is somewhat *b-continuous function.

5. Somewhat *b-Open Functions

Definition 5.1. A function $f: X \to Y$ is said to be somewhat *b-open function provided that for $U \in \tau$ and $U \neq \phi$, there exists a *b-open set V in Y such that $V \neq \phi$ and $V \subseteq f(U)$.

Example 5.2. Let $X = \{1,2,3,4\}$, $\tau = \{X, \phi, \{2,3,4\}, \{2\}, \{1,2\}\}$, $Y = \{a, b, c, d\}$, $\sigma = \{Y, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(1) = c; f(2) = d; f(3) = a; f(4) = b. Then f is somewhat *b-open function.

Definition 5.3. A function $f: X \to Y$ is said to be somewhat D(c,*b)-open function provided that for $U \in \tau$ and $U \neq \phi$, there exists a D(c,*b)-open set V in Y such that $V \neq \phi$ and $V \subseteq f(U)$.

Example 5.4. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{c\}\}, \sigma = \{X, \phi, \{a\}\}.$ Then the identity function $f : (X, \tau) \to (X, \sigma)$ is somewhat D(c,*b)-open function.

Theorem 5.5. Every somewhat *b-open function is somewhat pre open function **Proof:** Let $f:(X,\tau) \to (Y,\sigma)$ be a somewhat *b-open function. Let $U \in \tau$ and $U \neq \phi$.Since f is somewhat *b-open, there exists a *b-open set V in Y such that $V \neq \phi$ and

Since f is somewhat v open, there exists a v open set v in T such that $v \neq \varphi$ and $V \subseteq f(U)$. But every *b-open set is pre open. Therefore there exists a pre open set V in Y such that $V \neq \phi$ and $V \subseteq f(U)$, which implies that f is somewhat pre open function.

Remark 5.6. Converse of the above theorem is not true.

Example 5.7. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a, b\}\}, Y = \{1, 2, 3\}, \sigma = \{Y, \phi, \{2, 3\}\}.$ Define a function $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = 1; f(b) = 2; f(c) = 3. Then f is somewhat pre open function but not a somewhat *b-open function.

Theorem 5.8. For a function $f: X \to Y$, the following are equivalent

1) f is somewhat open

2) f is some what *b-open and somewhat D(c,*b)-open

Proof: To prove: (i) \Rightarrow (ii)Let $f: X \to Y$ be somewhat open function. Let $U \in \tau$ and $U \neq \phi$.Since f is somewhat open function, there exists an open set V in Y such that $V \neq \phi$ and $V \subseteq f(U)$. Since every open set is *b-open and D(c,*b)-set.Therefore there exists a*b-open and D(c,*b)-set V in Y such that $V \neq \phi$ and $V \subseteq f(U)$, which implies that f is somewhat *b-open function and somewhat D(c,*b)-open function.

To prove: (ii) \Rightarrow (i)Let $f: X \to Y$ be somewhat *b-open and D(c,*b)-set. Let $U \in \tau$ and $U \neq \phi$.Since f is somewhat *b-open function and D(c,*b)-open function, there exists a *b-open and D(c,*b)-set V in Y such that $V \neq \phi$ and $V \subseteq f(U)$. Since every *b-open and D(c,*b)-set is open .Therefore there exists an open set V in Y such that $V \neq \phi$ and $V \subseteq f(U)$, which implies that f is somewhat open function.

Theorem 5.9. Let $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\eta)$ be any two functions. If f is an open map and g is somewhat *b-open map, then $g \circ f:(X,\tau) \to (Z,\eta)$ is somewhat *b-open map.

Proof: Let $U \in \tau$. Suppose that $U \neq \phi$. Since f is an open map f(U) is open and $f(U) \neq \phi$. Thus $f(U) \in \sigma$ and $f(U) \neq \phi$. Since g is somewhat *b-open map and $f(U) \in \sigma$ such that $f(U) \neq \phi$, there exists a *b-open set $V \in \eta$, $V \subseteq g(f(U))$, which implies that $g \circ f$ is somewhat *b-open function.

Theorem 5.10. Let $f:(X,\tau) \to (Y,\sigma)$ is a one-one and onto mapping, then the following are equivalent:

(i) f is somewhat *b-open map.

(ii) If C is a closed subset of X such that $f(C) \neq Y$, then there is a *b-closed subset D of Y such that $D \neq Y$ and $D \supseteq f(C)$.

Proof: To prove: (i) \Rightarrow (ii)

Let *C* be any closed subset of *X* such that $f(C) \neq Y$. Then X - C is open in *X* and $X - C \neq \phi$. Since *f* is somewhat *b-open map, there exists a *b-open set $V \neq \phi$ in *Y* such that $V \subseteq f(X - C)$. Put D = Y - V. Then *D* is *b-closed in *Y*. We claim that $D \neq Y$. Suppose D = Y, then $V = \phi$ which is a contradiction. So that $D \neq Y$. Since $V \subseteq f(X - C)$, $D = Y - V \supseteq Y - [f(X - C)] = f(C)$. To prove: (ii) \Rightarrow (i)

Let U be any non-empty open set in X. Put C = X - U. Then C is a closed subset of X and f(X-U) = f(C) = Y - f(U) implies $f(C) \neq \phi$. Therefore, by (ii) there is a *b-closed subset D of Y such that $D \neq Y$ and $f(C) \subset D$. Put V = Y - D. Clearly V is a *b-open set and $V \neq \phi$. Since $V = Y - D \subseteq Y - f(C) = Y - [Y - f(U)] = f(U)$. Hence f is somewhat *b-open map.

Theorem 5.11. Let $f:(X,\tau) \to (Y,\sigma)$ be somewhat *b-open function and *A* be any open subset of *X*. Then $f/A:(A,\tau/A) \to (Y,\sigma)$ is also somewhat *b-open function. **Proof:** Let $U \in \tau/A$ such that $U \neq \phi$. Since *U* is open in *A* and *A* is open in (X,τ) , *U* is open in (X,τ) and since by hypothesis $f:(X,\tau) \to (Y,\sigma)$ is somewhat *b-open function, there exists a *b-open set *V* in *Y*, such that $V \subseteq f(U)$. Thus, for any open set

 $U \in (A, \tau/A)$ with $U \neq \phi$, there exists a *b-open set V in Y such that $V \subseteq f(U)$. Hence f/A is somewhat *b-open function.

Theorem 5.12. Let (X,τ) and (Y,σ) be any two topological spaces, $X = A \cup B$ where A and B are open subsets of X and $f:(X,\tau) \to (Y,\sigma)$ be a function such that f/A and f/B are somewhat *b-open, then f is also somewhat *b-open function.

Proof: Let U be any open subset of (X, τ) such that $U \neq \phi$. Since $X = A \cup B$, either $A \cap U \neq \phi$ or $B \cap U \neq \phi$ or both $A \cap U \neq \phi$ and $B \cap U \neq \phi$. Since U is open in (X, τ) , U is open in $(A, \tau/A)$ and $(B, \tau/B)$.

Case: (i) Suppose that $U \cap A \neq \phi$ where $U \cap A$ is open in τ/A . Since by hypothesis f/A is somewhat *b-open function, there exists a *b-open set $V \in (Y, \sigma)$ such that $V \subseteq f(U \cap A) \subseteq f(U)$, which implies that f is somewhat *b-open function.

Case: (ii) Suppose that $U \cap B \neq \phi$ where $U \cap B$ is open in τ/B . Since by hypothesis f/B is somewhat *b-open function, there exists a *b-open set $V \in (Y, \sigma)$ such that $V \subseteq f(U \cap B) \subseteq f(U)$, which implies that f is somewhat *b-open function.

Case: (iii) Suppose that both $U \cap A \neq \phi$ and $U \cap B \neq \phi$. From case (i) and (ii), f is somewhat *b-open function.

Conclusion

As an extension of this paper, Somewhat **b-continuous functions and Somewhat **bopen functions can be defined and can obtain theorems based on the above defined concepts.

REFERENCES

- 1. D. Andrijevic, On b-open sets, Mat. Vesnik, 48 (1996), 59-64.
- S.S. Benchalli and PriyankaM.Bansali, Somewhat b-continuous and Somewhat bopen functions in Topological spaces, *Int. Journal of Math. Analysis*, 4(46) (2010), 2287-2296.
- 3. K.R. Gentry and H.B. Hoyle, Somewhat continuous functions, *Czech. Math. Jl.*, 21(1) (1971), 5-12.
- T. Indira and K.Rekha, On locally **b-closed sets, Proceedings of the Heber International Conference on Applications of Mathematics and Statistics, (HICAMS 2012), 74-80.
- 5. A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deep, On precontinuous and weak precontinuous functions, *Proc Math Phys Soc Egypt*, 53 (1982), 47-53.
- 6. K.Rekha and T.Indira, Decomposition of continuity via *b-open set, Communicated.
- 7. D. Santhileela and G.Balasubramanian, Somewhat semi continuous and somewhat semi openfunctions, *Bull. Cal. Math. Soc.*, 94 (1) (2002) 41-48.