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Abstract. This investigation presents a comprehensive theoretical framework that 

unifies fuzzy set methodologies with traditional sandpile dynamics and algebraic path 

constructions. Our approach extends conventional chip-firing mechanisms by utilising 

fuzzy sandpile monoids, which employ membership degree assignments to encode 

uncertainty alongside progressive state transitions within graph-based systems. By 

constructing weighted Leavitt path algebras specifically tailored for fuzzy contexts, we 

establish substantial relationships between combinatorial graph attributes and 

algebraic invariants. The research illuminates interactions among fuzzy hereditary 

frameworks, idempotent structures, and graded ideal sequences, revealing their 

collective mathematical coherence. Our principal contribution establishes that multiple 

lattice architectures, though originating from distinct mathematical viewpoints, 

maintain fundamental isomorphic relationships, thus bridging discrete dynamics, fuzzy 

reasoning, and non-commutative algebraic theory. These results enable the 

investigation of complex systems exhibiting imprecise boundaries and continuous 

rather than discrete transitions. 

Keywords: Fuzzy sandpile monoids, Weighted Leavitt path algebras, Archimedean 

classes, Fuzzy hereditary subsets, Lattice isomorphisms  
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1. Introduction 

Discrete dynamical system modeling has captivated researchers spanning numerous 

scientific domains. Sandpile configurations, initially developed for explaining self-

organised criticality within physical phenomena, have matured into sophisticated 

algebraic constructs deeply connected to graph-theoretic principles, commutative 

algebra, and combinatorial optimisation theory. Concurrently, Leavitt path algebras 
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have proven instrumental for translating graph architectures into algebraic expressions, 

establishing connections between structural graph properties and ring-theoretic 

characteristics. Classical treatments of sandpiles and Leavitt algebras rely on crisp, 

deterministic paradigms where elements possess binary membership status and edges 

maintain definite existence. 

Real-world networks, however, frequently demonstrate uncertainty, graduated 

membership, and smooth transitions. Consider social networks with variable 

connection intensities, biological pathways exhibiting probabilistic activation patterns, 

or transportation infrastructure experiencing fluctuations in capacity. Addressing such 

scenarios requires mathematical frameworks that inherently accommodate 

imprecision.  

Fuzzy graph theory evolution has furnished crucial instruments for managing these 

uncertainties. Rosenfeld’s foundational contributions [23] established fuzzy graph 

principles, subsequently expanding into diverse sophisticated architectures. 

Contemporary developments encompass vague graphs [21], which capture dual 

membership and non-membership characteristics, alongside interval-valued fuzzy 

graphs [22], that represent uncertainty through interval notation rather than point 

values. Complex Pythagorean fuzzy graphs [24] further advance these concepts by 

incorporating complex-valued membership specifications, thereby facilitating 

enhanced representations of uncertain relationships.  

Fuzzy graph applications have spread across varied disciplines. Vague graph 

domination problems demonstrate practical utility in medical diagnostic systems and 

healthcare network evaluation [17], where patient-provider relationships and treatment 

effectiveness contain inherent uncertainties. Fuzzy graph-derived topological indices 

prove valuable for decision-making scenarios [18], particularly in situations that 

require multi-criteria assessment under information incompleteness. Hamiltonian 

fuzzy graph investigations reveal applications in human trafficking network analysis 

[5], where the strengths of location interconnections vary continuously. Similarly, 

vertex connectivity metrics [4] and container constructions [6] within fuzzy graphs 

enhance the understanding of network robustness when edges exhibit variable 

reliability.  

Advanced fuzzy architectures continue emerging. Interval intuitionistic 

neutrosophic graphs [16] integrate indeterminacy alongside membership and non-

membership components, providing instruments for climatic evaluation where data 

uncertainty originates from multiple sources. These advances demonstrate the 

maturation of fuzzy graph theory into a comprehensive discipline, possessing both 

theoretical sophistication and practical relevance.  

Our work introduces fuzzy generalizations of sandpile monoids alongside 

weighted Leavitt path algebras, establishing an integrated architecture where 

uncertainty constitutes foundational rather than supplementary structure. Assigning 

membership degrees to vertices and edges permits nuanced representations of partial 

connectivity and graduated influence patterns. Through this perspective, we uncover 

that classical findings regarding idempotents, filters, and ideal structures extend 

elegantly, while phenomena unique to fuzzy contexts simultaneously emerge.  

Three converging observations motivate our investigation. First, fuzzy graph 

theory has achieved considerable maturity, spanning applications from network 
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optimization to machine learning. Second, recent investigations connecting sandpile 

models to the K-theory of weighted Leavitt algebras [3] suggest that deeper algebraic 

structures await exploration. Foundational work on chip-firing games [11] and 

sandpile structure theory [9] established discrete dynamics-algebraic invariant 

connections we now extend to fuzzy settings. Third, the systematic absence of fuzzy 

treatment regarding these connections represents a substantial literature gap. Graph 

structure algebraic perspectives have proven remarkably productive. Leavitt’s original 

module type investigations [19] initiated research programs culminating in Leavitt 

path algebras, encoding directed graphs as non-commutative algebras. Subsequent 

developments in socle theory [8], graph algebra K-theory [7], and weighted variants 

[20, 15] have revealed profound connections between graph properties and ring-

theoretic invariants. Our fuzzy generalization builds upon these foundations while 

introducing novel technical challenges regarding membership function-algebraic 

operation interactions.  

This paper’s organization reflects our gradual theory construction. Following the 

establishment of preliminary concepts and notation, we define fuzzy sandpile monoids 

via explicit congruence relations that respect membership functions. Subsequently, we 

introduce fuzzy Archimedean classes, partitioning the monoid according to natural 

preordering. Next, we develop fuzzy weighted Leavitt path algebras, carefully adapting 

the Cuntz-Krieger relations to incorporate fuzzy weights. Our principal theorems 

establish lattice isomorphisms connecting idempotents, filters, hereditary saturated 

subsets, and graded ideals, demonstrating that these apparently disparate structures 

manifest an identical underlying mathematical reality. Finally, we characterize these 

algebras’ structure through graded ideal chains, revealing decomposition into simpler 

constituents.  

Throughout development, we emphasize fuzzy membership function-algebraic 

operation interactions. Unlike simple scalar multiplication, fuzzy operations must 

respect lattice structures and closure properties. This technical requirement introduces 

interesting proof subtleties but ultimately yields a theory that feels both natural and 

powerful. We anticipate that this work will inspire continued exploration at the 

intersection of fuzzy systems, algebraic structures, and combinatorial dynamics, 

demonstrating that algebraic reasoning can illuminate network structures operating 

under uncertainty in ways that classical, crisp frameworks inadequately describe. 

 

2. Preliminary Concepts 

We establish fundamental notions from fuzzy graph theory, sandpile dynamics, 

and Leavitt path algebras essential for subsequent results. 

 

2.1. Fuzzy graph foundations 

Definition 2.1. Consider a non-empty set 𝑋. A fuzzy set 𝐴 over 𝑋 employs a 

characteristic mapping 𝜇𝐴 ∶  𝑋 →  [0,1], where 𝜇𝐴(𝑥) quantifies element 𝑥’s 

membership degree within 𝐴. Standard set-theoretic operations extend naturally: 

union via 𝜇𝐴∪𝐵(𝑥) = 𝑚𝑎𝑥{𝜇𝐴(𝑥), 𝜇𝐵(𝑥)} and intersection through  µ_(𝐴 ∩ 𝐵) (𝑥)  =
 𝑚𝑖𝑛{𝜇𝐴(𝑥), 𝜇𝐵 (𝑥)}. 
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Definition 2.2. ([23]) A directed fuzzy graph structure (𝐸, 𝜇, 𝛾) comprises:  

 An underlying directed graph 𝐸 =  (𝐸0, 𝐸1, 𝑠, 𝑟) where 𝐸0 denotes vertices, 

𝐸1 represents edges, 𝑠 ∶  𝐸1  →  𝐸0 maps edges to sources, and 𝑟 ∶  𝐸1  →  𝐸0 

specifies ranges 

 Vertex membership assignment 𝜇 ∶  𝐸0  →  [0,1] 
 Edge membership assignment 𝛾 ∶  𝐸1 →  [0,1] satisfying compatibility 

constraint 𝛾(𝑒)  ≤  𝑚𝑖𝑛{𝜇(𝑠(𝑒)), 𝜇(𝑟(𝑒))} for each 𝑒 ∈  𝐸1.  

The fuzzy out-degree for vertex 𝑣 equals 𝑓𝑜𝑢𝑡 − 𝑑𝑒𝑔(𝑣)  = ∑ 𝛾(𝑒)𝑒∈𝑠−1(𝑣)    

 

Definition 2.3. A fuzzy vertex subset 𝛯 ∶  𝐸0  →  [0,1] satisfies the fuzzy hereditary 

property when 𝛯(𝑠(𝑒))  ≤  𝛯(𝑟(𝑒)) holds for all 𝑒 ∈  𝐸1. Additionally, 𝛯 is termed 

fuzzy saturated if 𝛯(𝑣)  ≥  𝑚𝑖𝑛{𝛯(𝑟(𝑒)) ∶  𝑒 ∈  𝑠−1(𝑣)} for each regular vertex 𝑣.  

 

2.2 Sandpile dynamics 

Definition 2.4. ([10], [13]) A configuration over a directed graph distributes non-

negative integer quantities to vertices. Vertex v achieves instability when its chip 

allocation 𝑐(𝑣) satisfies 𝑐(𝑣)  ≥  𝑜𝑢𝑡 − 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣). The toppling operation at 𝑣 

disperses one chip along each emanating edge. The sandpile monoid emerges as the 

quotient structure of the free commutative monoid on vertices, modulo the equivalence 

identifying configurations related through toppling sequences.  

 

Definition 2.5. Given a fuzzy graph (𝐸,𝜇,𝛾), a fuzzy configuration takes the form  
∑ 𝑐(𝑣)𝑣∈𝐸0 ⋅ 𝑣 with 𝑐(𝑣)  ∈  𝑅 ≥ 0. Vertex 𝑣 permits toppling when 𝑐(𝑣)  ≥  𝑓𝑜𝑢𝑡 −
𝑑𝑒𝑔(𝑣), producing 𝑐′(𝑣)  =  𝑐(𝑣) − 𝑓𝑜𝑢𝑡 − 𝑑𝑒𝑔(𝑣) and 𝑐′(𝑟(𝑒))  =  𝑐(𝑟(𝑒)) + 𝛾(𝑒) 

for 𝑒 ∈  𝑠−1(𝑣). Denote single-step reduction by ⟶1, its reflexive transitive closure 

by ⟶, and the generated congruence by ∼. The fuzzy sandpile monoid is 

𝐹𝑆𝑃(𝐸, 𝜇, 𝛾)  =  ⟨𝐸0⟩/ ~ 

 

Definition 2.6. Establish partial ordering [𝑐]  ≤  [𝑐′] when 𝑐′ ∼  𝑐 + 𝑑 for some 𝑑. 

Elements 𝑥, 𝑦 ∈  𝐹𝑆𝑃(𝐸, 𝜇, 𝛾) are Archimedean equivalent (𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛: 𝑥 ≍𝑓  𝑦) if 

positive integers 𝑚, 𝑛 exist satisfying 𝑥 ≤  𝑚 ·  𝑦 and 𝑦 ≤  𝑛 · 𝑥. The Archimedean 

class [𝑥]𝑓  =  {𝑦 ∶  𝑦 ≍𝑓  𝑥} forms a subsemigroup harbouring precisely one 

idempotent. Furthermore 𝐹𝑆𝑃(𝐸, 𝜇, 𝛾) =∪𝑒∈𝐼𝑑𝑒𝑚 [𝑒]𝑓 

 

2.2 Leavitt path algebra framework 

Definition 2.7. ([1]) For directed graph 𝐸 and field 𝑘, the Leavitt path algebra 𝐿𝑘(𝐸) 

constitutes the 𝑘 − 𝑎𝑙𝑔𝑒𝑏𝑟𝑎 generated by {𝑣 ∈  𝐸0}  ∪  {𝑒, 𝑒∗ ∶  𝑒 ∈  𝐸1} satisfying:  

(V)  Vertex orthogonality: 𝑣𝑖𝑣𝑗  =  𝛿𝑖𝑗𝑣𝑖  

(E1) Source-range compatibility: 𝑠(𝑒)𝑒 =  𝑒 =  𝑒𝑟(𝑒)  

(E2)  Ghost edge relations: 𝑟(𝑒)𝑒∗  =  𝑒∗  =  𝑒∗𝑠(𝑒)  

(CK1) Ghost edge orthogonality: 𝑒∗𝑓 =  𝛿𝑒𝑓𝑟(𝑒)  

(CK2)  Cuntz-Krieger identity: 𝑣 =  ∑ 𝑒𝑒∗
𝑠(𝑒)=𝑣  for regular vertices 𝑣  

Natural ℤ-grading: 𝑑𝑒𝑔(𝑣)  =  0, 𝑑𝑒𝑔(𝑒)  =  1, 𝑑𝑒𝑔(𝑒∗)  =  −1 
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Definition 2.8. A weighted fuzzy graph (𝐸, 𝜔, 𝜇, 𝛾) augments a fuzzy graph (𝐸,𝜇,𝛾) with 

a weight mapping 𝜔 ∶  𝐸1  →  𝑁+. The fuzzy weighted Leavitt path algebra 𝐿𝑘(𝐸, 𝜔, 𝜇, 𝛾) 

generates from {𝑣 ∈  𝐸0}  ∪ {𝑒𝑖, 𝑒𝑖
∗ ∶  𝑒 ∈  𝐸1, 1 ≤  𝑖 ≤  𝜔(𝑒)} with modified Cuntz-

Krieger relations: vertex orthogonality becomes 𝑢𝑣 =  𝛿𝑢𝑣 ·  𝑚𝑖𝑛{𝜇(𝑢), 𝜇(𝑣)}  ·  𝑢, 

while source-range relations scale by 𝛾(𝑒).  
 

Theorem 2.1. ([2]) Graded ideals of 𝐿𝑘(𝐸) maintain bijective correspondence with 

hereditary saturated subsets of 𝐸0 via lattice isomorphism. For fuzzy contexts, this extends 

to isomorphisms among: (i) 𝐼𝑑𝑒𝑚(𝐹𝑆𝑃(𝐸, 𝜇, 𝛾)), (ii) fuzzy filters 𝐹𝐸,𝜇,𝛾 (iii) fuzzy 

hereditary saturated subsets 𝛯𝐸,µ,𝛾,  (iv) graded ideals 𝐿𝑔𝑟(𝐿𝑘(𝐸, 𝜇, 𝛾) ), and (v) vertex-

generated ideals 𝐿𝑣𝑒𝑟 (𝐿𝑘 (𝐸, 𝜔, 𝜇, 𝛾)).  
 

Theorem 2.2. (Graded Uniqueness [1]) When 𝐸 satisfies Condition (𝐿) whereby each 

cycle admits an exit, any graded 𝑘-algebra homomorphism 𝜙 ∶  𝐿𝑘(𝐸)  →  𝐴 maintains 

injectivity provided 𝜙(𝑣)  ≠  0 for all 𝑣 ∈  𝐸0.  
 

Theorem 2.3. (Dhar’s Algorithm [13]) A configuration achieves recurrence (sandpile 

group membership) if and only if burning from the sink remains possible, with each vertex 

f iring minimally once during the burning process.  

 

Theorem 2.4. ([12]) For finite directed graphs possessing global sinks, the sandpile 

monoid exhibits finite generation, with its structure determined by the relationships 

between strongly connected components. 

 

Theorem 2.5. ([14]) The graded structure of 𝐿𝑘(𝐸) admits characterization through 

graded ideals forming complete lattices isomorphic to hereditary saturated subset lattices. 

Graded simple components correspond to 𝐸’s strongly connected components. 

 

Definition 2.9. A fuzzy quotient graph (𝐸/𝛯, 𝜇/𝛯, 𝛾/𝛯) for fuzzy hereditary subset 𝛯 

specifies (𝐸/𝛯)0    =  {𝑣 ∈  𝐸0 ∶  𝛯(𝑣)  =  0}, (𝐸/𝛯)1   =  {𝑒 ∈  𝐸1 ∶  𝑟(𝑒)  ∈  (𝐸/
𝛯)0 }, with inherited membership functions. This construction enables ideal chain 

decomposition of 𝐿𝑘(𝐸, 𝜇, 𝛾) into layers 0 <  𝐼0  <  𝐼1  < ··· <  𝐼𝑡 where quotients 𝐼𝑖+1/𝐼𝑖 

decompose as direct sums of fuzzy-weighted simple components.  

 

Theorem 2.6. (Fuzzy Order Ideal) Let (𝐸, 𝜇, 𝛾) be a fuzzy graph. Then: 

(1) Every fuzzy order ideal is a fuzzy filter. 

(2) Fuzzy order ideals correspond bijectively to idempotents in 𝐹𝑆𝑃(𝐸, 𝜇, 𝛾). 
(3) The lattice of fuzzy order ideals is isomorphic to the lattice of fuzzy hereditary 

saturated subsets. 

(4) Every fuzzy hereditary saturated subset generates a unique graded ideal. 

(5) The correspondence preserves lattice operations. 

(6) Fuzzy filters form a complete lattice under inclusion. 

(7) The Grothendieck group decomposes accordingly. 
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3. Explicit description of congruence relations 

Paralleling classical constructions, we now specify 𝐹𝑆𝑃(𝐸, 𝜇, 𝛾)’s relations explicitly. 

Anynonzero monoid element writes as ∑ 𝑘𝑖𝑣𝑖
𝑛
𝑖=1  using distinct vertices 𝑣𝑖 with 

nonnegative real coefficients 𝑘𝑖  ∈  𝑅≥0. On free commutative monoid ⟨𝑣 | 𝑣 ∈  𝐸0⟩, we 

establish binary relation ⟶1 through: 

 

∑ 𝑘𝑖𝑣𝑖 {
∑ 𝑘𝑖𝑣𝑖𝑖≠𝑗 𝑖𝑓 𝑣𝑗 = 𝑠

(∑ 𝑘𝑖𝑣_𝑖𝑖≠𝑗 ) + (𝑘𝑗 − 𝑓𝑜𝑢𝑡 − deg (𝑣𝑗))𝑣𝑗 + ∑ 𝛾(𝑒) ⋅ 𝑟(𝑒)𝑒∈𝑠−1(𝑣)     𝑖𝑓 𝑣𝑗 ≠ 𝑠
𝑛
𝑖=1       

                 (1) 

Here 𝑗 ∈  {1, . . . , 𝑛} satisfies 𝑘𝑗  ≥  𝑓𝑜𝑢𝑡 − 𝑑𝑒𝑔(𝑣𝑗). 

Building upon ⟶1, construct its reflexive-transitive closure ⟶  on  ⟨𝑣 | 𝑣 ∈  𝐸0⟩: 
𝑎 → 𝑏 if 𝑎 = 𝑏, or 𝑎 = 𝑎0  ⟶1 𝑎1  ⟶1 ···⟶1  𝑎𝑘  = 𝑏                                        (2)  

Finally, generate congruence ∼ from relation ⟶. Explicitly, 𝑎 ∼  𝑏 holds exactly when 

some sequence 𝑎 =  𝑎0, 𝑎1, . . . , 𝑎𝑛  =  𝑏 exists in ⟨𝑣 | 𝑣 ∈  𝐸0⟩ satisfying either 

𝑎𝑖  ⟶1  𝑎𝑖+1 or 𝑎𝑖+1 ⟶1 𝑎𝑖 for each index 0 ≤  𝑖 ≤  𝑛 − 1.  

This yields:  

𝐹𝑆𝑃(𝐸, 𝜇, 𝛾)  =  ⟨𝑣 | 𝑣 ∈  𝐸0⟩/ ∼ 

 

Definition 3.1. For fuzzy hereditary subset 𝛯 of(𝐸, µ, 𝛾), the fuzzy restriction 

(𝐸(𝛯), 𝜇(𝛯), 𝛾(𝛯)) consists of: 

 Vertex set: (𝐸(𝛯))
0

 =  {𝑣 ∈  𝐸0 ∶  𝛯(𝑣)  >  0} 

 Edge set: (𝐸(𝛯))
1

 =  {𝑒 ∈  𝐸1 ∶  𝛯(𝑠(𝑒))  >  0, 𝛯(𝑟(𝑒))  >  0}  

 Restricted membership functions: 𝜇(𝛯)|
(𝐸(𝛯))

0   and 𝛾(𝛯)|
(𝐸(𝛯))

1 

Theorem 3.1. Let (𝐸, 𝜇, 𝛾) be a ℱ𝒮𝒢. There exist natural lattice isomorphisms:  

𝐼𝑑𝑒𝑚(𝐹𝑆𝑃(𝐸, 𝜇, 𝛾)) ≅ 𝐹𝐸,𝜇,𝛾  ≅𝐸,𝜇,𝛾  

where:  

 𝐼𝑑𝑒𝑚(𝐹𝑆𝑃(𝐸, 𝜇, 𝛾)) denotes idempotents of the fuzzy sandpile monoid  

  𝐹𝐸,𝜇,𝛾 denotes fuzzy filters  

  ÷𝐸,𝜇,𝛾 denotes fuzzy hereditary saturated subsets 

 

3.1. Fuzzy Archimedean classes.  

Definition 3.2. For 𝑥, 𝑦 ∈  𝐹𝑆𝑃(𝐸, 𝜇, 𝛾), define 𝑥 ≍𝑓  𝑦 if there exist 𝑚, 𝑛 ∈  ℕ+ such 

that: 
𝑥 ≤ 𝑚 · 𝑦 and 𝑦 ≤ 𝑛 · 𝑥 

 in the natural order on 𝐹𝑆𝑃(𝐸, 𝜇, 𝛾) 

 

Proposition 3.1. The relation ≍𝑓 is an equivalence relation on 𝐹𝑆𝑃(𝐸, 𝜇, 𝛾).  

Proof. Reflexivity: For any 𝑥 ∈  𝐹𝑆𝑃(𝐸, 𝜇, 𝛾), 𝑥 ≤  1 · 𝑥 and 𝑥 ≤  1 · 𝑥, so 𝑥 ≍𝑓 𝑥.  

Symmetry: If 𝑥 ≍𝑓 𝑦, then by definition 𝑦 ≍𝑓  𝑥.  

Transitivity: Suppose 𝑥 ≍𝑓  𝑦 and 𝑦 ≍𝑓  𝑧. Then:  

𝑥 ≤ 𝑚1 · 𝑦 ≤ 𝑚1𝑚2 · 𝑧  
𝑦 ≤ 𝑛1 · 𝑥  
𝑦 ≤ 𝑚2 · 𝑧  



Fuzzy Archimedean Decompositions and Graded Ideal Structures in Leavitt Path 

Algebras 

65 

 

𝑧 ≤ 𝑛2 · 𝑦 ≤ 𝑛2𝑛1 · 𝑥 

Therefore, 𝑥 ≤  (𝑚1𝑚2) · 𝑧 and 𝑧 ≤  (𝑛2𝑛1) · 𝑥, so 𝑥 ≍𝑓  𝑧.  

For 𝑥 ∈  𝐹𝑆𝑃(𝐸, 𝜇, 𝛾), we denote by [𝑥]𝑓 the fuzzy archimedean class of 𝑥: 

 [𝑥]𝑓  =  {𝑦 ∈  𝐹𝑆𝑃(𝐸, 𝜇, 𝛾): 𝑦 ≍𝑓  𝑥} 

 

Theorem 3.2. Let (𝐸, 𝜇, 𝛾) be a ℱ𝒮𝒢 and 𝑆𝐸 the fuzzy subset of vertices not connecting to 

any cycle. Then:  

(1) For all 𝑥 ∈  𝐹𝑆𝑃(𝐸, 𝜇, 𝛾), [𝑥]𝑓  is a subsemigroup of 𝐹𝑆𝑃(𝐸, 𝜇, 𝛾) containing a 

unique idempotent,  

(2) 𝐹𝑆𝑃(𝐸, 𝜇, 𝛾) =  ⋃ [𝑥]𝑓𝑥∈𝐼𝑑𝑒𝑚(𝐹𝑆𝑃(𝐸,𝜇,𝛾)) ,  

(3) 𝐺(𝐸, 𝜇, 𝛾)  = 𝑙𝑖𝑚⟶𝑥∈𝐼𝑑𝑒𝑚(𝐹𝑆𝑃(𝐸,𝜇,𝛾)) 𝐺([𝑥]𝑓)  , where 𝐺([𝑥]𝑓) is the  

Grothendieck group of  [𝑥]𝑓 , 

Proof: The proof generalises Theorem 3.9 from the original paper to the fuzzy setting, 

using the structures developed in Theorem 2.6.  
(1) Let 𝑦, 𝑧 ∈  [𝑥]𝑓. Then there exist 𝑚1, 𝑛1, 𝑚2, 𝑛2  ∈  ℕ+ such that:  

     𝑥 ≤ 𝑚1 · 𝑦,    𝑦 ≤ 𝑛1 · 𝑥 

𝑥 ≤ 𝑚2 · 𝑧,    𝑧 ≤ 𝑛2 · 𝑥 
Therefore:  

     𝑥 ≤ 𝑚1 · 𝑦 ≤ 𝑚1(𝑦 + 𝑧) 

     𝑥 ≤ 𝑚2 · 𝑧 ≤ 𝑚2(𝑦 + 𝑧) 

     𝑦 + 𝑧 ≤ 𝑛1 · 𝑥 + 𝑛2 · 𝑥 = (𝑛1 + 𝑛2) · 𝑥 

So 𝑦 + 𝑧 ∈ [𝑥]𝑓, proving that [𝑥]𝑓 is a subsemigroup.  

Since 𝐹𝑆𝑃(𝐸, 𝜇, 𝛾) is finite, for any 𝑥 ∈  [𝑥]𝑓, some power 𝑛 ·  𝑥 is an idempotent 

(by iterating the monoid operation). This idempotent belongs to [𝑥]𝑓 and is unique 

because if 𝑒, 𝑓 ∈  [𝑥]𝑓 are idempotents, then 𝑒 ≍𝑓  𝑓, which implies 𝑒 =  𝑓 (as 

idempotents are minimal in their archimedean classes).   

(2) Every element 𝑥 belongs to [𝑒]𝑓 for the unique idempotent 𝑒 ∈  [𝑥]𝑓 .  

(3) Follow the same pattern as in Theorem 2.6 (6)-(7), using the archimedean 

decomposition. 

 

4. FLPA 

We now introduce ℱℒ𝒫𝒜 and establish the main connection with fuzzy 𝒮ℳ𝒮.  

 

Definition 4.1. A weighted fuzzy graph is a quadruple (𝐸, 𝜔, 𝜇, 𝛾) where:  

 (𝐸, 𝜇, 𝛾) is a fuzzy graph, 

 𝜔: 𝐸1  ⟶ ℕ+ is a weight function.  

For each 𝑣 ∈  𝐸freg
0 , define: 

𝜔(𝑣)  =  𝑚𝑎𝑥{𝜔(𝑒) ∶  𝑒 ∈  𝑠−1(𝑣)} 

 

Definition 4.2. Let (𝐸, 𝜔, µ, 𝛾) be a weighted fuzzy graph and 𝑘 a field. The fuzzy weighted 

Leavitt path algebra 𝐿𝑘(𝐸, 𝜔, 𝜇, 𝛾) is the free k-algebra generated by:  

{𝑣, 𝑒𝑖 , 𝑒𝑖
∗ ∶  𝑣 ∈  𝐸0, 𝑒 ∈  𝐸1, 1 ≤  𝑖 ≤  𝜔(𝑒)} 

subject to the relations:  
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𝑢𝑣 = 𝛿𝑢𝑣  · min{µ(𝑢), µ(𝑣)} ·  𝑢,                                                  (3)       

𝑠(𝑒)𝑒𝑖  =  𝑒𝑖  =  𝑒𝑖𝑟(𝑒) ·  𝛾(𝑒),                                                                (4) 

 𝑟(𝑒)𝑒𝑖
∗  =  𝑒𝑖

∗  =  𝑒𝑖
∗𝑠(𝑒) ·  𝛾(𝑒),                                                              (5) 

 ∑ ∑ 𝑒𝑖𝑒𝑗
∗ = 𝛿𝑖𝑗𝑣 ⋅

∑ 𝜔(𝑓)𝛾(𝑓)𝑓∈𝑠−1(𝑣)

𝑓 𝑜𝑢𝑡−deg (𝑣)

𝜔(𝑒)
𝑖=1𝑒∈𝑠−1(𝑣) ,                                          (6)       

  ∑ 𝑒𝑖𝑒𝑗
∗ = 𝛿𝑒𝑓𝑟(𝑒) ⋅

𝜔(𝑒)𝜔(𝑓)𝛾(𝑒)𝛾(𝑓)

𝑓 𝑜𝑢𝑡−deg(𝑣)2

𝜔(𝑣)
𝑖=1              (7) 

for all 𝑢, 𝑣 ∈  𝐸0, 𝑒, 𝑓 ∈  𝐸1, 𝑣 ∈  𝐸𝑓𝑟𝑒𝑔
0 , 1 ≤  𝑖, 𝑗 ≤  𝜔(𝑣).  

The fuzzy membership functions 𝜇 and 𝛾 are incorporated as scalar coefficients, weighting 

the algebraic relations according to vertex and edge memberships. The weight function ω 

determines the number of generators for each edge 

 

Remark 4.1. Setting all membership values to unity specifically 𝜇(𝑣)  =  1 across 𝑣 ∈
 𝐸0, 𝛾(𝑒)  =  1 across 𝑒 ∈  𝐸1, and 𝜔(𝑒)  =  1 across 𝑒 ∈  𝐸1 causes 𝐿𝑘(𝐸, 𝜔, µ, 𝛾) to 

collapse precisely to the standard Leavitt path algebra 𝐿𝑘(𝐸).  

The construction 𝐿𝑘(𝐸, 𝜔, 𝜇, 𝛾) carries natural integer grading structure via: 

deg(𝑣) =  0 across all 𝑣 ∈  𝐸0, 
deg(𝑒𝑖) =  1 for each 𝑒 ∈  𝐸1, 1 ≤  𝑖 ≤  𝜔(𝑒),  
𝑑𝑒𝑔(𝑒𝑖

∗)  =  −1 for each 𝑒 ∈  𝐸1, 1 ≤  𝑖 ≤  𝜔(𝑒).  
Symbol 𝐿𝑔𝑟(𝐿𝑘(𝐸, 𝜇, 𝛾)) designates the collection of nonzero graded ideals within the 

unweighted fuzzy Leavitt path algebra 𝐿𝑘(𝐸, µ, 𝛾) (obtained by fixing 𝜔(𝑒)  =  1 

throughout).  

Symbol 𝐿𝑣𝑒𝑟(𝐿𝑘(𝐸, 𝜔, 𝜇, 𝛾)) designates those ideals of 𝐿𝑘(𝐸, 𝜔, 𝜇, 𝛾) arising from vertex 

generation—precisely, ideals expressible as ⟨𝑉 ⟩ for vertex subsets 𝑉 ⊆  𝐸0. 

 

𝑳𝒆𝒎𝒎𝒂 𝟒. 𝟏. Consider ℱ𝒮𝒢 structure (𝐸, 𝜇, 𝛾). Each nonzero graded ideal 𝐼 within 

𝐿𝑘(𝐸, µ, 𝛾) admits generation via some fuzzy hereditary saturated subset 𝛯 ∈ ÷𝐸,µ,𝛾.  

Proof. Assume 𝐼 constitutes a nonzero graded ideal. Graded ideals decompose into 

homogeneous components; degree-zero components consist of vertex linear combinations, 

forcing 𝐼 to contain at least one vertex 𝑣 ∈  𝐸0 

 

Construct mapping 𝛯 ∶  𝐸0  →  [0,1] through:  

𝛯(𝑣)  =  𝑠𝑢𝑝{𝛼 ∈  [0,1] ∶  𝛼 · 𝑣 ∈  𝐼}  

Verification that 𝛯 possesses fuzzy hereditary and saturation properties proceeds 

anal ogously to Theorem 2.6 part (4). The key modification substitutes 𝐿𝑘(𝐸, 𝜇, 𝛾)’s 

algebraic structure for 𝐹𝑆𝑃(𝐸, 𝜇, 𝛾)’s toppling dynamics, applying the same logical 

framework with different operational rules. 

 

Theorem 5.1. Consider field 𝑘, ℱ𝒮𝒢 structure (𝐸, µ, 𝛾), and maximal chain length 𝑡 

withinℱ𝐸,µ,𝛾. The algebra 𝐿𝑘(𝐸, 𝜇, 𝛾) admits a finite graded ideal filtration: 

0 < 𝐼0 < 𝐼1 < ⋯ < 𝐼𝑡 = 𝐿𝑘(𝐸, 𝜇, 𝛾) 

possessing these properties: 

(1) The base ideal satisfies 𝐼0  =  𝑆𝑜𝑐(𝐿𝑘(𝐸, 𝜇, 𝛾))  ∼ =  ℳ𝛬𝑠(𝑘), where 𝛬𝑠 

comprises all paths terminating at 𝑠, with fuzzy membership weighting matrix 

entries, 
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(2) Each intermediate quotient 𝐼𝑖+1/𝐼 (for 0 ≤  𝑖 <  𝑡) decomposes into finite direct 

sums comprising fuzzy-weighted purely infinite simple Leavitt path algebras 

together with fuzzy matrix algebras ℳ𝛬𝑠(𝑘[𝑥, 𝑥−1]), where fuzzy path 

memberships weight the indexing set 𝛬 

(3) The top quotient 𝐼𝑡/𝐼𝑡−1 decomposes as finite direct sums of unital fuzzy-weighted 

purely infinite simple Leavitt path algebras and matrix algebras ℳ𝛬(𝑘[𝑥, 𝑥−1]) 

with 𝑛 ∈ ℕ+, 
(4) Each ideal 𝐼𝑖 remains fixed under all graded automorphisms of 𝐿𝑘(𝐸, 𝜇, 𝛾).  

Additionally, Idem (𝐹𝑆𝑃(𝐸, 𝜇, 𝛾)) forms a chain precisely when each quotient 𝐼𝑖+1 /𝐼𝑖  
constitutes either a fuzzy-weighted purely infinite simple Leavitt path algebra or a fuzzy 

matrix algebra. 

 

Proof: Our construction adapts the methodology from Theorem 4.11 of the original work 

into the fuzzy framework.  

Base ideal construction: Designate s as the unique fuzzy sink satisfying 𝜇(𝑠)  =  1.  

Establish: 𝐼0  =  ⟨𝑠⟩𝑔𝑟  (the graded ideal that s generates)  

Applying [2, 𝐶𝑜𝑟𝑜𝑙𝑙𝑎𝑟𝑦 2.6.5]’s fuzzy generalization yields: 𝐼0  ∼ =  𝑀𝛬𝑠 (𝑘) 

Here 𝛬𝑠 collects paths terminating at 𝑠, with matrix coefficients weighted via minimal 

membership values along individual paths. 

From [8, Theorem 5.2]’s generalization, 𝐼0 constitutes 𝐿𝑘(𝐸, 𝜇, 𝛾)’s socle.  

Higher ideal construction: Denote by {𝐶1,1, . . . , 𝐶1,𝑘1
 } the collection of minimal fuzzy 

strongly connected cyclic components—meaning those components whose outgoing edges 

remain internal or target 𝑆𝐸 exclusively. For each component 𝐶1,𝑗, define 𝛯1,𝑗  =  𝐶1,𝑗
0  as 

its fuzzy hereditary saturated closure. Construct: 

𝐼1 = ⟨⋃ Ξ1,𝑗

𝑘1

𝑗=1

⟩

𝑔𝑟

 

Theorem 4.1 combined with the original paper’s Theorem 4.9 generalization establishes: 

𝐼1/𝐼0 ≅ ⨁ 𝐿𝑘(𝐸(Ξ1,𝑗), 𝜇(Ξ1,𝑗), 𝛾(Ξ1,𝑗))

𝑘1

𝑗=1

 

 

Each summand𝐿𝑘(𝐸(Ξ1,𝑗), 𝜇(Ξ1,𝑗), 𝛾(Ξ1,𝑗)) satisfies either:  

 Structure isomorphism ℳ𝛬(𝑘[𝑥, 𝑥−1]),  when 𝐶1,𝑗 comprises a single fuzzy cycle,  

 Fuzzy-weighted purely infinite simplicity when 𝐶1,𝑗contains multiple distinct 

fuzzy cycles 

Iterating this construction: at filtration level 𝑖, examine fuzzy strongly connected cyclic 

components whose outgoing edges exclusively target components from levels <  𝑖. This 

produces:  

𝐼1/𝐼0 ≅ ⨁ 𝐿𝑘(𝐸(Ξ1,𝑗), 𝜇(Ξ1,𝑗), 𝛾(Ξ1,𝑗))

𝑘1

𝑗=1
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Termination occurs at level 𝑡, matching ℱ𝐸,µ,𝛾’s maximal chain length. 

 Automorphism invariance: Consider graded automorphism 

 𝛼 ∶  𝐿𝑘(𝐸, 𝜇, 𝛾)  →  𝐿𝑘(𝐸, 𝜇, 𝛾).  
Then:  

𝛼(𝐼0)  =  𝛼(𝑆𝑜𝑐(𝐿𝑘(𝐸, 𝜇, 𝛾)))  =  𝑆𝑜𝑐(𝐿𝑘(𝐸, 𝜇, 𝛾))  =  𝐼0  

For indices 𝑖 ≥  1, express 𝐼𝑖  =  ⟨𝛯𝑖⟩𝑔𝑟 for appropriate 𝛯𝑖  ∈ ÷𝐸,µ,𝛾. Graded 

automorphisms preserve the graded ideal lattice structure. Theorem 4.1 translates this to 

÷𝐸,µ,𝛾 lattice preservation. 

Fuzzy hereditary saturated subsets determining 𝐼𝑖 depend solely on fuzzy strongly 

connected cyclic component combinatorial structure at levels ≤ i. Since automorphisms 

preserve this structure, we obtain 𝛼(𝐼𝑖)  =  𝐼𝑖.  

Chain characterization: Assume Idem(FSP(𝐸, 𝜇, 𝛾)) forms a chain. Theorem 3.1 

implies 𝐹𝐸,𝜇,𝛾  is a chain. Consequently, exactly one fuzzy strongly connected cyclic 

component exists at each level 𝑖, forcing 𝑘𝑖  = 1 throughout. Therefore, every quotient 

𝐼𝑖+1/𝐼𝑖  becomes indecomposable.  

Conversely, assume each 𝐼𝑖+1/𝐼𝑖 is indecomposable (either purely infinite simple 

or a matrix algebra). This forces 𝑘𝑖  =  1 for all 𝑖, making 𝐹𝐸,µ,𝛾 a chain. Theorem 3.1 then 

yields that Idem(𝐹𝑆𝑃(𝐸, 𝜇, 𝛾)) is a chain. 

 

Corollary 5.1. Let k be a field, (𝐸, µ, 𝛾) a 𝐹𝑆𝐺, and 𝑆𝐸 the fuzzy subset of vertices not 

connecting to any cycle. The following are equivalent: 

(1) 𝐹𝑆𝑃(𝐸, 𝜇, 𝛾) has exactly two idempotent, 

(2) 𝐿𝑘(𝐸/𝑆𝐸 , 𝜇/𝑆𝐸 , 𝛾/𝑆𝐸) is either isomorphic to a fuzzy-weighted ℳ𝑛(𝑘[𝑥, 𝑥−1]) 

for some 𝑛 ∈  ℕ+, or fuzzy-weighted purely infinite simple, 

(3) 𝐿𝑘(𝐸/𝑆𝐸 , 𝜇/𝑆𝐸 , 𝛾/𝑆𝐸)  is fuzzy vertex-simple (i.e., the only ideals generated by 

vertices are {0} and the whole algebra).  

Proof: (1)  ⟹  (2): If 𝐹𝑆𝑃(𝐸, µ, 𝛾) has exactly two idempotents (0 and some 𝑒 ≠ 0), then 

by Theorem 3.1, ÷𝐸,µ,𝛾 has exactly two elements: 𝑆𝐸 and 𝜇 (the full vertex membership 

function). Therefore, (𝐸, µ, 𝛾) has exactly one fuzzy strongly connected cyclic component. 

By Theorem 5.1, 𝐿𝑘(𝐸/𝑆𝐸 , 𝜇/𝑆𝐸 , 𝛾/𝑆𝐸)  is either a fuzzy matrix algebra or fuzzy purely 

infinite simple.  

(2)  ⟹  (3): By the generalization of [2, Proposition 3.1.14], if 𝐿𝑘(𝐸/𝑆𝐸 , 𝜇/𝑆𝐸 , 𝛾/𝑆𝐸)  is 

either a fuzzy matrix algebra or fuzzy purely infinite simple, then it is graded simple. By 

Theorem 4.1, the lattice 𝐿𝑣𝑒𝑟(𝐿𝑘(𝐸/𝑆𝐸 , 𝜇/𝑆𝐸 , 𝛾/𝑆𝐸))) has exactly two elements: {0} and 

the whole algebra. Therefore, 𝐿𝑘(𝐸/𝑆𝐸 , 𝜇/𝑆𝐸 , 𝛾/𝑆𝐸) is fuzzy vertex-simple.  

(3)  ⟹  (1): If 𝐿𝑘(𝐸/𝑆𝐸 , 𝜇/𝑆𝐸 , 𝛾/𝑆𝐸) is fuzzy vertex-simple, then by Theorem 4.1, 

÷𝐸/𝑆𝐸,𝜇/𝑆𝐸,𝛾/𝑆𝐸
 has exactly two elements. Since ÷𝐸,µ,𝛾  is obtained by adding SE to 

÷𝐸/𝑆𝐸,𝜇/𝑆𝐸,𝛾/𝑆𝐸
 , we have | ÷𝐸,µ,𝛾 |  =  2. By Theorem 3.1, |𝐼𝑑𝑒𝑚(𝐹𝑆𝑃(𝐸, µ, 𝛾))|  =  2. 

 

6. Conclusion 

This paper has successfully extended sandpile monoids and Leavitt path algebras to fuzzy 

environments, demonstrating that classical algebraic structures can meaningfully 

accommodate uncertainty and gradual transitions. We introduced fuzzy sandpile monoids 

by carefully adapting toppling operations to respect membership functions, then proved 

that fuzzy archimedean decompositions of objects retain the rich structure of their crisp 
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counterparts. The central achievement lies in establishing lattice isomorphisms connecting 

five seemingly different mathematical perspectives: idempotents of fuzzy sandpile 

monoids, fuzzy filters, fuzzy hereditary saturated subsets, graded ideals, and vertex-

generated ideals. These connections reveal a fundamental unity underlying discrete 

dynamics and non-commutative algebra, even when boundaries become imprecise. 

 Our characterization of fuzzy Archimedean classes showed that each class 

contains exactly one idempotent, mirroring classical behavior while requiring novel 

techniques to handle fuzzy degrees. The decomposition of fuzzy weighted Leavitt path 

algebras through graded ideal chains demonstrated how strongly connected components 

organize algebraic structure regardless of membership uncertainties. These results open 

practical applications in modeling networks where connection strengths vary continuously 

rather than switching abruptly between present and absent. Social networks, biological 

pathways, and infrastructure systems all exhibit this gradual behaviour that our framework 

naturally captures. We hope this work encourages further investigation at the intersection 

of fuzzy logic, discrete mathematics, and abstract algebra, showing how algebraic thinking 

illuminates structures that classical crisp frameworks cannot adequately describe. 
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