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Abstract. In this paper, we first consider the Matrix equation AXA =C, where

AeC™ , Ce C™ and establish necessary and sufficient conditions for the existence
of Re-nnd solutions. Further,we determine the necessary and sufficient conditions for the
existence of Re-nnd solutions of the equation AXB=C in terms of Minkowski inverses .
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1. Introduction

We shall deal with C"™" the space of complex n-tuples. We shall index the components
of a complex vector in C" from o to n-1. That is u = (Ug,U1,Up, ...Ur1). Let G be the

Minkowski metric tensors defined by Gu = (U, — Uz, — Uz, ... — Un4). Clearly the
Minkowski metric matrix.
G:[(l) _P J satisfies G=G and G2=|n. 1)
n-1

The Minkowski inner product on C" is defined by (u,v) =<u, Gv> where <.,.>
denotes the conventional Hilbert (unitary) space inner product. A space with Minkowski
inner product is called a Minkowski space denoted as .

For Ae men, let R(A), rk(A) and A" denote the range space, null space, rank of A
and the conjugate transpose of A respectively. I, denotes the unit matrix of order n. For

AeC™ XyeC" using (1) we get.

(AX,Y) = [AX,GY] = [X,A*GY] = [X,G[GA*G]Y] = [X,GA Y] =(X, A Y).

The Matrix A~ = GA’G is called the Minkowski adjoint of A in 9, where A" is the
usual Hermitian adjoint of A . It is well known that for A C"", rk(AA") = rk(A"A) =
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rk(A) and in general rk(AA )=rk(A A)=rk(A). Naturally we call a matrix

AcC™ is m-symmetric in Minkowski space # if A~ = A. From the definition A =
GA'G, we have the following equivalence proved in [9].
A is m — symmetric iff AG is Hermitian iff GA is Hermitian. 2

A is m — symmetric iff (AX,X) = (X, A X), for every X C" 3)
The Hermitian part of X is defined as H(X) = £ (X + X"). We say that X is Re-nnd if
H(X) > 0 and X is Re-pd if H(X) > 0. The Hermitian part of X is defined as

H(X) = $ (GXG + X ~) in Minkowski space s¢. We will say that X is Re-nnd if H(X) >0
and X is Re-pd if H(X) > 0.

2. Preliminaries
Definition 2.1. For AeC" ", A’ is said to be a generalized inverse (g-inverse) of A if
AA° A= A 4

Definition 2.2. For AeC" , A"is said to be a reflexive g-inverse of A if
AA'A=Aand A'AA = A’ (5)

Definition 2.3. For Aemen, the Moore-penrose inverse of A denoted as AT is the
unique solution of the equations AXA = A, XAX = X, AX and XA are Hermitian.

The theory of generalized inverses of a matrix plays a fundamental role in
solving matrix equations (refer: 3,10]). By using g-inverse, Re-n.n.d solutions to the
matrix equations AXB =C has been studied by many researchers([5,6,8,11-16 ,18]) and
for reflexive solutions are determined in [4]. Consistency of matrix equations AXA*=B
are discussed involving g-inverses in [2,7,17]. Here, we have a made a similar study, by
using Minkowski inverse of a matrix in Minkowski space . Let us recall the
corresponding generalized inverse of a matrix in Minkowski space 9 in the following:

Definition 2.4. A" is a right (left) normalized g-inverse of A if AA"A = A and A"AA" = A"
and AA" is m-symmetric (A"A is m-symmetric).

Definition 2.5. A" is the Minkowski inverse of A if AA"A = A, ATAA™ = A", AA™ and
A"A are m-symmetric.
Since the Minkowski inverse A" is also a g-inverse of A, we have the following:

Theorem 2.6([10]). A necessary and sufficient condition for the equation AXB = C to
have a solution is AA"CB™B = C, in which case the general solution is X = A"CB"™ +
Y —A"AYBB", where Y is arbitrary.

3. Results

In [1], equivalent conditions for a block matrix to be nnd are determined by using
generalized inverses of a matrix. Here, we shall prove a similar result for a block m-
symmetric matrix to be nnd by using Minkowski inverse.
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Lemma3.1.[9] Let A BeC™" in 9, then N(A")=N(B")if and only if N(A )eN(B ).
Theorem 3.2. Let M e C™™*(™™ ha an m-symmetric matrix given by
A B
M=| "2
= o

where AeC”" and DeC" . ThenM>0ifand onlyif A>0, AA"B=B,D - B A"
B>0.
Proof: Let us partition G in conformity with that of M as G = diag.{G;, G,}, where G;
and G, are metric tensors of order n and m respectively. Since M is m-symmetric, by
equation (2) GM and MG are Hermitian block matrices. M > O if and only if GM > O.
Now by applying Theorem1 of [1] for GM we have , M > O if and only if
GM=>Oifandonlyif A>0O,AA™"B=Band D-B"A™ B > O. Hence the Theorem.

Next, we give necessary and sufficient conditions for the matrix equation AX = B to

have a Re-nnd solution X, where A and B are given matrices of suitable size and presents
a possible explicit expression for X in Minkowski space .

Theorem 3.3. Let AeC"", BeC"". There exists a Re-nnd matrix X eC"
satisfying AX = B if and only if AA"B =B and A B is Re-nnd.
Proof: AcC"™", BeC"™", there exists a Re-nnd Matrix X eC" satisfying AX =
B,, AX = B implies that X = A™B. Therefore AA™B = B. Next to show that A B is Re-
nnd.
AB =AAX) =AX A =(A) X A =(AXA) >0.
In the other direction let us suppose that AA™B = B and AB " is Re-nnd. Now to show that
AX = B for any Re-nnd matrix X e c™"
AX = A(Xo + (I - ATA)Y(1 - ATA))
= AXg + (AY — AATAY) (1 - A"A)
= AXo + (AY — AY) (1 - A"A)
= AXO
AX = B where X, is a solution.
Our main aim is to generalize these results to the equation AXB = C and to
present a general form of Re-nnd solutions of it. First we will consider the equation.
AXA =C (6)
and find necessary and sufficient conditions for the existence of Re-nnd solutions. The next
auxiliary result presents a general form of a solution X of (6) which satisfies H(X) = 0.

Lemma3.4.1f AcC" "  then X eC™ " is a solution of the equation

AXA =0 (7
which satisfies H(X) = 0 if and only if
X=W (I-A"A) - (1 - ATAW 8)

mxm
forsome W eC .
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Proof: Denote r = rank(A). Let us suppose that X is a solution of the equation
AXA =0 and H(X) = 0. Using a singular value decomposition of A = U i Diag(D,0)V,
where U eC"™, VeC™™" are unitary and D e C™" is an invertible matrix. We have
that A" =V~ Diag(D*,0)U and

X=V [Xl Xz}v,
X, X,

(m=r)x(m-r)

for some X, eC”™ and X,eC
From AXA = 0 we get that X; = 0 and by H(X) = 0, that X,=—X, and H(X,) = 0.
0 x,

: } V. Taking into account that H(X,) = 0, for
X, X4

Hence X = V {

- X -
W=V {0 XZ} V, we have that X = W (I — A"A) — (I — A"TA)W . In the other
W

direction we have to check that for arbitrary W € c™" , X defined by X =W (1 - A"A) —
(1- A"A)W s a solution of the equation AXA = 0. That is
AXA = A[W(l-A"A) - (I-A"AW ]A

=A[W-WA"A-W +A"AW ]A

=AWA —AWA"AA —AW A +AATAW A

=AWA —AWA —AW A +AW A

AXA =0

H(X) = %[GXG +X ]

= % [GIW(l —A"A) — (1 - ATA)W ]G +[W(1 —A™A) — (I - A"AW ]]

= %[G[VV—WA““A]— [W —A"AW ]G +[W-WA"A-W +A"AW ]

= %[G[\N—W] -W -W IG+H[W-W-W +W ]

H(X) = 0.

Theorem 3.5. Let A € C™™, CeC™ be given matrices such that the equation (6) is
consistent and let r = rankH(C). There exists a Re-nnd solution of the equation(6) if and
only if C is Re-nnd. In this case the general Re-nnd solution is given by

X=A" CA™ ) +(I- ATA)UU (I - A"A)+W(l - A"A) — (I - A"A)W" 9)
1

with  A™ =A™+ (I- A"A)Z((H(C)) 2 )" (10)
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1
where A", (H(C))?2)™ are arbitrary but fixed Minkowski inverse of A and (H(C))
respectively Ze C™", Ue C™™") we C™™ are arbitrary matrices.
Proof : If X is Re-nnd solution of the equation AH(X)A™ = H(C)=0. In the other
direction, if C is Re-nnd, then X, = A"C(A™)" is Re-nnd solution of the equation (6).
AXoA” = A[A"C(A™]A”
= AA"C(A™)"A”
= AA"C(A™)"A”
AX,A"=C.
Let us prove that a representation of the general Re-nnd solution is given by (9). If X is
defined by (9), then X is Re-nnd and AXA™ = AA"C(AA™)™ = C. If X is an arbitrary Re-
nnd solution of (6), then H(X) is an m-symmetric non-negative definite solution of the
equation AZA™ = H(C), so by Theorem 1 of [7],
HX) = A™H(C)(A™ ) + (1 - A"TA)UU (I - A"A)",

where A™ is given by (10), for some Ze C™" and U € C™™",

Note that H(X) = H((A) ™ C(A™ ))™+(I - A"A)UU~(I — A"A)",

implying X = A™ C(A™ )™ + (I - A"TA)UU(I — A"A)” + Z, where H(Z) = 0 and AZA™ =
0. Using lemma 3.4, we have that Z = W(I — A"A) — (I - A"A)W", for some W € C™".
Hence we get that X has a representation as in (9).

N~

Now let us consider the equation

AXB=C (11)
where A eC™™ B eC™" and C € C™ are given matrices and find necessary and
sufficient conditions for the existence of a Re-nnd solution. Without loss of generality we
may assume that n = m and the matrices A and B are both non-negative definite.
This follows from the fact that whenever AXB = C is solvable then X is a solution of
that equation if and only if X is a solution of the equation A"”AXBB™ = A"CB". Hence from
now on, we assume that A and B are non-negative definite matrices from the space C™".
The following theorem presents necessary and sufficient conditions for the equation AXB
= C to have a Re-nnd solution.

Theorem 3.6. Let A, B, Ce C™" be given matrices such that equation (11) is solvable.
Then, there exists a Re-nnd solution of (11) if and only if

T=B(A+B)"C(A+B)"A (12)
is Re-nnd, where (A + B)" is the Minkowski inverse of A + B. In this case a general Re-
nnd solution is given by

X = (A+B) ™ (C+Y+Z+W)((A+B)™ ) +(I- (A+B)"(A+B))UU (I - (A+B)")(A+B))

+Q(I - (A+B)"(A+B)) - (1 - (A + B)"(A + B))Q". (13)
where Y, Z, W, are arbitrary solutions of the equations
Y(A+B)"B = C(A+B)"A, A(A+B)"Z = B(A+B)"C, A(A+B)"W(A+B)"B =T, (14)

such that C + Y + Z + W is Re-nnd, (A + B)™ is defined by
1

(A+B)™ = (A+B)" + (- (A+B)"(A + B)P((H(C + Y + Z + W)) 2)",
where U € C™™ Qe C™" P e C™ are arbitrary, r = rank(C + Y + Z + W).
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Proof: Denote by
E=(A+B)"B,F=CA+B)"A,K=A(A+B)",L=B(A+B)"C.
Now equations (14) are equivalent to
YE=F,KZ=LKWE=T. (15)
Using (4) and the fact E is invertible in % and E™ = B"(A+B), we have that

FE"E = C(A+B)" AB" (A+B)(A+B)"B
= C(A+B)" AB"B
= C(A+B)" A
=F
Therefore FE™ E=F, which implies that the equation YE = F is consistent. In a similar
way, we can prove that the other two equations from(15) are consistent. Furthermore,

T =F E=KL" isRe-nnd which implies by Theorem 3.4, that the first two equations
from(4) have Re-nnd solutions. Now suppose that the equation (11) has a Re-nnd solution
X. Then
H(T) = H(B(A+B)™ AXB(A+B)™ A)
= (B(A+B)" A)H(X)(B(A+B)"A) ~ >0
Conversely, Let T be Re-nnd. We can check that
Xo= (A+B)"(C+Y+Z+W)(A+B)" (16)
is a solution of the equation(1l) where Y,ZW are arbitrary solutions of the
equations(15). This follows from
AXoB = (A+B)(A+B)"™ C(A+B)" (A+B)
= (A+B) (A+B)" AA"CB"B(A+B)" (A+B)=AA"CB"B
AX,B=C
Now we have to prove that for some choice of Y,Z,W matrix C+Y+Z+W is Re-nnd which
would imply that X, is Re-nnd.

Let

Y =FE"- (FE™ ™~ + (E" ~F~ EE" +(I-EE™" (I-EE™),

Z=K"L-(K"L) " +K"KL (K™ "+ (I-kK"K)Q(I-K"K),
W = K" TE" - ( I-K"K)S-S( I-EE™),
whereQ=(C -K"T "E™(C™—K"T ~ E™)  andS=K"KC ~ +C~ EE™ Obviously
Y,Z,W are the solutions of the equations (15) and
H(Y) = (E™ ™ H(T) E™ + (I-EE™ ~ (I-EE™),
H(Z) = K™H(T) (K™) ~ +( I-FK"K)H(Q)( I-K"K) ™,
HW) =K"TE"+(E™ ™ T ~ (K™ ~-H(C~ EE™K"KC ™ 2K"T ~E").
Using K"KK™T “E™=K"KK"KL ™ E"
=K"KL ™ E"
=K"T "E",
K'T "E"EE"=K"F~ EE"EE"=K"F EE"=K"T " E",
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KCTE=KL =T~
We compute,
H(C+Y+Z+W)= ((E™) +K™ H(M)((E™ ~ +K™ ~ +[(I-EE™) ~ (I-K"K)]D(I-EE™(I-K"K " ],
where
| C—(EM ™ T(KM”
C™-KM™~EM H(Q)

By Theorem 3.2, it follows that D is non-negative definite. So H({C+Y+Z+W)>0.

Hence, with such a choice of Y, Z, W it can be seen that X, defined by (16) is Re-nnd
solutions of (11). So we proved the sufficient part of the theorem.

Let X be an arbitrary Re-nnd solutions of (11). It is evident that Y=AXA, Z=BXB and
W=BXA are solutions of (15), and that (A+B)X(A+B)=C+Y+Z+W is Re-nnd. Now,
using Theorem 3.5, we get that X has the representation (13). Let us mention that, if we
apply Theorem 3.6 to the equation

AX=C a7
We get as corollary for the Theorem 4.4 in [8].

D=

Note that if the equation AX = C is consistent then X is a solution of it if and only
if A"AX = A"C . By Theorem 3.6, we get that there exists a Re-nnd solution of the
equation AX = C if and only if

T=(AA+1)AC(AA+D)TAA
is Re-nnd. Note that in this case (I + A A)is invertible matrix. Let us prove that T is
Re-nnd if an only if CA™ is Re-nnd. By

(AA+ DA A=A AAA+D™
we have that

T=(AA+1)TA(CA) (A A+ 1A,
That is

HT) =((A A+ 1)A)H(CA)(AA+1)TAY)”

From the last equality, H(CA™) > 0implies that H(T)>0.
Now, suppose that H(T) >0 then, by the consistence of the equation AX =C,it
follows that AA'C =C which implies that
(AN (A"A+ DT((A) (AA+ 1)) =(A") A'CA"AA" = AA'CA™ =CA~
Thatis H(CA )=((A") (A" A+ )H(T)(A) (A A+1)) >0.
4. Conclusion

In this paper we consider some special cases and give a complete characterization of the

set of Re-nnd solution of AXA = C. The necessary and sufficient conditions for the
existence of Re-nnd solutions of the equation AXB =C in Minkowski space M is
determined.
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