Intern. J. Fuzzy Mathematical Archive
Vol. 24, No. 2, 2025, 59-70 International Journal of

ISSN: 2320 —3242 (P), 2320 —3250 (online) 2
Published on 17 November 2025 Fuzzy Mathematlcal

www.researchmathsci.org i
DOI: http://doi.org/10.22457/ijfma.v24n2a05257 ArChlve

Fuzzy Archimedean Decompositions and Graded Ideal
Structures in Leavitt Path Algebras

Shanookha Ali*", Shafeequdheen Palengara?, Nitha Niralda Pc® and
Farshid Mofidnakhaei*

!Department of General Science, BITS Pilani Dubai Campus, Dubai International
Academic City, 345055, Dubai, UAE. e-mail: shanookha@dubai.bits-pilani.ac.in
2Department of Mathematics, SRM University, Andhra Pradesh, India.
e-mail: shafeequdheen p@srmp.edu.in
3Department of Mathematics and Statistics, Providence Women’s College, Calicut,
Kerala, India. e-mail: nithaniraldapc@providencecollegecalicut.ac.in
“Department of Physics, Sari Branch, Islamic Azad University, Sari, Iran.
e-mail: Farshid.Mofidnakhaei@gmail.com

Received 22 September 2025; accepted 16 November 2025

Abstract. This investigation presents a comprehensive theoretical framework that
unifies fuzzy set methodologies with traditional sandpile dynamics and algebraic path
constructions. Our approach extends conventional chip-firing mechanisms by utilising
fuzzy sandpile monoids, which employ membership degree assignments to encode
uncertainty alongside progressive state transitions within graph-based systems. By
constructing weighted Leavitt path algebras specifically tailored for fuzzy contexts, we
establish substantial relationships between combinatorial graph attributes and
algebraic invariants. The research illuminates interactions among fuzzy hereditary
frameworks, idempotent structures, and graded ideal sequences, revealing their
collective mathematical coherence. Our principal contribution establishes that multiple
lattice architectures, though originating from distinct mathematical viewpoints,
maintain fundamental isomorphic relationships, thus bridging discrete dynamics, fuzzy
reasoning, and non-commutative algebraic theory. These results enable the
investigation of complex systems exhibiting imprecise boundaries and continuous
rather than discrete transitions.
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1. Introduction

Discrete dynamical system modeling has captivated researchers spanning numerous
scientific domains. Sandpile configurations, initially developed for explaining self-
organised criticality within physical phenomena, have matured into sophisticated
algebraic constructs deeply connected to graph-theoretic principles, commutative
algebra, and combinatorial optimisation theory. Concurrently, Leavitt path algebras
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have proven instrumental for translating graph architectures into algebraic expressions,
establishing connections between structural graph properties and ring-theoretic
characteristics. Classical treatments of sandpiles and Leavitt algebras rely on crisp,
deterministic paradigms where elements possess binary membership status and edges
maintain definite existence.

Real-world networks, however, frequently demonstrate uncertainty, graduated
membership, and smooth transitions. Consider social networks with variable
connection intensities, biological pathways exhibiting probabilistic activation patterns,
or transportation infrastructure experiencing fluctuations in capacity. Addressing such
scenarios requires mathematical frameworks that inherently accommodate
imprecision.

Fuzzy graph theory evolution has furnished crucial instruments for managing these
uncertainties. Rosenfeld’s foundational contributions [23] established fuzzy graph
principles, subsequently expanding into diverse sophisticated architectures.
Contemporary developments encompass vague graphs [21], which capture dual
membership and non-membership characteristics, alongside interval-valued fuzzy
graphs [22], that represent uncertainty through interval notation rather than point
values. Complex Pythagorean fuzzy graphs [24] further advance these concepts by
incorporating complex-valued membership specifications, thereby facilitating
enhanced representations of uncertain relationships.

Fuzzy graph applications have spread across varied disciplines. Vague graph
domination problems demonstrate practical utility in medical diagnostic systems and
healthcare network evaluation [17], where patient-provider relationships and treatment
effectiveness contain inherent uncertainties. Fuzzy graph-derived topological indices
prove valuable for decision-making scenarios [18], particularly in situations that
require multi-criteria assessment under information incompleteness. Hamiltonian
fuzzy graph investigations reveal applications in human trafficking network analysis
[5], where the strengths of location interconnections vary continuously. Similarly,
vertex connectivity metrics [4] and container constructions [6] within fuzzy graphs
enhance the understanding of network robustness when edges exhibit variable
reliability.

Advanced fuzzy architectures continue emerging. Interval intuitionistic
neutrosophic graphs [16] integrate indeterminacy alongside membership and non-
membership components, providing instruments for climatic evaluation where data
uncertainty originates from multiple sources. These advances demonstrate the
maturation of fuzzy graph theory into a comprehensive discipline, possessing both
theoretical sophistication and practical relevance.

Our work introduces fuzzy generalizations of sandpile monoids alongside
weighted Leavitt path algebras, establishing an integrated architecture where
uncertainty constitutes foundational rather than supplementary structure. Assigning
membership degrees to vertices and edges permits nuanced representations of partial
connectivity and graduated influence patterns. Through this perspective, we uncover
that classical findings regarding idempotents, filters, and ideal structures extend
elegantly, while phenomena unique to fuzzy contexts simultaneously emerge.

Three converging observations motivate our investigation. First, fuzzy graph
theory has achieved considerable maturity, spanning applications from network
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optimization to machine learning. Second, recent investigations connecting sandpile
models to the K-theory of weighted Leavitt algebras [3] suggest that deeper algebraic
structures await exploration. Foundational work on chip-firing games [11] and
sandpile structure theory [9] established discrete dynamics-algebraic invariant
connections we now extend to fuzzy settings. Third, the systematic absence of fuzzy
treatment regarding these connections represents a substantial literature gap. Graph
structure algebraic perspectives have proven remarkably productive. Leavitt’s original
module type investigations [19] initiated research programs culminating in Leavitt
path algebras, encoding directed graphs as non-commutative algebras. Subsequent
developments in socle theory [8], graph algebra K-theory [7], and weighted variants
[20, 15] have revealed profound connections between graph properties and ring-
theoretic invariants. Our fuzzy generalization builds upon these foundations while
introducing novel technical challenges regarding membership function-algebraic
operation interactions.

This paper’s organization reflects our gradual theory construction. Following the
establishment of preliminary concepts and notation, we define fuzzy sandpile monoids
via explicit congruence relations that respect membership functions. Subsequently, we
introduce fuzzy Archimedean classes, partitioning the monoid according to natural
preordering. Next, we develop fuzzy weighted Leavitt path algebras, carefully adapting
the Cuntz-Krieger relations to incorporate fuzzy weights. Our principal theorems
establish lattice isomorphisms connecting idempotents, filters, hereditary saturated
subsets, and graded ideals, demonstrating that these apparently disparate structures
manifest an identical underlying mathematical reality. Finally, we characterize these
algebras’ structure through graded ideal chains, revealing decomposition into simpler
constituents.

Throughout development, we emphasize fuzzy membership function-algebraic
operation interactions. Unlike simple scalar multiplication, fuzzy operations must
respect lattice structures and closure properties. This technical requirement introduces
interesting proof subtleties but ultimately yields a theory that feels both natural and
powerful. We anticipate that this work will inspire continued exploration at the
intersection of fuzzy systems, algebraic structures, and combinatorial dynamics,
demonstrating that algebraic reasoning can illuminate network structures operating
under uncertainty in ways that classical, crisp frameworks inadequately describe.

2. Preliminary Concepts
We establish fundamental notions from fuzzy graph theory, sandpile dynamics,
and Leavitt path algebras essential for subsequent results.

2.1.Fuzzy graph foundations

Definition 2.1. Consider a non-empty setX. A fuzzy set A over X employs a
characteristic mapping p,: X — [0,1], where pu,(x) quantifies element x’s
membership degree within A. Standard set-theoretic operations extend naturally:
union via g,y (x) = max{us(x), ug(x)} and intersection through p_(A N B) (x) =

min{u, (x), ug (x)}.
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Definition 2.2. ([23]) A directed fuzzy graph structure (E, 1, y) comprises:

e Anunderlying directed graph E = (E°,E*,s,r) where E° denotes vertices,
E' represents edges, s : E* — E°maps edgestosources,andr : E' — E°
specifies ranges

e Vertex membership assignment u : E° — [0,1]

e Edge membership assignment y: E1 — [0,1] satisfying compatibility
constrainty(e) < min{u(s(e)),u(r(e))}foreache € E;.

The fuzzy out-degree for vertex v equals fout — deg(v) = Yees-1v)¥(€)

Definition 2.3. A fuzzy vertex subset = : E® — [0,1] satisfies the fuzzy hereditary
property when Z(s(e)) < Z(r(e)) holds for all e € E;. Additionally, = is termed
fuzzy saturated if Z(v) = min{Z(r(e)) : e € s~1(v)} for each regular vertex v.

2.2 Sandpile dynamics

Definition 2.4. ([10],[13]) A configuration over a directed graph distributes non-
negative integer quantities to vertices. Vertex v achieves instability when its chip
allocation c(v) satisfiesc(v) > out — degree(v). The toppling operation at v
disperses one chip along each emanating edge. The sandpile monoid emerges as the
quotient structure of the free commutative monoid on vertices, modulo the equivalence
identifying configurations related through toppling sequences.

Definition 2.5. Given a fuzzy graph (E,u,y), a fuzzy configuration takes the form
Ywego c(v) - vwith c(v) € R = 0. Vertex v permits toppling when c(v) > fout —
deg(v), producing ¢'(v) = c(v) — fout —deg(v) andc'(r(e)) = c(r(e)) +y(e)
for e € s~1(v). Denote single-step reduction by —, its reflexive transitive closure
by —, and the generated congruence by ~. The fuzzy sandpile monoid is
FSP(E,uy) = (E%)/ ~

Definition 2.6. Establish partial ordering [c] < [c¢'] when ¢’ ~ ¢ + d for some d.
Elements x,y € FSP(E,u,y) are Archimedean equivalent (notation: x =; y) if
positive integers m, n exist satisfying x < m - y and y < n-x. The Archimedean
class [x]; = {y: y =f x} forms a subsemigroup harbouring precisely one
idempotent. Furthermore FSP(E, 1, ¥) =Ueeraem lelf

2.2 Leavitt path algebra framework
Definition 2.7. ([1]) For directed graph E and field k, the Leavitt path algebra L, (E)
constitutes the k — algebra generated by {v € E°} U {e,e*: e € E} satisfying:
(V) Vertex orthogonality: v;v; = &;;v;
(E1)  Source-range compatibility: s(e)e = e = er(e)
(E2) Ghost edge relations: r(e)e* = e* = e*s(e)
(CK1) Ghost edge orthogonality: e*f = &.¢7(e)
(CK2) Cuntz-Krieger identity: v = ¥ )=, ee” for regular vertices v
Natural Z-grading: deg(v) = 0,deg(e) = 1,deg(e*) = —1
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Definition 2.8. A weighted fuzzy graph (E, w, u, ¥) augments a fuzzy graph (E,u,y) with
a weight mapping w : E! — N*.The fuzzy weighted Leavitt path algebra Ly (E, w, 4, )
generates from {v € E°} U {e; e/ : e € EL, 1 < i < w(e)} with modified Cuntz-
Krieger relations: vertex orthogonality becomes uv = Suv - min{u(w), u(v)} - u,
while source-range relations scale by y(e).

Theorem 2.1. ([2]) Graded ideals of L,(E) maintain bijective correspondence with
hereditary saturated subsets of E° via lattice isomorphism. For fuzzy contexts, this extends
to isomorphisms among: (i) Idem(FSP(E,u,y)), (i) fuzzy filters Fg,, (iii) fuzzy
hereditary saturated subsets Zg ,,, (iv) graded ideals L9 (L, (E, u,y) ), and (v) vertex-
generated ideals LV¢" (Lj (E, w, 1, 7)).

Theorem 2.2. (Graded Uniqueness [1]) When E satisfies Condition (L) whereby each
cycle admits an exit, any graded k-algebra homomorphism ¢ : L,(E) — A maintains
injectivity provided ¢ (v) # Oforallv € E°.

Theorem 2.3. (Dhar’s Algorithm [13]) A configuration achieves recurrence (sandpile
group membership) if and only if burning from the sink remains possible, with each vertex
f iring minimally once during the burning process.

Theorem 2.4. ([12]) For finite directed graphs possessing global sinks, the sandpile
monoid exhibits finite generation, with its structure determined by the relationships
between strongly connected components.

Theorem 2.5. ([14]) The graded structure of L,(E) admits characterization through
graded ideals forming complete lattices isomorphic to hereditary saturated subset lattices.
Graded simple components correspond to E s strongly connected components.

Definition 2.9. A fuzzy quotient graph (E/=Z,u/Z,y/E) for fuzzy hereditary subset =
specifies (E/E)° ={v eE’: E(w) = 0},(E/E)! = {e € E1: r(e) € (E/
£)%3}, with inherited membership functions. This construction enables ideal chain
decomposition of L, (E,u,y) into layers 0 < I, < I; <--- < I, where quotients I;,/I;
decompose as direct sums of fuzzy-weighted simple components.

Theorem 2.6. (Fuzzy Order Ideal) Let (E, u,y) be a fuzzy graph. Then:
(1) Every fuzzy order ideal is a fuzzy filter.
(2) Fuzzy order ideals correspond bijectively to idempotents in FSP(E, u,y).
(3) The lattice of fuzzy order ideals is isomorphic to the lattice of fuzzy hereditary
saturated subsets.
(4) Every fuzzy hereditary saturated subset generates a unique graded ideal.
(5) The correspondence preserves lattice operations.
(6) Fuzzy filters form a complete lattice under inclusion.
(7) The Grothendieck group decomposes accordingly.
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3. Explicit description of congruence relations

Paralleling classical constructions, we now specify FSP(E,u,y)’s relations explicitly.
Anynonzero monoid element writes as )i, k;v; using distinct vertices v; with
nonnegative real coefficients k; € R.o. On free commutative monoid (v | v € E°), we
establish binary relation —, through:

Zi::j k;v; ifvi=s
(Zi:tj kiv_i) + (k]- — fout — deg(vj))v]- + Yees-1my ¥ (e) - T(e) ifvi#s
€Y

Yi=1 kivi{

Herej € {1,...,n}satisfies k; = fout — deg(v)).
Building upon —, construct its reflexive-transitive closure — on (v |v € E°):
a »bifa=bora=ay; —1a; —1—1 a =b (2)
Finally, generate congruence ~ from relation —. Explicitly, a ~ b holds exactly when
some sequence a = aq,dq,...,a, = b exists in (v|v € E°) satisfying either
a; —71 Qj410ra;4; —q q; foreachindex0 < i < n—1.
This yields:

FSP(E,uwy) = (v|v € E%/~

Definition 3.1. For fuzzy hereditary subsetZ of(E,ny), the fuzzy restriction
(E(&), u(®),y(&)) consists of:

e Vertex set: (E(E))O ={veE: Ew) > 0}

o Edgeset: (E()" = {e € E1: Z(s(e)) > 0,E(r(e)) > 0}

e Restricted membership functions: u(£)| (E@)° and y(&)| (E@)*

Theorem 3.1. Let (E, u,y) be a FSG. There exist natural lattice isomorphisms:
Idem(FSP(E,1,7)) = Fguy Spuy
where:
o Idem(FSP(E,u,y)) denotes idempotents of the fuzzy sandpile monoid
e Fg,, denotes fuzzy filters
e g, denotes fuzzy hereditary saturated subsets

3.1. Fuzzy Archimedean classes.
Definition 3.2. For x,y € FSP(E,u,y), define x = 1y if there exist m,n € N* such
that:
x <m-yandy <n-x
in the natural order on FSP(E, u,y)

Proposition 3.1. The relation =, is an equivalence relation on FSP(E, i, 7).
Proof. Reflexivity: Forany x € FSP(E,u,y),x < 1-xandx < 1-x,50x =f X.
Symmetry: If x = y, then by definitiony =, x.
Transitivity: Suppose x = yandy = z. Then:
X <myg-y Smm;,-z
y Sng-x
y <my-z
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Z <Ny+y <nyng X
Therefore, x < (mymy)-zandz < (nyny) -x,50x = z.
Forx € FSP(E,u,y),we denote by [x]r the fuzzy archimedean class of x:

[x]; = {y € FSP(E,ny):y =5 x}

Theorem 3.2. Let (E, u, y) be a F§G and Sg; the fuzzy subset of vertices not connecting to
any cycle. Then:

(1) Forall x € FSP(E,u,v),[x]f is a subsemigroup of FSP(E, u,y) containing a
unique idempotent,
(2) FSP(E,wy) = UxEIdem(FSP(E,u,y))[x]f ,
3) G(E,u,y) = lim_, veraem(Fsp(Euny)) G([x]f) , where G([x]) is the
Grothendieck group of [x],
Proof: The proof generalises Theorem 3.9 from the original paper to the fuzzy setting,
using the structures developed in Theorem 2.6.
(1) Lety,z € [x];. Then there exist my,n;,m,,n, € N* such that:
xX<my-y, ysn;-x
X <Mmy-z, Z <Ny X
Therefore:
x <my-y <m(y+z)
x Smy -z <my(y+2)
y+z<n-x+n-x=MnN+ny) x
Soy +z € [x]f, proving that [x] is a subsemigroup.
Since FSP(E, u,y) is finite, forany x € [x], some powern - x is an idempotent
(by iterating the monoid operation). This idempotent belongs to [x]f and is unique
because if e, f € [x]; are idempotents, then e =, f, which impliese = f (as
idempotents are minimal in their archimedean classes).
(2) Every element x belongs to [e] ¢ for the unique idempotente € [x];.

(3) Follow the same pattern as in Theorem 2.6 (6)-(7), using the archimedean
decomposition.

4. FLPA
We now introduce FLPA and establish the main connection with fuzzy S;,S.

Definition 4.1. A weighted fuzzy graph is a quadruple (E, w, i, y) where:
o (E,u,y)isafuzzy graph,
e w:E! — N7 isaweight function.
Foreachv € Ep.,, define:

w() = max{w(e): e € s 1(v)}

Definition 4.2. Let (E, w, 1, ¥) be aweighted fuzzy graph and k a field. The fuzzy weighted
Leavitt path algebra L, (E, w, u, y) is the free k-algebra generated by:

{v,ejef : v € EYe € EL1 < i < w(e)}
subject to the relations:
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uv = &y, - min{p(u), u(v)} - u, (3)
s(e)e; = e, = eir(e)- y(e), (4)
r(e)e; = e = e;s(e)- y(e), (5)
=1 @(f)
z:9‘55_1(17) Z?):(f) eiej* = 6ijv ' Zf; o;ii:e;(;(f)' (©)
w®) o« _ wE@w(PyEy()
Zi:1 eiej = 6efr(e). f out—deg(v)? ™

forallu,v € E%e,f € ELv € Efpp1 < i,j < w(v).

The fuzzy membership functions u and y are incorporated as scalar coefficients, weighting
the algebraic relations according to vertex and edge memberships. The weight function ®
determines the number of generators for each edge

Remark 4.1. Setting all membership values to unity specifically u(v) = 1 acrossv €
E%y(e) = 1 across e € EY, and w(e) = 1 across e € E! causes Ly (E, w, 1, y) t0
collapse precisely to the standard Leavitt path algebra Ly (E).
The construction L, (E, w, 1, y) carries natural integer grading structure via:
deg(v) = Oacrossallv € E°,
deg(e;) = 1foreache € E}, 1 < i < w(e),
deg(e}) = —1foreache € E1, 1 < i < w(e).
Symbol LI" (L, (E, u,y)) designates the collection of nonzero graded ideals within the
unweighted fuzzy Leavitt path algebra L,(E,u,y) (obtained by fixing w(e) = 1
throughout).
Symbol LY¢" (L, (E, w, i, v)) designates those ideals of L, (E, w, u,y) arising from vertex
generation—precisely, ideals expressible as (V') for vertex subsets V < E°.

Lemma 4.1. Consider F§G structure (E,u,y). Each nonzero graded ideal I within
Ly (E, u,v) admits generation via some fuzzy hereditary saturated subset = € <+, ..
Proof. Assume I constitutes a nonzero graded ideal. Graded ideals decompose into
homogeneous components; degree-zero components consist of vertex linear combinations,
forcing I to contain at least one vertex v € E°

Construct mapping £ : E° — [0,1] through:

E(w) = sup{a € [0,1]: a-v € I}

Verification that = possesses fuzzy hereditary and saturation properties proceeds
anal ogously to Theorem 2.6 part (4). The key modification substitutes Lk(E,u,y)’s
algebraic structure for FSP(E,u,y)’s toppling dynamics, applying the same logical
framework with different operational rules.

Theorem 5.1. Consider field k, FSG structure (E,p,y), and maximal chain length t
withinFg ... The algebra Ly (E, u, y) admits a finite graded ideal filtration:
0<Ily<Il < <I=Lp(E,uy)
possessing these properties:
(1) The base ideal satisfies I, = Soc(Li(E,p,y)) ~= M, (k), where A
comprises all paths terminating at s, with fuzzy membership weighting matrix
entries,
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(2) Each intermediate quotient I;,,/I (for 0 < i < t) decomposes into finite direct
sums comprising fuzzy-weighted purely infinite simple Leavitt path algebras
together with fuzzy matrix algebras M, (k[x,x']), where fuzzy path
memberships weight the indexing set A

(3) Thetop quotient I /I,_, decomposes as finite direct sums of unital fuzzy-weighted
purely infinite simple Leavitt path algebras and matrix algebras M, (k[x, x™1])
withn € Nt,

(4) Each ideal I; remains fixed under all graded automorphisms of L, (E, i, y).
Additionally, Idem (FSP(E,u,y)) forms a chain precisely when each quotient I;,4 /I;
constitutes either a fuzzy-weighted purely infinite simple Leavitt path algebra or a fuzzy
matrix algebra.

Proof: Our construction adapts the methodology from Theorem 4.11 of the original work

into the fuzzy framework.

Base ideal construction: Designate s as the unique fuzzy sink satisfying u(s) = 1.
Establish: I, = (s)9" (the graded ideal that s generates)

Applying [2, Corollary 2.6.5]s fuzzy generalization yields: [j ~= M, (k)

Here Ay collects paths terminating at s, with matrix coefficients weighted via minimal

membership values along individual paths.

From [8, Theorem 5.2]’s generalization, I, constitutes L (E, u,y)’s socle.

Higher ideal construction: Denote by {C;,...,Cy, } the collection of minimal fuzzy

strongly connected cyclic components—meaning those components whose outgoing edges

remain internal or target S exclusively. For each component C, ;, define 3 ; = cP ;as

its fuzzy hereditary saturated closure. Construct:
keq

j=1
Theorem 4.1 combined with the original paper’s Theorem 4.9 generalization establishes:

ar

keq
B/l = @) Le(E ) 1(Ea) v Ea )
j=1

Each summandL (E(Ey ;), u(Ey,;), ¥ (E1,,)) satisfies either:
e Structure isomorphism M, (k[x,x~1]), when C,,; comprises a single fuzzy cycle,
e Fuzzy-weighted purely infinite simplicity when C; jcontains multiple distinct
fuzzy cycles
Iterating this construction: at filtration level i, examine fuzzy strongly connected cyclic

components whose outgoing edges exclusively target components from levels < i. This
produces:

key
B/l = @D LB (Ea). 1(Ea) v Ea )
j=1
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Termination occurs at level t, matching Fg s maximal chain length.

Automorphism invariance: Consider graded automorphism

a: Lk(E,I.l,V) - Lk(E'MJV)-

Then:

a(ly) = a(Soc(Li(E,w,v))) = Soc(Lk(E, i1, v)) = o

For indicesi = 1, express [; = (Zi)9" for appropriate Z; € +g,,. Graded
automorphisms preserve the graded ideal lattice structure. Theorem 4.1 translates this to
+p,,y lattice preservation.

Fuzzy hereditary saturated subsets determining I; depend solely on fuzzy strongly
connected cyclic component combinatorial structure at levels <i. Since automorphisms
preserve this structure, we obtain a(l;) = I;.

Chain characterization: Assume Idem(FSP(E, u,y)) forms a chain. Theorem 3.1
implies Fg,, is a chain. Consequently, exactly one fuzzy strongly connected cyclic
component exists at each level i, forcing k; = 1 throughout. Therefore, every quotient
I;+1/1; becomes indecomposable.

Conversely, assume each I;,4/I; is indecomposable (either purely infinite simple
or a matrix algebra). This forces k; = 1 forall i, making Fg ,, a chain. Theorem 3.1 then
yields that Idem(FSP(E, u,y)) is a chain.

Corollary 5.1. Let k be a field, (E,p,y) a FSG, and S the fuzzy subset of vertices not
connecting to any cycle. The following are equivalent:
(1) FSP(E,u,y) has exactly two idempotent,
(2) Ly(E/Sg, 1u/Sg,v/SE) is either isomorphic to a fuzzy-weighted M, (k[x, x~1])
forsomen € NT, or fuzzy-weighted purely infinite simple,
(3) Lx(E/SE, 1u/SE,v/SE) is fuzzy vertex-simple (i.e., the only ideals generated by
vertices are {0} and the whole algebra).
Proof: (1) = (2): If FSP(E, i, y) has exactly two idempotents (0 and some e # 0), then
by Theorem 3.1, g, has exactly two elements: Sg and u (the full vertex membership
function). Therefore, (E, 1, y) has exactly one fuzzy strongly connected cyclic component.
By Theorem 5.1, Ly (E/Sg, 14/Sg,v/SE) s either a fuzzy matrix algebra or fuzzy purely
infinite simple.
(2) = (3): By the generalization of [2, Proposition 3.1.14], if L, (E/Sg, 14/Sg, v/Sg) 1S
either a fuzzy matrix algebra or fuzzy purely infinite simple, then it is graded simple. By
Theorem 4.1, the lattice LY¢" (L (E/Sg, 1t/Sg,v/SEg))) has exactly two elements: {0} and
the whole algebra. Therefore, Ly, (E/Sg, it/Sg,v/Sg) is fuzzy vertex-simple.
3) = (1): If L(E/Sg, 1t/Sg,v/Sg) is fuzzy vertex-simple, then by Theorem 4.1,
+E/spu/Sey/se Nas exactly two elements. Since +g,, is obtained by adding SE to
+E/Spu/Sey/Se » We have | +g . | = 2. By Theorem 3.1, |I[dem(FSP(E,w,v))| = 2.

6. Conclusion

This paper has successfully extended sandpile monoids and Leavitt path algebras to fuzzy
environments, demonstrating that classical algebraic structures can meaningfully
accommodate uncertainty and gradual transitions. We introduced fuzzy sandpile monoids
by carefully adapting toppling operations to respect membership functions, then proved
that fuzzy archimedean decompositions of objects retain the rich structure of their crisp
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counterparts. The central achievement lies in establishing lattice isomorphisms connecting
five seemingly different mathematical perspectives: idempotents of fuzzy sandpile
monoids, fuzzy filters, fuzzy hereditary saturated subsets, graded ideals, and vertex-
generated ideals. These connections reveal a fundamental unity underlying discrete
dynamics and non-commutative algebra, even when boundaries become imprecise.

Our characterization of fuzzy Archimedean classes showed that each class
contains exactly one idempotent, mirroring classical behavior while requiring novel
techniques to handle fuzzy degrees. The decomposition of fuzzy weighted Leavitt path
algebras through graded ideal chains demonstrated how strongly connected components
organize algebraic structure regardless of membership uncertainties. These results open
practical applications in modeling networks where connection strengths vary continuously
rather than switching abruptly between present and absent. Social networks, biological
pathways, and infrastructure systems all exhibit this gradual behaviour that our framework
naturally captures. We hope this work encourages further investigation at the intersection
of fuzzy logic, discrete mathematics, and abstract algebra, showing how algebraic thinking
illuminates structures that classical crisp frameworks cannot adequately describe.
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