
Intern. J. Fuzzy Mathematical Archive 
Vol. 2, 2013, 70-77 
ISSN: 2320 –3242 (P), 2320 –3250 (online) 
Published on 4 September 2013 
www.researchmathsci.org 
 

70 
 

International Journal of  

The Re-nnd Definite Solutions of the Matrix Equation 
AXB = C in Minkowski Space M 

 
D. Krishnaswamy* and G. Punithavalli  

*Department of Mathematics, Mathematics Wing, DDE 
Annamalai University, Annamalainagar, India 

*e_mail: krishna-swamy2004@yahoo.co.in 
e_mail: punithavarman@gmail.com 

Received 10 July 2013; accepted 29 July 2013 

Abstract. In this paper, we first consider the Matrix equation CAXA =
~

, where 
mnCA ×

∈ , 
nnCC ×

∈  and establish necessary and sufficient conditions for the existence 
of Re-nnd solutions. Further,we determine the necessary and sufficient conditions for the 
existence of Re-nnd solutions of the equation CAXB=  in terms of Minkowski inverses . 
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1. Introduction 

We shall deal with 
mnC ×

 the space of complex n-tuples. We shall index the components 
of a complex vector in Cn from o to n–1. That is u = (u0,u1,u2, …un–1). Let G be the 
Minkowski metric tensors defined by Gu = (u0, – u1, – u2, … – un–1). Clearly the 
Minkowski metric matrix. 
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The Minkowski inner product on Cn is defined by (u,v) =<u, Gv> where <.,.> 
denotes the conventional Hilbert (unitary) space inner product. A space with Minkowski 
inner product is called a Minkowski space denoted as M. 

For 
nmCA ×

∈ , let R(A), rk(A) and A* denote the range space, null space, rank of A 
and the conjugate transpose of A respectively. In denotes the unit matrix of order n. For 

nmCA ×
∈ ,X,Y∈Cn using (1) we get. 

(AX,Y) = [AX,GY] = [X,A*GY] = [X,G[GA*G]Y] = [X,G
~A Y] = (X, 

~A Y). 

The Matrix 
~A  = GA*G is called the Minkowski adjoint of A in M, where A* is the 

usual Hermitian adjoint of A . It is well known that for 
nnCA ×

∈ , rk(AA*) = rk(A*A) = 
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rk(A) and in general )()()( ~~ ArkAArkAArk ≠≠ . Naturally we call a matrix 
nnCA ×

∈  is m-symmetric in Minkowski space M if 
~A  = A. From the definition 

~A  = 
GA*G, we have the following equivalence proved in [9]. 

A is m – symmetric iff AG is Hermitian iff GA is Hermitian.           (2) 

A is m – symmetric iff (AX,X) = (X, 
~A X), for every X∈Cn           (3) 

The Hermitian part of X is defined as H(X) = 2
1 (X + X*). We say that X is Re-nnd if 

H(X) ≥ 0 and X is Re-pd if H(X) > 0. The Hermitian part of X is defined as  

H(X) = 2
1 (GXG + 

~X ) in Minkowski space M. We will say that X is Re-nnd if H(X) ≥ 0 
and X is Re-pd if H(X) > 0. 

 
2. Preliminaries 

Definition 2.1. For 
nmCA ×

∈ , 
gA  is said to be a generalized inverse (g-inverse) of A if 

   AAAAg
=                           (4) 

Definition 2.2. For 
nmCA ×

∈ , Ar is said to be a reflexive g-inverse of A if 
   AArA = A and ArAAr = Ar                                                                                          (5) 

 

Definition 2.3. For 
nmCA ×

∈ , the Moore-penrose inverse of A denoted as A  is the 
unique solution of the equations AXA = A, XAX = X, AX and XA are Hermitian. 

The theory of generalized inverses of a matrix plays a fundamental role in 
solving matrix equations (refer: 3,10]). By using g-inverse, Re-n.n.d solutions to the 
matrix equations AXB =C has been studied  by many researchers([5,6,8,11-16 ,18]) and 
for reflexive solutions are determined in [4]. Consistency of matrix equations AXA*=B 
are discussed involving g-inverses in [2,7,17]. Here, we have a made a similar study, by 
using Minkowski inverse of a matrix in Minkowski space M. Let us recall the 
corresponding  generalized inverse of a matrix in Minkowski space M in the following: 
      
Definition 2.4. An is a right (left) normalized g-inverse of A if AAnA = A and AnAAn = An 
and AAn is m-symmetric (AnA is m-symmetric). 
 
Definition 2.5. Am is the Minkowski inverse of A if AAmA = A, AmAAm = Am, AAm and 
AmA are m-symmetric. 

Since the Minkowski inverse Am is also a g-inverse of A, we  have the following: 
  
Theorem 2.6([10]). A necessary and sufficient condition for the equation AXB = C to 
have a solution is AAmCBmB = C, in which case the general solution is X = AmCBm +  
Y  – AmAYBBm, where Y is arbitrary. 
 
3. Results    
In [1], equivalent conditions for a block matrix to be nnd are determined by using 
generalized inverses of a matrix.  Here, we shall prove a similar result for a block m-
symmetric matrix to be nnd by using Minkowski inverse. 
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Lemma 3.1. [9] Let 
nmCBA ×

∈,  in M, then N(A*)⊆N(B*)if and only if N(
~A )⊆N(

~B ). 
Theorem 3.2. Let M ∈ C(n+m)×(n+m) be an m-symmetric matrix given by  

   ⎥⎦
⎤

⎢⎣
⎡= DB

BAM ~  

where  
nnCA ×

∈  and 
mmCD ×

∈ . Then M ≥ 0 if and only if A ≥ 0, AAmB = B, D – 
~B Am 

B ≥ 0. 
Proof: Let us partition G in conformity with that of M as G = diag.{G1, G2}, where  G1 
and  G2  are metric tensors of order n and m respectively. Since M is m-symmetric, by 
equation (2) GM and MG are Hermitian block matrices.  M ≥ O if and only if GM ≥ O. 
Now by applying Theorem1 of [1] for GM we have ,  M ≥ O if and only if  
GM ≥ O if and only if  A ≥ O , AAm B = B and  D- B∼Am B ≥ O. Hence the Theorem. 
        Next, we give necessary and sufficient conditions for the matrix equation AX = B to 
have a Re-nnd solution X, where A and B are given matrices of suitable size and presents 
a possible explicit expression for X in Minkowski space M. 

Theorem 3.3. Let 
mnCA ×

∈ , 
mnCB ×

∈ . There exists a Re-nnd matrix 
mmCX ×

∈  

satisfying AX = B if and only if AAmB = B and A
~B  is Re-nnd. 

Proof: 
mnCA ×

∈ , 
mnCB ×

∈ , there exists a Re-nnd Matrix 
mmCX ×

∈  satisfying AX = 

B,, AX = B implies that X = AmB. Therefore AAmB = B. Next to show that A
~B  is Re-

nnd. 

            A
~B  = A(A

~)X  = A 
~X ~A  = (

~A )
~ ~X ~A  = (AX

~A )
~

 ≥ 0. 

In the other direction let us suppose that AAmB = B and AB
~

 is Re-nnd. Now to show that 

AX = B for any Re-nnd matrix X ∈ 
mmC ×

 
  AX = A(X0 + (I – AmA)Y(I – AmA)) 
        = AX0 + (AY – AAmAY) (I – AmA) 
        = AX0 + (AY – AY) (I – AmA) 
        = AX0 
     AX = B where X0 is a solution. 

Our main aim is to generalize these results to the equation AXB = C and to 
present a general form of Re-nnd solutions of it. First we will consider the equation. 

    AXA
~

 = C                         (6) 
and find necessary and sufficient conditions for the existence of Re-nnd solutions. The next 
auxiliary result presents a general form of a solution X of (6) which satisfies H(X) = 0. 
 

Lemma 3.4. If  
mnCA ×

∈ , then 
mmCX ×

∈  is a solution of the equation 

    AXA
~

 = 0                         (7) 
which satisfies H(X) = 0 if and only if 

    X = W (I – AmA) – (I – AmA)W
~

           (8) 

for some 
mmCW ×

∈ . 
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Proof:  Denote r = rank(A). Let us suppose that X is a solution of the equation  

AXA
~

 = 0 and H(X) = 0. Using a singular value decomposition of A = U
~

Diag(D,0)V, 

where 
nnCU ×

∈ , 
mmCV ×

∈  are unitary and 
rrCD ×

∈  is an invertible matrix. We have 
that Am = V ~ Diag(D–1,0)U and 

    X = V
~

 ⎥⎦
⎤

⎢⎣
⎡

43

21
xx
xx  V, 

for some 
rrCX ×

∈1  and 
)()(

4
rmrmCX −×−

∈ . 

From AXA
~

 = 0 we get that X1 = 0 and by H(X) = 0, that 
~
23 XX −=  and H(X4) = 0. 

Hence X = V
~

 ⎥
⎦

⎤
⎢
⎣

⎡
− 42

2
~

0
xx
x

 V. Taking into account that H(X4) = 0, for  

W = V
~

 ⎥⎦

⎤
⎢⎣

⎡

2
40
2

x
xI

 V, we have that X = W (I – AmA) – (I – AmA)W
~

. In the other 

direction we have to check that for arbitrary 
mmCW ×

∈ , X defined by X = W (I – AmA) –  

(I – AmA)W
~

 is a solution of the equation AXA
~

 = 0. That is  

                                      AXA
~

 = A[W(I – AmA) – (I – AmA)W
~

]A
~

 

    = A[W – WAmA – W
~

 + AmAW
~

]A
~

 

    = AWA
~

 – AW AmAA
~

 – AW
~

A
~

 + AAm AW
~

A
~

 

    = AWA
~

 – AWA
~

 – AW
~

A
~

 + AW
~

 A
~

 

    AXA
~

 = 0 

 H(X) = 
2
1

[GXG + X
~

] 

 = 
2
1

[G[W(I – AmA) – (I – AmA)W
~

]G +[W(I – AmA) – (I – AmA)W
~

]]
~

 

 = 
2
1

[G[W – WAmA] – [W
~

 – AmAW
~

]G + [W – WAmA – W
~

 + AmAW
~

]]
~

 

 = 
2
1

[G[W – W]  – [W
~

 –  W
~

]G + [W – W – W
~

 + W
~

]]
~

 

H(X) = 0. 
 
Theorem 3.5. Let A ∈Cnxm, C∈Cnxn be given matrices such that the equation (6) is 
consistent and let r = rankH(C). There exists a Re-nnd solution of the equation(6) if and 
only if C is Re-nnd. In this case the general Re-nnd solution is given by 
X = A

mm C(A
mm )~ + (I – AmA)UU~(I – AmA)~+W(I – AmA) – (I – AmA)W~                             (9)  

 with A
mm = Am + (I–  AmA)Z((H(C)) 2

1

)m          (10)  
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where Am, (H(C)) 2
1

)m are arbitrary but fixed Minkowski inverse of A and (H(C)) 2
1

 
respectively Z∈Cmxn, U∈Cmx(m-r), w∈Cmxm are arbitrary matrices. 
Proof : If X is Re-nnd solution of the equation AH(X)A~ = H(C)≥ 0. In the other 
direction, if C is Re-nnd, then X0 = AmC(Am)~ is Re-nnd solution of the equation (6). 
    AX0A~ = A[AmC(Am)~]A~ 
              = AAmC(Am)~A~ 

          = AAmC(Am)~A~ 

                                               AX0A~ = C. 
Let us prove that a representation of the general Re-nnd solution is given by (9). If X is 
defined by (9), then X is Re-nnd and AXA~ = AAmC(AAm)~ = C. If X is an arbitrary Re-
nnd solution of (6), then H(X) is an m-symmetric non-negative definite solution of the 
equation AZA~ = H(C), so by Theorem 1 of [7], 
  H(X) = AmmH(C)(A

mm )~ + (I – AmA)UU~(I – AmA)~, 
where Amm is given by (10), for some Z∈Cmxn and U ∈  Cmx(m-r). 
Note that H(X) = H((A)

mm C(A
mm ))~+(I – AmA)UU~(I – AmA)~, 

implying X = A
mm C(A

mm )~ + (I – AmA)UU~(I – AmA)~ + Z, where H(Z) = 0 and AZA~ = 
0. Using lemma 3.4, we have that Z = W(I –  AmA) – (I –  AmA)W~, for some W ∈  Cmxn. 
Hence we get that X has a  representation as in (9). 
 
Now let us consider the equation 
   AXB = C                                 (11)     
where A ∈Cnxm, B ∈Cmxn and C ∈  Cnxn are given matrices and find necessary and 
sufficient conditions for the existence of a Re-nnd solution. Without loss of generality we 
may assume that n = m and the matrices A and B are both non-negative definite. 
This follows from the fact that whenever AXB = C is solvable then  X  is a solution of 
that equation if and only if X is a solution of the equation A~AXBB~ = A~CB~. Hence from 
now on, we assume that A and B are non-negative definite matrices from the space Cnxn. 
The following theorem  presents necessary and sufficient conditions for the equation AXB 
= C to have a Re-nnd solution. 
 
Theorem 3.6. Let A, B, C∈Cnxn be given matrices such that equation (11) is solvable. 
Then, there exists a Re-nnd solution of (11) if and only if 
   T = B(A + B)mC(A + B)mA         (12) 
is Re-nnd, where (A + B)m is the Minkowski inverse of A + B. In this case a general Re-
nnd solution is given by 
X = (A+B) 

mm (C+Y+Z+W)((A+B)
mm )~+(I– (A+B)m(A+B))UU~(I – (A+B)m)(A+B)~) 

  +Q(I – (A+B)m(A+B)) – (I – (A + B)m(A + B))Q~.        (13) 
where Y, Z, W, are arbitrary solutions of the equations 
Y(A+B)mB = C(A+B)mA, A(A+B)mZ = B(A+B)mC, A(A+B)mW(A+B)mB = T,       (14) 
such that C + Y + Z + W is Re-nnd, (A + B)

mm is defined by  

 (A + B)
mm = (A + B)m + (I – (A+B)m(A + B))P((H(C + Y + Z + W)) 2

1

)m,         
where U ∈Cmx(n–r), Q∈Cnxn, P∈Cnxn are arbitrary, r = rank(C + Y + Z + W). 
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Proof: Denote by 
E = (A + B)mB, F = C(A + B)mA, K = A(A + B)m, L = B(A + B)mC. 
Now equations (14) are equivalent to    
   YE = F, KZ = L, KWE = T.                        (15) 
Using (4) and the fact E is invertible in M and Em = Bm(A+B), we have that 
 
              FEmE  =  C(A+B)m ABm (A+B)(A+B)m B               
                         =  C(A+B)m ABm B                          
                         =  C(A+B)m A 
                        =  F 
Therefore FEm E=F, which implies that the equation YE = F is consistent. In a similar 
way, we can prove that the other two equations from(15) are consistent. Furthermore, 

T ~ = F ~ E = KL ~  is Re-nnd which implies by Theorem 3.4, that the first two equations 
from(4) have Re-nnd solutions. Now suppose that the equation (11) has a Re-nnd solution 
X. Then 
                       H(T) = H(B(A+B)m AXB(A+B)m A) 

                                = (B(A+B)m A)H(X)(B(A+B)m A) ~  ≥ 0 
Conversely, Let T be Re-nnd. We can check that 
                            X0 = (A+B)m(C+Y+Z+W)(A+B)m          (16) 
is a solution of the equation(11) where Y,Z,W are arbitrary solutions of the 
equations(15). This follows from 
                               AX0B = (A+B)(A+B)m C(A+B)m (A+B) 
                                        = (A+B) (A+B)m AAm CBm B(A+B)m (A+B)=AAm CBm B 
                              AX0B = C 
Now we have to prove that for some choice of Y,Z,W matrix C+Y+Z+W is Re-nnd which 
would imply that X0 is Re-nnd. 
 
Let 

           Y = FEm – (FEm) ~ + (Em ~ F ~ EEm +(I–EEm)~ (I–EEm), 

           Z = KmL – (Km L) ~ +Km KL ~ (Km) ~ + ( I–Km K)Q(I–Km K), 
                      W = Km TEm – ( I–Km K)S–S( I–EEm), 

where Q = (C ~ – Km T ~ Em) (C ~ –Km T ~  Em) ~  and S= Km KC ~ +C ~  EEm. Obviously 
Y,Z,W are the solutions of the equations (15) and  

                    H(Y) = (Em) ~ H(T) Em + (I–EEm) ~  (I–EEm), 

                    H(Z) = KmH(T) (Km) ~ +( I–KmK)H(Q)( I–Km K) ~ , 

                   H(W) = KmTEm +(Em) ~  T ~ (Km) ~ –H(C ~ EEm+KmKC ~ 2Km T ~ Em). 

Using  Km KKm T ~ Em = Km KKmKL ~ Em 

                                     = KmKL ~ Em 

                                                     = Km T ~ Em, 

           Km T ~ Em EEm = KmF ~  EEmEEm = KmF ~ EEm = Km T ~  Em, 
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            KC ~ E = KL ~ = T ~ . 
We compute, 

 H(C+Y+Z+W)= ((Em)~ +Km) H(T)((Em) ~ +Km) ~ +[(I–EEm) ~ (I–KmK)]D(I–EEm(I–KmK ~ ], 
where 

                        D = 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

)(
)()(

~~

~~

QHETKC
KTECI

mm

mm
  

       By Theorem 3.2, it follows that D is non-negative definite. So H(C+Y+Z+W)≥ 0. 
       Hence, with such a choice of Y, Z, W it can be seen that X0 defined by (16) is Re-nnd 
solutions of (11). So we proved the sufficient part of the theorem. 
       Let X be an arbitrary Re-nnd solutions of (11). It is evident that Y=AXA, Z=BXB and 
W=BXA are solutions of (15), and that (A+B)X(A+B)=C+Y+Z+W  is Re-nnd. Now, 
using Theorem 3.5, we get that X has the representation (13). Let us mention that, if we 
apply Theorem 3.6 to the equation 
                                              AX=C            (17) 
We get as corollary for the Theorem 4.4 in  [8]. 
 
       Note that if the equation CAX = is consistent then X is a solution of it if and only 
if CAAXA ~~ = . By Theorem 3.6, we get that there exists a Re-nnd solution of the 
equation CAX =  if and only if 
                         AAIAACAIAAT ~ ~1~~1 )()( −− ++=  

is Re-nnd. Note that in this case )( ~ AAI + is invertible matrix.  Let us prove that T is 
Re-nnd if an only if CA~  is Re-nnd. By 
                                                1~~~1~ )1()( −− +=+ AAAAAAIAA  
we have that  
                                               ,))(()()( ~~1~~~1~ AIAACAAIAAT −− ++=  
That is  
 ~~1~~~1~ )))((())(()( AIAACAHAIAATH −− ++=  
From the last equality, 0)( ~ ≥CAH implies that 0)( ≥TH .  
Now, suppose that 0)( ≥TH ,then, by the consistence of the equation ,CAX = it 
follows that CCAA =†  which implies that  

~~††~~~†~~~†~~† )())()(()()( CACAAAAACAAAIAAATIAAA ===++  

That is .0))())((())()(()( ~~~†~~†~
≥++= IAAATHIAAACAH  

 
4. Conclusion  
In this paper we consider some special cases and give a complete characterization of the 

set of Re-nnd solution of AXA
~

 = C.  The necessary and sufficient conditions for the 
existence of Re-nnd solutions of the equation CAXB =  in Minkowski space  M is 
determined. 
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