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Abstract. Smart cities are transitioning towards sustainable energy infrastructure. This 

transformation requires robust decision-making systems to handle the intricacies of 

imprecision, uncertainty, ambiguity and conflicting criteria. This research proposes a fuzzy 

quantum-based multi-criteria decision-making (MCDM) approach for optimal location 

selection of renewable energy hubs. The developed model is the intersection of fuzzy logic, 

quantum decision theory and MCDM. The key criteria considered in this study include 

costs, energy efficacy, environmental impact, scalability and compatibility. The results 

obtained through this integrated method are more reliable and consistent. The rankings of 

the alternatives are compared with the existing traditional approaches to demonstrate the 

competency of the proposed method. Sensitivity analysis exhibits the increased efficiency 

of the fuzzy quantum-based MCDM approach. 
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1. Introduction 

Industrialisation and urbanisation have caused an increase in the demand for sustainable 

energy in modern cities.  Renewable energy systems are eco-friendly and play a crucial 

role in the smart city framework. The installation of renewable energy hubs fulfils the 

energy requirements of the urban populace. However, as the city ecosystems are 

increasingly technology-driven, selecting a viable location for renewable energy hubs 

becomes more complex. Furthermore, criteria such as costs, energy efficiency, 

environmental impact, scalability, and compatibility are generally considered in this 

decision-making problem. Moreover, these criteria are highly conflicting, 

multidimensional and interdependent. To handle this complex circumstance, the multi-

criteria decision-making (MCDM) methods are generally preferred.  The approach of any 

MCDM method is to select the optimal alternative that satisfies the criteria considered for 

the study. The criteria are usually classified as beneficial and non-beneficial based on their 

influence over the selection of the alternatives. In this case, the criteria such as cost and 
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environmental impact are non-beneficial, and the other criteria are beneficial. The decision 

makers intend to maximize the benefit criteria and to minimize the cost criteria. 

The classical MCDM techniques are well-suited for handling a deterministic-based 

decision-making environment. The MCDM methods are generally used to determine 

criterion weights and rank alternatives. However, these models fall short of addressing 

human cognition, decision uncertainty, non-linearity and interdependent criteria. This has 

led to the development of quantum-based decision-making, guided by the principles of 

superposition, entanglement, and interference. Unlike classical MCDM, quantum-based 

approaches facilitate the decision-makers in considering multiple preferences 

simultaneously, interdependencies between criteria and non-rational human behaviour 

such as indecisiveness and preference reversals. However, if the environment is uncertain 

and ambiguous, quantum models must be integrated with fuzzy logic to evolve a more 

comprehensive and dynamic decision-making model. Zadeh [1] introduced fuzzy sets to 

handle uncertain and vague environments. Since the decision-making situations are 

constrained and hindered by subjective judgements of the experts, imprecise data, fuzzy 

logic-based models are proven to be more effective in deriving optimal solutions to the 

problems. 

 In alignment with it, this research work proposes a fuzzy integrated quantum 

decision-making model and demonstrates the application in the location selection of 

renewable energy hubs. As the decision-making environment involves human reasoning, 

there are chances for inconsistency and non-rationality, leading to conflicting preferences. 

Quantum models, based on the principles of superposition and interference, are effective 

in handling multiple preferences and contextual changes, respectively. Also, the subjective 

opinions of the experts are handled by fuzzy sets. Thus, integrating the principles of 

quantum and fuzzy logic leads to the development of a hybrid decision model. The 

comparison of the characteristics of the models based on traditional MCDM, quantum, and 

fuzzy quantum is presented in Table 1. 

 

Table 1: Comparison of Traditional MCDM, Quantum and Fuzzy Quantum 

Problem Characteristics Traditional 

MCDM 

Quantum Fuzzy 

Quantum 

Vagueness               ×    × 

 
Indeterminacy × 

  
Non-linear Interactions × 

  
Human Cognition  × 

  
Dynamic & Contextual 

Reasoning 
× 

  
Real-world Complexity Partial 

  
 

The above table clearly picturizes the efficiency of the proposed fuzzy quantum-based 

decision-making model. The integration of fuzzy logic outperforms existing models, and 
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this synergy contributes to the development of a more adaptable and compatible model 

suitable for selecting a location for a renewable energy hub.  

The other contents of the work are presented as follows: the literature review is 

discussed in section 2. The basic definitions related to this work are stated in Section 3. 

The methodology for the proposed fuzzy quantum decision-making is described in Section 

4. The application of the developed approach to location selection for a renewable energy 

hub is discussed in Section 5. The results of the model are discussed and compared with 

the existing models in Section 6. The last section concludes the work. 

 

2. Literature review 

This section presents a review of works related to the applications of quantum decision-

making models and other decision models in renewable energy systems. The research gaps 

are identified and the novel contributions of this work are also discussed in this section. 

 Rezvanjou et al., Rahman et al., Adedeji [2-4] applied crisp MCDM methods of 

Simple Additive Weight (SAW), Analytical Hierarchy Process (AHP), Technique for 

Order of Preference by Similarity to Ideal Solution (TOPSIS) in renewable site selection. 

The crisp based MCDM lack competency to handle uncertainty.  To deal with vagueness 

and linguistic representations, researchers developed fuzzy based MCDM. 

Narayanamoorthy et al., Wang et al., and Magableh et al. [5-7] integrated fuzzy logic and 

Fermatean sets with MCDM. Fuzzy representations are used to handle uncertainty and 

subjective experts’ judgement. Goswami et al [8] developed hybrid frameworks such as 

CRITIC-EDAS-CODAS-CoCoSo. Kut and Pietrucha-Urbanik [9] developed AI-based 

decision models to enhance adaptability and robustness. Saraswat et al., [10] Adedeji 

integrated GIS tools with decision-making. Soltani and Imani [11] integrated simulation 

tools such as Monte Carlo in making spatial and probabilistic evaluations of renewable 

energy. The evaluation of regional planning and policy modelling is also performed by 

MCDM. Li et al and Ajabnoor [12-13] explored the strategies and climate policy subjected 

to renewable energy. The review of MCDM applications in renewable energy contexts are 

studied by Sahoo et al[14]. and Hashunao et al [15]. For better understanding the 

aforementioned works are tabulated in Table 2.  

 

Table 2: MCDM Applications in Renewable Energy Systems 

Author and Year MCDM Type Application Domain 

Wang et al. (2018) [6] Fuzzy MCDM Renewable plant location in 

Vietnam 

Adedeji (2020) [4] Crisp MCDM + GIS Hybrid renewable facility 

location 

Narayanamoorthy et al. 

(2022) [5] 

Fermatean Fuzzy MCDM Optimal renewable energy 

plant location 

Rezvanjou et al. (2023) 

[2] 

Crisp MCDM + ML Renewable energy location 

under disruption 

Li et al. (2024) [12] Fuzzy MCDM + 

Cumulative Prospect 

Theory 

Renewable energy path 

selection in Malaysia 

Soltani & Imani (2024) 

[11] 

Crisp MCDM + Monte 

Carlo 

Overcoming barriers to 

renewable energy in Iran 
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Rahman et al. (2024) [3] Crisp MCDM Selecting optimal energy 

source for Bangladesh 

Hashunao et al. (2024) 

[15] 

Crisp MCDM (Review) Survey on site selection 

techniques 

Hosouli et al. (2024) [16] MCDM Photovoltaic thermal (PVT) 

collector selection 

Saraswat et al. (2024) 

[10] 

GIS + Hybrid MCDM Site analysis of multi-

renewable energy in India 

Akpahou et al. (2024) 

[17] 

LEAP + MCDM Energy planning and barrier 

evaluation in Benin 

Ajabnoor (2024) [13] Tree Soft Set + MCDM Climate leadership and 

energy policy evaluation 

Magableh & Bazel 

(2025) [7] 

Multiple MCDM Future renewable energy 

technology planning 

Magableh et al. (2025) 

[18] 

Hybrid Fuzzy MCDM Adopting renewable energy 

strategy 

Gaurav et al. (2025) [19] MCDM Assessment of hybrid energy 

with hydrogen production 

Ersoy (2025) [20] MCDM + Sensitivity 

Analysis 

Impact assessment in Nordic-

Baltic region 

Goswami et al. (2025) 

[8] 

Hybrid MCDM (CRITIC-

EDAS-CODAS-CoCoSo) 

Renewable selection 

framework in India 

Manoharan et al. (2025) 

[21] 

Fuzzy AHP + VIKOR Optimization of renewable-

fed desalination plant 

Kut & Pietrucha-Urbanik 

(2025) [9] 

AI + MCDM Hybrid evaluation of 

renewable systems 

 

The aforementioned MCDM methods discussed both under crisp and fuzzy fall short of 

handling the complexity caused by human-based reasoning and conflicting criteria. This 

led to the development of quantum decision methods. In addition to MCDM methods, 

researchers have applied the quantum decision-making approach. Li [22] applied quantum 

inspired in making recommendations on E-commerce. Mukerjee [23] employed in solar 

site selection. Madal et al, Wu et al , and Yang et al [24-26] have also applied the quantum 

decision-making approach in handling superposition states and conflicting criteria. 

However, these models do not address uncertainty, and this has led to the development of 

fuzzy logic integrated quantum models.  

 The existence of a more comprehensive model to address uncertainty, conflicting 

environment and human-based cognition is very limited. This has motivated the authors to 

develop a more adaptable decision method suitable for dynamic decision-making 

environments.   

 

3. Preliminaries 

This section presents the basic definitions related to this work.  
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3.1. Fuzzy set 

Let X be a universe of discourse. A fuzzy set �̃� is defined to be a set of ordered pairs of 

the form { (x, 𝜇𝐴(𝑥)) , x ∈ 𝑋 }, where 𝜇𝐴(𝑥): 𝑋 → [0,1] is the membership grade of x ∈
𝑋. 
 

3.2. Linguistic Variable 

A variable assuming linguistic values is called as linguistic variable. For example, to 

describe the performance of an equipment, linguistic variables such as‘ low’, ‘medium’ 

and ‘high’ shall be used to describe the working competence of the equipment. 

 

3.3 Fuzzy number 

A fuzzy number B is a special kind of fuzzy set on R satisfying the following properties,  

(i) B is a normal fuzzy set 

(ii) Support is bounded 

(iii) αB is a closed interval 

here 𝜇𝐵(𝑥): 𝑅 → [0,1].  
 

3.4. Triangular fuzzy number 

Triangular fuzzy number �̃� is of the form (l,m,n), where 

𝜇𝑇(𝑥) =  

{
 
 

 
 

0       𝑥 < 𝑙
𝑥 − 𝑙

𝑚 − 𝑙
       𝑙 ≤ 𝑥 ≤ 𝑚

𝑛 − 𝑥

𝑛 −𝑚
     𝑚 ≤ 𝑥 ≤ 𝑛

0        𝑥 > 𝑛

 

3.5 Arithmetic Properties of Triangular Fuzzy Number 

Let �̃� = (𝑙1,m1,n1) and �̃� = (𝑙2,m2,n2) 

 Addition: 

�̃� + �̃�= (𝑙1 + 𝑙2, 𝑚1 +𝑚2, 𝑢1 + 𝑢2) 

 Subtraction: 

 �̃� − �̃�= (𝑙1 − 𝑢2,𝑚1 −𝑚2, 𝑢1 − 𝑙2) 

 Multiplication(approximate): 

�̃� + �̃�= (𝑙1. 𝑙2, 𝑚1.𝑚2, 𝑢1. 𝑢2) 

 Division( if 0∉ �̃�): 

�̃�/�̃� = (𝑙1/𝑢2,𝑚1/𝑚2, 𝑢1/𝑙2) 

 

3.6. Defuzzification 

A triangular fuzzy number of the form �̃� = (𝑙,𝑚, 𝑛) is converted to its crisp form using 

centroid method. 

𝑇 =
𝑙 + 𝑚 + 𝑛

3
 

3.7. Decision matrix 

A matrix representing the performance of m alternatives A1, A2,…, Am  with respect to n 

criteria C1, C2,…, Cn. The decision matrix D is generally represented of the form D=[xij]m×n 
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3.8. Superposition state  

The preference of the decision maker to an alternative can be represented as a quantum 

superposition. 

|𝜓𝑖𝑗⟩ =  ∑𝛼𝑖𝑗|1⟩

𝑛

𝑖=1

 

where: 

 |𝐴𝑖⟩:quantum state corresponding to alternative 𝐴𝑖 
 𝛼𝑖 𝜖 𝐶:complex probability amplitude 

 ∑ |𝛼𝑖|
2 = 1𝑛

𝑖=1  

 

4. Methodology of fuzzy quantum decision making 

This section presents the steps involved in the decision-making approach of Fuzzy 

Quantum. 

 

Step 1: Define Alternatives and Criteria of the problem of study 

Let  

 A={𝐴1, 𝐴2,…, 𝐴𝑛} be the set of alternatives 

 C={𝐶1, 𝐶2,…, 𝐶𝑚} be the set of criteria 

 W={𝑤1, 𝑤2,…, 𝑤𝑚} be the weight vector of the criteria such that ∑𝑤𝑗 = 1 

 

Step 2: Construction of Fuzzy Decision Matrix with linguistic values 

The decision-making matrix considering linguistic values is initially constructed, where 

each value of the matrix represents the performance of the alternatives with respect to the 

criteria. The linguistic values are represented using triangular fuzzy numbers of the form 

�̃�𝑖𝑗 = (𝑙𝑖𝑗, 𝑚𝑖𝑗 , 𝑢𝑖𝑗). Thus, the linguistic matrix is modified into a triangular fuzzy matrix. 

 

�̃� = [

�̃�11 �̃�12 ⋯ �̃�1𝑚
�̃�21 �̃�22 … �̃�2𝑚
⋮
�̃�𝑛1

⋮
�̃�𝑛2

⋱
…

⋮
�̃�𝑛𝑚

] 

 

Step 3: Normalization of the Triangular Fuzzy Decision Matrix 

The matrix obtained in Step 2 is normalized using the (1) and (2) 

For benefit criteria 

�̃�𝑖𝑗
𝑁 = (

𝑙𝑖𝑗

𝑢𝑗
+  ,

𝑚𝑖𝑗

𝑢𝑗
+ ,

𝑢𝑖𝑗

𝑢𝑗
+) where 𝑢𝑗

+=max
𝑖
𝑢𝑖𝑗               (1) 

For cost criteria  

�̃�𝑖𝑗
𝑁 = (

𝑙𝑗
−

𝑢𝑖𝑗
 ,
𝑙𝑗
−

𝑚𝑖𝑗
,
𝑙𝑗
−

𝑙𝑖𝑗
) where 𝑙𝑗

−=min
𝑖
𝑙𝑖𝑗                (2) 

 

Step 4: Quantum Representation of Fuzzy preferences 

The fuzzy normalized values obtained in Step 4 are modelled as quantum states.  For each 

alternative-criterion pair �̃�𝑖𝑗
𝑁= ( a,b,c), define a quantum preference amplitude: 
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𝜓𝑖𝑗 = 𝛼𝑖𝑗|1⟩+𝛽𝑖𝑗|0⟩ such that |𝛼𝑖𝑗|
2
+ |𝛽𝑖𝑗|

2
=1 

Let 

|𝛼𝑖𝑗|
2
= Defuzzified value of �̃�𝑖𝑗

𝑁.  

The centroid method of defuzzification is used.  

Then |𝛽𝑖𝑗|
2
= 1 − |𝛼𝑖𝑗|

2
. This represents the superposition of both agreeing and 

disagreeing decision states. 

 

Step 5: Aggregate Quantum Preferences Across Criteria 

The quantum -weighted preference for each alternative is computed using (3) 

 

𝑄𝑖 = ∑ 𝑤𝑗.
𝑚
𝑗=1 |𝛼𝑖𝑗|

2
                 (3) 

 

The value 𝑄𝑖  is the aggregate quantum preference across all criteria. 

 

Step 6: Ranking of the Alternatives 

The alternatives 𝐴1, 𝐴2,…, 𝐴𝑛 are ranked based on aggregate score values obtained in Step 

5. The alternatives with higher values of  𝑄𝑖 are given priorities.  

 

5. Illustration of fuzzy quantum decision making 

In this section, the fuzzy-based quantum approach is applied in the location selection of a 

renewable energy hub in smart cities. Let us consider the decision-making problem 

considering five location sites of the energy hub, say A, B, C, D and E. The criteria 

considered for location selection are Cost (C1), Energy Efficiency (C2), Environmental 

Impact (C3), Scalability (C4) and Compatibility (C5). The brief description of the criteria 

considered is presented in Table 3. 

 

Table 3: Description of criteria 

Criteria Description Nature 

Cost (C1) Investments and 

Operational expenses 

Non-Benefit 

Energy Efficiency (C2) The ratio of output to 

input 

Benefit 

Environmental Impact 

(C3) 

The impacts on 

ecosystem in terms of 

emissions and land use 

Non-Benefit 

Scalability (C4) The potential for 

capacity expansion 

Benefit 

Compatibility (C5) The flexibility in 

integrating with urban 

systems 

Benefit 

 

Let us construct a hypothetical decision-making matrix with linguistic values. 
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Alternatives  C1  C2  C3 C4 C5 

A H M M L M 

B M H L M H 

C VH M H VH VH 

D L VH VL H M 

E M L M M L 

 

The description of the linguistic values is presented in Table 4. 

 

Table 4: Numerical values of linguistic term 

Linguistic 

Term 

Meaning  Triangular 

Fuzzy  

Representation 

Defuzzified 

Values 

Very Low (VL) Extremely unsatisfactory (0.0, 0.0, 0.2) 0.067 

Low (L) Below average (0.1, 0.3, 0.5) 0.300 

Medium (M) Average/satisfactory (0.4, 0.5, 0.6) 0.500 

High (H) Above average (0.6, 0.7, 0.9) 0.733 

Very High 

(VH) 

Excellent (0.8, 1.0, 1.0) 0.933 

 

The modified matrix is obtained using the respective triangular fuzzy number values 

represented in Table 5 

 

Table 5: Modified Matrix with Triangular fuzzy numbers 

Alt.  C1  C2  C3 C4 C5 

A (0.6, 0.7, 0.9) (0.4, 0.5, 0.6) (0.4, 0.5, 0.6) (0.1, 0.3, 0.5) (0.4, 0.5, 0.6) 

B (0.4, 0.5, 0.6) (0.6, 0.7, 0.9) (0.1, 0.3, 0.5) (0.4, 0.5, 0.6) (0.6, 0.7, 0.9) 

C (0.8, 1.0, 1.0) (0.4, 0.5, 0.6) (0.6, 0.7, 0.9) (0.8, 1.0, 1.0) (0.8, 1.0, 1.0) 

D (0.1, 0.3, 0.5) (0.8, 1.0, 1.0) (0.0, 0.0, 0.2) (0.6, 0.7, 0.9) (0.4, 0.5, 0.6) 

E (0.4, 0.5, 0.6) (0.1, 0.3, 0.5) (0.4, 0.5, 0.6) (0.4, 0.5, 0.6) (0.1, 0.3, 0.5) 

 

Identify max and min values: 

 For benefit criteria (C2, C4, C5): 

uj
+ = max (uij) for all the criteria = 1.0 

 For cost criteria (C1, C3): 

lj
-= min (lij) 

o C1: min = 0.1 

o C3: min = 0.0, but assumed to be 0.01 for computations. 

The normalized matrix �̃�𝑖𝑗
𝑁 is determined using Step 3. 

Alt. C1 ( ↓) C2 (↑) C3 (↓) C4 (↑) C5 (↑) 

A (0.111, 0.143, 

0.167) 

(0.400, 0.500, 

0.600) 

(0.017, 0.020, 

0.025) 

(0.100, 0.300, 

0.500) 

(0.400, 0.500, 

0.600) 

B (0.167, 0.200, 

0.250) 

(0.600, 0.700, 

0.900) 

(0.020, 0.033, 

0.100) 

(0.400, 0.500, 

0.600) 

(0.600, 0.700, 

0.900) 
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C (0.100, 0.100, 

0.125) 

(0.400, 0.500, 

0.600) 

(0.011, 0.014, 

0.017) 

(0.800, 1.000, 

1.000) 

(0.800, 1.000, 

1.000) 

D (0.200, 0.333, 

1.000) 

(0.800, 1.000, 

1.000) 

(0.050, 1.000, 

1.000) 

(0.600, 0.700, 

0.900) 

(0.400, 0.500, 

0.600) 

E (0.167, 0.200, 

0.250) 

(0.100, 0.300, 

0.500) 

(0.017, 0.020, 

0.025) 

(0.400, 0.500, 

0.600) 

(0.100, 0.300, 

0.500) 

 

Let us calculate |𝛼𝑖𝑗|
2
= Defuzzified value of �̃�𝑖𝑗

𝑁 and |𝛽𝑖𝑗|
2
= 1 − |𝛼𝑖𝑗|

2
. These values 

represent the superposition of both agreeing and disagreeing decision states. 

For Alternative A 

 C1: (0.111, 0.143, 0.167) → α2  =  
0.111+0.143+0.1673

3
 = 0.140 

 C2: (0.4, 0.5, 0.6) → 0.500 

 C3: (0.017, 0.020, 0.025) → 0.021 

 C4: (0.1, 0.3, 0.5) → 0.300 

 C5: (0.4, 0.5, 0.6) → 0.500 

So A's quantum preferences ∣αij∣2 = [0.140, 0.500, 0.021, 0.300, 0.500] 

The aggregate Quantum Preference Qi is determined using step 5. 

𝑄𝑖 = ∑ 𝑤𝑗.
5
𝑗=1 |𝛼𝑖𝑗|

2
, 𝑤𝑗 = 0.2 ∀ 𝐶𝑖 

For each of the alternate, 

 A: QA=0.2(0.140+0.500+0.021+0.300+0.500)=0.2×1.461=0.292 

 B: QB=0.2(0.206+0.733+0.051+0.500+0.733)=0.2×2.223=0.445 

 C: QC=0.2(0.108+0.500+0.014+0.933+0.933)=0.2×2.488=0.498 

 D: QD=0.2(0.511+0.933+0.683+0.733+0.500)=0.2×3.360=0.672 

 E: QE=0.2(0.206+0.300+0.021+0.500+0.300)=0.2×1.327=0.265 

Based on the above computations, the rankings of the alternatives is presented in Table 6. 

 

Table 6: The final ranking of the alternatives 

Alternative Qi Rank 

D 0.672 1 

C 0.498 2 

B 0.445 3 

A 0.292 4 

E 0.265 5 

 

6. Results and discussions 

From the ranking results in Table 6, it is observed that the alternative D occupies first 

position, and it seems to be a more suitable location for a renewable energy hub. To 

demonstrate the consistency of the results obtained using fuzzy quantum, the same problem 

is handled using crisp and fuzzy MCDM. The crisp MCDM method of Simple Additive 

Weighting and Fuzzy TOPSIS (Technique for Order of Preference by Similarity to Ideal 

Solution) is applied, and the results obtained are presented in Table 7. 
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Table 7: Fuzzy SAW, Fuzzy TOPSIS and Fuzzy Quantum values 

Alt SAW (Crisp) Fuzzy TOPSIS Fuzzy Quantum 

A 0.415 0.426 0.292 

B 0.609 0.637 0.445 

C 0.606 0.675 0.498 

D 0.867 0.870 0.672 

E 0.404 0.404 0.265 

 

 From Table 7, it is found that alternative D occupies the first position in all three 

different methods. However, the fuzzy quantum approach quantifies the strong preference 

for alternative D using quantum amplitudes α² = 0.672, providing more decision 

confidence. The reliability of the results is also observed. Alternatives B and C have close 

scores in crisp and fuzzy MCDM methods; however, the fuzzy quantum scores show finer 

differentiation. This facilitates decision-making free from conflicts.  The proposed fuzzy 

quantum method shows decision stability. The method of fuzzy quantum serves as a 

validator and it strengthens the decision results. The below table 8 elucidate the SAW vs 

Fuzzy TOPSIS procedures. 

 

Table 8: Methodology of SAW vs Fuzzy TOPSIS  

Step SAW (Simple Additive 

Weighting) 

Fuzzy TOPSIS 

Definition of 

Alternatives and 

Criteria 

Define alternatives 

A1,A2,...,An and criteria 

C1,C2,...,Cm. Assign weights 

w1,w2,...,wm such that 

∑𝑤𝑗 = 1 

Same as SAW: Define 

alternatives, criteria, and fuzzy 

weights �̃�𝑗(can be crisp or fuzzy). 

Construction of 

Decision Matrix 

Build a crisp decision 

matrix X=[𝑥𝑖𝑗],where 𝑥𝑖𝑗 is 

the score of alternative 𝐴𝑖 
under criterion 𝐶𝑗. 

Construct a fuzzy decision matrix 

using triangular fuzzy numbers 

�̃�𝑖𝑗 = (𝑙𝑖𝑗 , 𝑚𝑖𝑗, 𝑢𝑖𝑗) 

Normalization of 

the Decision 

Matrix 

Benefit 𝑥𝑖𝑗
′= 

𝑥𝑖𝑗

𝑚𝑎𝑥 𝑥𝑖𝑗
 

Cost 𝑥𝑖𝑗
′= 

min𝑥𝑖𝑗

𝑥𝑖𝑗
 

Normalize fuzzy numbers:  

 Benefit: �̃�𝑖𝑗 = (
𝑙𝑖𝑗

𝑢𝑗
 ,
𝑚𝑖𝑗

𝑢𝑗
,
𝑢𝑖𝑗

𝑢𝑗
) 

Cost : �̃�𝑖𝑗 = (
𝑙𝑗

𝑢𝑖𝑗
 ,

𝑙𝑗

𝑚𝑖𝑗
,
𝑙𝑗

𝑙𝑖𝑗
) 

Determining the 

normalized 

weighted matrix 

Compute weighted 

normalized scores: 𝑣𝑖𝑗 =

𝑤𝑗. 𝑥𝑖𝑗
′ 

Multiply normalized fuzzy values 

by fuzzy weights: �̃�𝑖𝑗 = �̃�𝑗⨂ �̃�𝑖𝑗 

Computation of 

Total Score 
𝑆𝑖 = ∑ 𝑣𝑖𝑗

𝑚
𝑗=1  (large 𝑆𝑖 𝑖𝑠 

better) 

Calculate distances from: - FPIS 

(Ideal):  

�̃�+=max(𝑢𝑖𝑗) 

FNIS (Negative Ideal):  

�̃�−=min(𝑙𝑖𝑗) 
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Computation of  

Closeness 

Coefficient (CC) 

Not applicable – final score 

is 𝑆𝑖 
Compute distances: 

𝐷𝑖
+=distance from FPIS 

𝐷𝑖
−=distance from FNIS 

𝐶𝐶𝑖=
𝐷𝑖
+

𝐷𝑖
++𝐷𝑖

− 

 

Ranking of the 

Alternatives 

Rank alternatives based on 

the highest 𝑆𝑖 
Rank alternatives based on 

highest 𝐶𝐶𝑖 
  

7. Conclusion 

This research work proposes a fuzzy-based quantum decision-making method. The 

efficiency of the newly developed approach is demonstrated by applying it to the problem 

of selecting a location for a renewable energy hub in smart cities. The hybrid method 

integrates fuzzy logic with a quantum approach to increase the efficiency of ranking the 

alternatives. The comparison of the results with the crisp and fuzzy MCDM methods falls 

short off handling the non-linearity of the alternatives and multiple preferences. The robust 

nature of fuzzy quantum decision making is well exhibited in this work, and this shall be 

applied to a real-time data set.  
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