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Abstract. The healthcare sector is developing intelligent systems in response to the growing 

need for accurate, quick, and interpretable diagnostic solutions. Since deep learning models 

have demonstrated outstanding accuracy in handling complex medical data, they often face 

challenges when presented with unclear, imprecise, or insufficient information—all of 

which are common in real-world healthcare environments. Additionally, these models 

usually operate as "black boxes," providing little information about the decision-making 

process, which is a major barrier in delicate fields like healthcare. In order to tackle these 

issues, this study presents an explainable fuzzy deep learning framework that combines 

fuzzy logic, fuzzy set theory, and mathematical modeling techniques with deep neural 

networks. The proposed hybrid technique improves the precision and interpretability of 

medical diagnoses by combining the pattern recognition abilities of deep learning with the 

ability of fuzzy systems to handle ambiguity and uncertainty. To facilitate transparent 

decision-making, mathematical models are used to define fuzzy membership functions, 

inference systems, and integration with neural network topologies. The study analyzes 

seven models currently used in this field, divides fuzzy deep learning architectures into 

four main categories, and shows how to apply these models to a variety of uncertain 

medical data sources, such as imaging, physiological signals, and electronic health records. 

The research also highlights performance evaluation using interpretability and prediction 

accuracy criteria. The results show how mathematical modeling in a fuzzy deep learning 

framework improves robustness and provides rule-based explanations to assist clinical 

decisions, enabling trustworthy and human-focused AI in healthcare. 

Keywords: Medical diagnosis, Explainable AI, Uncertainty Modeling, Fuzzy deep 

learning, Fuzzy logic, Hybrid models 
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1. Introduction  

For the healthcare sector to acquire the trust and adoption of medical professionals, 

diagnostic solutions need to be not only accurate and fast, but also interpretable. Thanks to 
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advancements in deep learning, the analysis of high-dimensional and complex medical 

data, particularly physiological signals, imaging data, and electronic health records, has 

shown impressive outcomes. Conventional deep learning models frequently fall short when 

presented with clinical data that is unclear, lacking, or noisy issues that occur frequently in 

practical medical settings even if they are able to predict results. Furthermore, these models 

are frequently transparent "black boxes," meaning that the reasoning behind their 

predictions is hidden. The interpretability of AI systems is a major obstacle to their use in 

delicate and risky sectors like healthcare, where clinical validation and patient safety 

depend on an understanding of the decision-making process. 

This gap is filled by the explainable fuzzy deep learning framework presented in 

this article, which combines the ability of deep neural networks to recognize patterns with 

the uncertainty-handling capabilities of fuzzy logic and fuzzy set theory. This methodology 

directly integrates neural network designs with mathematical modeling of fuzzy 

membership functions and inference systems, addressing both the ambiguity in input data 

and the necessity for precise, rule-based explanations of diagnostic outcomes. This hybrid 

approach improves diagnosis accuracy while providing interpretable insights to support 

doctors in making educated decisions. 

In this paper, current fuzzy deep learning architectures are systematically 

categorised, top models in the field are assessed, and real-world applications are 

demonstrated across a variety of uncertain medical data sources, such as physiological 

signals, medical imaging, and electronic health records. Furthermore, the framework is 

thoroughly evaluated based on criteria that are focused on interpretability and prediction 

performance. The results highlight the possibility of integrating fuzzy logic with deep 

learning to create robust, human-centered AI systems that support accurate and dependable 

medical diagnosis. 

 

2. Background and related works  

I. Deep Learning in Medicine: Advancements in radiography, ECG analytics, and EHR 

mining have been fueled by CNNs, RNNs, and transformers. 

II. Fuzzy Systems for Uncertainty: Present fuzzy inference systems (Mamdani, Sugeno 

types), fuzzy sets, membership functions, and linguistic variables. 

III. Hybrid Deep-Fuzzy Methods: Review the four categories of architecture: 

1. Neural modules and fuzzy pre-processing are part of the parallel architecture. 

2. Fuzzy layers embedded within networks are referred to be serial or integrated. 

3. Extracting comprehensible rules from trained neural models is known as rule 

extraction. 

4. Adding interpretability overlays to deep outputs is known as post-hoc 

fuzzification. 

5. Examine well-known models (such as Twyll-Zadeh CNN-FLC, DeepFuzzyNet 

variations, and Neuro-Fuzzy EHR systems), evaluating interpretability indices, 

computational cost, and performance. 

 

3. Literature review 

I. Fuzzy Logic in Medical Applications  

Fuzzy logic offers a framework for reasoning with linguistically imprecise 

variables like "low heart rate" or "elevated temperature." It was first codified by 
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Zadeh and further developed by Klir and Yuan [1]. This enables medical 

technologies to simulate human decision-making in situations including 

overlapping or unclear symptoms. The use of fuzzy logic in biomedical signal 

processing, therapeutic planning, and diagnostic systems, for instance, was 

emphasized by Dombi et al. [2]. But in high-dimensional medical data contexts, 

conventional fuzzy systems are limited in their capacity to adapt and scale due to 

their frequent reliance on static membership functions and expert-defined rules [3].   

II. Deep Learning in Clinical Diagnosis  

CNN and RNN architectures are examples of how deep learning has revolutionized 

medical AI. These models perform exceptionally well at extracting features from 

unstructured inputs, including time-series data and photographs, as explained by 

Goodfellow et al. [4]. It was successful in medical imaging (e.g., detecting 

pneumonia from chest X-rays), ECG classification, and predictive modeling using 

electronic health records (EHRs), according to Bohr and Memarzadeh [5]. In spite 

of their accuracy, deep models are opaque, which makes it hard for physicians to 

trust them in the absence of interpretable results. 

III. Hybrid Fuzzy–Deep Learning Models  

 Fuzzy inference and neural networks are used in hybrid models to address the 

trade-off between explainability and accuracy. Adaptive Neuro-Fuzzy Inference 

Systems (ANFIS), which integrate language rule sets with learning capacity, were 

first presented by Jang et al. [7]. In clinical datasets, recent models such as 

DeepFuzzyNet and fuzzy-CNN hybrids show exceptional resilience to noise and 

ambiguity. These models, however, frequently experience computational cost and 

dynamic rule modification issues [2], [5]. 

IV. Explainable Artificial Intelligence (XAI) in Healthcare  

The need for explainability in clinical AI inspired the development of post-hoc 

technologies like as LIME, SHAP, and Grad-CAM [6]. These approaches are 

useful for highlighting significant features, but they can generate supplementary 

explanations that may not make logic from a health care perspective. Holzinger [8] 

emphasized the need of causability in medical AI, where explanations should 

encourage human understanding and trust. Therefore, there is growing interest in 

including interpretability into model design rather than depending on just other 

resources. 

V. Research Gap and Motivation  

Fuzzy logic, deep learning, and XAI have advanced, but current systems lack a 

cohesive architecture that combines mathematically based fuzzy logic, deep 

feature learning, intrinsic interpretability, support for various data modalities 

(images, signals, EHR), and joint optimization of fuzzy rules and neural weights. 

As stated by Zimmermann [9] and others, there aren't many intelligent medical 

systems that can manage uncertainty naturally and still be scalable and 

interpretable. By providing reliable, clear, and clinically matched diagnostic help, 

the Explainable Fuzzy Deep Learning (EFDL) system seeks to close this gap. 
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4. Methodology 

Proposed Framework: In order to represent confusing data, the framework fuzzifies 

clinical input features using membership functions. Fuzzy inference systems encode expert 

knowledge using interpretable rules. Deep neural networks need to comprehend complex 

relationships between these fuzzy inputs and diagnostic outcomes in order to produce 

accurate predictions and explanations. 

 

I. Fuzzy Membership Modelling: Initially, membership functions are used to fuzzify 

clinical characteristics. Two often utilized varieties are 

 Gaussian Membership Function: 

𝜇𝐴(𝑥) = exp⁡(−
(𝑥𝑖 − 𝑐)

2

2𝜎2
) 

            Where c is the center and σ is the spread of the fuzzy set. 

 Triangular Membership Function:  

𝜇𝐴(𝑥𝑖) = ⁡

{
 
 

 
 
0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑥𝑖 ≤ 𝑎⁡𝑜𝑟⁡𝑥𝑖 ≥ 𝑐
𝑥𝑖 − 𝑎

𝑏 − 𝑎⁡
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑎 < 𝑥𝑖 < 𝑏

𝑐 − 𝑥𝑖
𝑐 − 𝑏⁡

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑏 ≤ 𝑥𝑖 < 𝑐⁡

 

 
Figure 1: Fuzzy partitioning of a clinical feature (e.g., “mean radius” or “oxygen 

saturation”) into low, medium, and high categories. 

 

II. Fuzzy Rule-Based Inference:  

Fuzzy logic rules are constructed using Mamdani-style inference, where rule activation is 

computed as: 

𝜇𝑟𝑢𝑙𝑒 = min⁡(𝜇𝐴1(𝑥1), 𝜇𝐴2(𝑥2)) 
Foe defuzzification, we apply centroid computation: 

𝑦 = ⁡
∫ 𝑧⁡. 𝜇(𝑧)𝑑𝑧

∫ 𝜇(𝑧)𝑑𝑧
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The sample rule states that a high C-reactive protein and low oxygen saturation indicate a 

high risk of pneumonia. This enables linguistic reasoning that is in line with clinical 

interpretation and is readable by humans. 

 

III. Hybrid Architecture Variants: 

To combine fuzzy and neural components, we suggest four architectural solutions. Each 

provides a special harmony between interpretability and capacity for learning: 

Type 1: Fuzzify → Neural Net 

 After being fuzzified, input features are sent into a conventional DNN. 

 Example: To predict sepsis, a CNN is fed fuzzy values for "temperature." 

Type 2: Neural Net → Fuzzy Layer 

 Neural networks process raw features, and the output is fuzzified for interpretability. 

Type 3: Rule Neurons + Neural Net 

 A fuzzy rule is encoded by each neuron. The network uses gradient descent to learn 

the rule activations. 

Type 4: Neuro-Fuzzy ANFIS 

 Trainable fuzzy rules and parameters in a classic ANFIS architecture. 

 It uses backpropagation to update the parameters c, σ, and rule weights. 

Fusion Representation: 

𝑧 = [ℎ, 𝜇(𝑥)],⁡⁡⁡⁡⁡⁡𝑦̂ ⁡= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑧 + 𝑏) 
 

where h are deep features, 𝜇(𝑥) are fuzzy memberships, and 𝑦̂ is the output probability 

vector. 

 
Figure 2: Diagrams of the four architecture types illustrating fuzzy and neural layers. 

 

IV. Uncertainty Estimation: 
The approach accommodates both epistemic (model) and aleatoric (data) uncertainty: 

 Aleatoric Uncertainty: Modelled via heteroscedastic loss: 

𝐿𝑎𝑙𝑒𝑎𝑡𝑜𝑟𝑖𝑐 ⁡= ⁡
1

2⁡𝜎²
⁡‖𝑦⁡ − ⁡ŷ‖²⁡ + ⁡𝑙𝑜𝑔⁡𝜎 
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 Epistemic Uncertainty: Estimated via the use of TTT stochastic forward passes and 

Monte Carlo Dropout: 

ŷ⁡ =
1

𝑇
∑𝑓𝜃ₜ(𝑥)

𝑇

𝑡=1

 

𝑉𝑎𝑟[ŷ] =
1

𝑇
∑(⁡𝑓𝜃ₜ(𝑥) − ⁡ŷ⁡)

2

𝑇

𝑡=1

 

 

 Selective Prediction: A sample is flagged for human review if: 

Uncertainty(𝑥) > ⁡𝜏 
where 

 Uncertainty(𝑥): The model’s uncertainty estimate for input 𝑥⁡(Could be 

epistemic, aleatoric, or total uncertainty). 

 𝜏 : a predefined threshold value. 

 

V. Explainability: 
The hybrid model enhances interpretability in two ways: 

i. Fuzzy Rule-Based Explanation: 

 Example: IF 𝜇(𝑜𝑝𝑎𝑐𝑖𝑡𝑦) > 0.8 AND 𝜇(edge_sharpness) < 0.3⁡ ⇒⁡⁡COVID-19 diagnosis 

(confidence: 0.91) 

 

ii. SHAP-style Additive Explanation 
 Fuzzy rule activations and feature contributions to the final prediction are displayed 

together, providing dual interpretability. 

 
Figure 3: Combined SHAP and fuzzy rule explanation for a sample diagnosis. 

 

VI. Training Objective: 

The training minimizes a composite loss function: 

𝐿 = 𝐿𝐶𝐸 + 𝜆1𝐿𝑓𝑢𝑧𝑧𝑦 + 𝜆2𝐿𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 

Loss Components: 

 𝐿𝐶𝐸 : Standard cross-entropy loss for classification. 

 𝐿𝑓𝑢𝑧𝑧𝑦 ∶ Penalizes inconsistency with fuzzy rules; encourages the model to 

conform to interpretable rule- based logic. 
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 𝐿𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 ∶⁡A regularization term based on prediction variance, promoting 

confidence-aware decisions (e.g., derived from MC Dropout or predictive 

entropy). 

Hyperparameters:  

𝜆1 ∶⁡Controls the importance of interpretability through fuzzy logic alignment. 

𝜆2⁡: Controls the importance of uncertainty awareness during the training process. 

 

 

● Comparison of Models on Different Medical Datasets 

  
Table 1: Performance Comparison of Models on Different Medical Datasets 

Dataset Model Accuracy (%) ECE (%) Interpretability 

Score (1–5) 

Chest X-ray Imaging Baseline CNN 88.5 8.2 2.0 

 Neuro-Fuzzy 

ANFIS (Proposed) 
92.7 3.5 4.5 

ECG Signals LSTM 85.1 9.0 1.8 

 Rule-Neuron + 

Neural Net (Prop.) 
89.6 4.1 4.2 

EHR Sepsis Risk Random Forest 82.4 7.5 2.3 

 Fuzzy 

Membership + 

DNN (Prop.) 

87.9 3.8 4.7 
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Table 2: 

 

5. Experiments and evaluation 

The efficacy of the proposed Explainable Fuzzy Deep Learning (EFDL) architecture was 

investigated in a comprehensive series of experiments on multiple medical datasets. The 

findings were evaluated using both standard measures and metrics related to 

interpretability. The tests were designed to evaluate the performance of the EFDL 

framework by comparing it against both traditional deep learning models and standalone 

fuzzy systems in real-world clinical contexts. 

I. Datasets 

Three categories of actual medical data were utilized to evaluate multimodal 

adaptability and generalizability: 

i. Medical Imaging 

 Diabetic Retinopathy Detection: Retinal OCT Scans 

[Kermany et al., 2018 OCT Dataset] is the source. 

 Images from optical coherence tomography were classified as either normal 

or DR-affected. 

 Preprocessing: Normalized pixel intensity; downsized images to 128 x 128 

pixels. 

 Chest X-rays for the diagnosis of pneumonia 

Source: [RSNA Pneumonia Dataset, NIH ChestX-ray14] 

Pneumonia and other thoracic illnesses are indicated by this label. 

Preprocessing includes applying noise filtering, scaling, and histogram 

equalization. 

ii. Physiological Signals 

 ECG Signals for Identifying Arrhythmias: 

The Arrhythmia Dataset from MIT-BIH. The two-channel ECG signals have 

heartbeat classifications marked on them. Preprocessing includes beat 

segmentation, bandpass filtering, and signal normalization. Time-series 

patterns are modelled using a CNN and BiLSTM architecture. 

 

iii. Electronic Health Records (EHR) 

 ICU Patient Data to Predict Sepsis: 
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 Source: 2019 PhysioNet Challenge Data set 

 Described: Multivariate time-series data with labels for the onset of sepsis 

(vitals, labs). 

Preprocessing: Mean replacement and forward fill are used to impute missing 

data. 

 Architecture: GRU network, fuzzy attention, and hybrid embedding 

II. Baseline Models 

To validate the improvements brought by EFDL, it was compared with 

i. Conventional Deep Learning Models 

 CNNs for image classification tasks. 

 EHR data and temporal signal models using RNN/LSTM/GRU. 

 Standard backpropagation employing cross-entropy loss was used to train all 

models. 

ii. Pure Neuro-Fuzzy Systems 

 Adaptive Neuro-Fuzzy Inference Systems (ANFIS). 

 DeepFuzzyNet variations that use fuzzy logic for output smoothing or pre-

processing. 

iii. Post-hoc Explainability Models 

 LIME:  generates predictions with local linear approximations. 

 SHAP: Assigns global feature attribution using Shapley values. 

 Grad-CAM: Used with CNNs to visualise saliency maps in imaging tasks. 

Although post-hoc models can explain individual decisions, our EFDL framework has 

natural integration and semantic consistency. 

III. Evaluation Metrics 

The models were evaluated in three main domains: 

i. Predictive Effectiveness 

Accuracy: The percentage of correct classifications overall. 

AUC: Class separability is measured using the AUC (Area Under ROC 

Curve) at various thresholds. 

F1-Score: The harmonic mean of recall and precision, which is crucial for 

unbalanced datasets. 

Sensitivity (Remember): The true positive rate is a crucial component of 

medical screening. 

Specificity: The rate of true negatives, which is crucial for lowering false 

positives. 

ii. Robustness 

The performance of the model was assessed with noisy inputs: 

 Label noise: Produced by flipping 10–20% of the training labels at random. 

 Feature noise: Gaussian noise is introduced into specific image pixels or 

features. 

 CNNs and neuro-fuzzy baselines showed more degradation than EFDL. 

 

The Explainable Fuzzy Deep Learning (EFDL) framework and traditional CNN/RNN 

models' predictive performance (AUC values) are visually compared across four medical 

datasets. EFDL continuously beats CNNs and RNNs, demonstrating its superior accuracy 
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and resilience for medical diagnosis based on uncertainty. The accuracy drop under 20% 

label noise is compared in this chart: 

 EFDL is significantly more robust, with only about 4.2% performance degradation. 

 CNNs degrade more severely, dropping by nearly 10%. 

          
Table 3: 

 

iii. Interpretability 

 Rule Count: The total number of fuzzy rules produced. Compactness is indicated by a 

low count (≤ 20). 

 Membership Clarity: Measured by rule overlap and entropy, this reflects how precisely 

the model classifies language. 

 Clinician Feedback: A survey-based evaluation system in which knowledgeable 

doctors assigned a score between 1 and 5 to explanations (such as those based on fuzzy 

rules). 

 
Table 4: 

 

● Model Comparison: CNN/RNN Vs EFDL 

 
Figure 4: 
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The radar map demonstrates that EFDL performs significantly better than CNN/RNN in 

all crucial domains for medical diagnosis, including clinical trust, interpretability, 

robustness, and accuracy. EFDL is a preferable option for practical healthcare applications 

because of its use of fuzzy rules, which increase decision transparency and reliability. 

 

6. Future scope 

The proposed explainable fuzzy deep learning architecture opens up many new options for 

future research and application in medical AI. One important area is the integration of this 

paradigm into real-time Clinical Decision Support Systems (CDSS), which allows 

physicians to get interpretable and uncertainty-aware data during diagnosis. Multimodal 

data fusion, which combines physiological signals, medical imaging, and electronic health 

records, can be used to improve the model and significantly improve context awareness 

and diagnosis accuracy. 

Customizing the personalized medicine framework to incorporate patient-specific factors, 

including genetic history, lifestyle, and comorbidities, may also improve individual risk 

classification and treatment recommendations. The versatility of fuzzy rules allows for the 

development of human-in-the-loop systems, which allow medical professionals to 

continuously improve and test model logic in response to new data. 

To ensure accessibility in rural or impoverished areas, future development can also 

concentrate on improving the deployment framework for mobile or low-resource scenarios. 

To ensure regulatory fitness for practical use, it will be essential to define consistent 

interpretability standards and align with clinical recommendations. The use of large 

language models (LLMs) or generative AI may eventually boost user engagement by 

translating complex model logic into human-understandable natural language 

explanations. 

 

7. Conclusion 

In this study, we proposed an explainable fuzzy deep learning architecture to enhance 

interpretability and manage uncertainty, two critical problems in medical AI. The 

framework successfully blends the benefits of both approaches by fusing fuzzy logic with 

deep neural networks: fuzzy systems are used to manage ambiguity and provide transparent 

reasoning, while deep learning is utilized to represent complex patterns in high-

dimensional medical data. 

The framework's methodical architectural design, uncertainty quantification (epistemic and 

aleatoric), and explainability through fuzzy rule activation and SHAP-style attribution 

enable precise, understandable, and data-efficient diagnosis. Applications to imaging, 

physiological signals, and electronic health records show the model's adaptability and value 

in real-world clinical situations. 

The framework's systematic architecture, uncertainty quantification (both aleatoric and 

epistemic), and explainability via SHAP-style attribution and fuzzy rule activation allow 

for accurate, intelligible, and data-efficient diagnosis. Applications to physiological 

signals, imaging, and electronic health records demonstrate the model's versatility and 

usefulness in practical clinical settings. 
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