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1. Introduction 
In 1965, Zadeh [16] introduced the concept of fuzzy sets . Subsequently many researchers have 
been worked in this area and related areas which have applications in different field based on this 
concept. As a generalization of topological spaces Chang [6] introduced the concept of fuzzy 
topological space in 1968. g*-closed sets were introduced and studied by Veerakumar [14] for 
general topology. Recently Parimelazhagan and Subramonia pillai introduced strongly g*-closed 
sets in topological space [9]. 
 In the present paper, we introduce fuzzy strongly g*-closed sets in fuzzy topological 
space and investigate certain basic properties of these fuzzy sets. 
 
2. Basic Concepts 
A family τ  of fuzzy sets of X  is called a fuzzy topology on X  if 0 and 1 belong to τ  and τ  is 
closed with respect to arbitrary union and finite intersection. [6]. The members of τ  are called 
fuzzy open sets and their complements are fuzzy closed  sets. 

Throughout the present paper, ( , )X τ or simplyX  mean fuzzy topological space 
(abbreviated as fts) on which no separation axioms are assumed unless otherwise mentioned. We 
denote and define the closure and interior for a fuzzy setA  by 

( ) { }: ,1Cl A Aµ µ µ τ= ∧ ≥ − ∈ and ( ) { }: ,Int A Aµ µ µ τ= ∨ ≤ ∈  respectively. 
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Definition 2.1. A fuzzy set A  of ( , )X τ  is called fuzzy semiopen (in short , fs-open) if 

( )( )A Cl Int A≤ and a fuzzy semi closed (in short ,fs-closed )if ( )( )Int Cl A A≤  [1]. 

 
Definition 2.2. A fuzzy set A  of ( , )X τ  is called fuzzy preopen (in short , fp-open)  if                                         

( )( )A Int Cl A≤  and a fuzzy pre-closed (in short , fp-closed ) if ( )( )Cl Int A A≤ [3]. 

 
Definition 2.3. A  fuzzy set A  of ( , )X τ   is called fuzzy α -open  (in short ,  fα -open )  

if ( )( )( )A Int Cl Int A≤ and a fuzzy α -closed (in short , fα -closed ) if  

                                          ( )( )( )Cl Int Cl A A≤ [3]. 

 
Definition 2.4. A fuzzy set A  of ( , )X τ  is called fuzzy semi-preopen (in short , fsp-open ) 

if ( )( )A Cl Int Cl A≤ and a fuzzy semi-preclosed(in short , fsp-closed) if  

                                            ( )( )( )Int Cl Int A A≤ [13]. 

 
Definition 2.5. A fuzzy set A  of ( , )X τ  is called fuzzy θ  -open (in short , f θ  -open ) if 

( )A Int Aθ= and a fuzzy θ  -closed (in short , f θ  -closed ) if ( )A Cl Aθ= where 

{ }( ) ( ) : ,Cl A cl Aθ µ µ µ τ= ∧ ≤ ∈  [7]. 

 
The semi closure  [15]  ( respectively pre closure[3] ,α -closure [13]  and semi 

preclosure[14] ) of a fuzzy set A  of ( , )X τ  is the intersection of all fs-Closed (respectively fp-

closed , fα -closed and fsp-closed) sets that contain A  and is  denotedby ( )sCl A (respectively    

( )pCl A , ( )Cl Aα and ( )spCl A ). 

 
Definition 2.6. A fuzzy set A  of ( , )X τ  is called fuzzy generalized closed (in short, fg-closed) if 

Cl A H≤ , whenever A H≤  and H  is fuzzy open set in X [4] 
 

Definition 2.7. A fuzzy set A  of ( , )X τ  is called fuzzy generalized fuzzy semi closed (in short ,  

gfs-closed) if ( )sCl A H≤ , whenever A H≤  and H  is fs-open set in X . This set is  also 

called generalized fuzzy weakly semi closed set. [2] 
           

Definition 2.8. A fuzzy set A  of ( , )X τ  is called fuzzy generalized semi closed  

(in short , fgs-closed) if ( )sCl A H≤  whenever A H≤  and H  is fuzzy open set  in X   [13]. 
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Definition 2.9. A fuzzy set A  of ( , )X τ  is called fuzzy generalized pre closed  

(in short , fgp-closed) if ( )pCl A H≤  whenever A H≤  and H  is fuzzy open set  in X  [8]. 

 
Definition 2.10. A fuzzy set A  of ( , )X τ  is called fuzzy α -generalized closed  

(in short , fα g – closed) if  ( )Cl A Hα ≤  whenever A H≤  and H  is fuzzy open set in X [11]  

. 
Definition 2.11. A fuzzy set A  of ( , )X τ  is called fuzzy Fgα -closed if ( )Cl A Hα ≤  

whenever H  is fuzzy open set in X [12]. 
 
Definition 2.12. A fuzzy set A  of ( , )X τ  is called fuzzy generalized semi pre closed (in 

short,fsp-closed) if ( )spCl A H≤  whenever A H≤  and H  is fuzzy open set in X  [8]  

 

Definition 2.13. A fuzzy set A  of ( ),X τ  is called fuzzy semi-pre-generalized closed (in short, 

fspg-closed) if  ( )spCl A H≤ , whenever A H≤  and H  is fs-open in X  [11] 

           

Definition 2.14. A fuzzy set A  of ( ),X τ  is called fuzzy θ -generalized closed (in short, fθ g-

closed) if  ( )Cl A Hθ ≤ , whenever A H≤  and H  is fuzzy open in X  [7] . 

  

Definition 2.15. A fuzzy set A  of ( ),X τ  is called fuzzy *g - closed (in short, f *g -closed) if 

( )Cl A H≤ , whenever A H≤  and H  is fg- open in X  [5] . 

  
Definition 2.16. A fuzzy point px A∈  is said to be quasi-coincident with the fuzzy set A    

denoted by px qA iff ( ) 1P A x+ > . A fuzzy set A  is quasi-coincident with a fuzzy set B  

denoted by AqB iff there exists x X∈  such that ( ) ( ) 1A x B x+ > . If A  and B  are not quasi-

coincident. Then we write AqB. Note that ( )1A B Aq B≤ ⇔ − .   [10 ]   

  
3.  Fuzzy strongly g*-closed sets in fuzzy topological spaces 

Definition 3.1.  Let ( , )X τ be a fuzzy topological space. A fuzzy set A of ( , )X τ  is called fuzzy 

strongly g*-closed if ( ( ))Cl Int A H≤ whenever A H≤  and H  is fg –open in X. 
 
Theorem 3.1. Every fuzzy closed set is fuzzy strongly g*- closed set in a fuzzy  topological 
space( , )X τ . 

Proof: Let A  be fuzzy closed set in X. Let H  be a fg- open set in X such that  A H≤ .Since 
A  is fuzzy closed, ( )Cl A A= .Therefore ( )Cl A H≤ .Now  ( ( )) ( )Cl Int A Cl A H≤ ≤ . 

Hence A  is fuzzy strongly g*-closed set in X . 
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The converse of the above theorem need not be true in general which can be  seen from the 
following example. 
 
Example 3.1. Let { , , }X a b c= . Fuzzy sets A and B are defined by 

A (a) = 0.7  , A(b)=0.3,  A(c)=0.5; B(a)=0.2  ,  B(b) = 0.1  ,  B(c) = 0.3. 

Let τ ={0, A,1} . 

Then B is a fuzzy strongly g* - closed set  but it is not a fuzzy closed set in  ( , )X τ . 
  
Theorem 3.2.  Every fuzzy g - closed set is  fuzzy strongly g *- closed sets in X. 
Proof: Obvious 
 
Converse of the above theorem need not be true it can be seen by the following example  
 
Example 3.2. Let  { , }X a b=  and the fuzzy sets A  and B be defined as follows 

A (a) = 0.3 ,  A(b)=0.3; B(a)=0.5  ,  B(b) = 0.4. Let τ  ={0, B,1} . Then A is fuzzy  strongly 

g*-closed  but it is not fg-closed, since ( )Cl B B≤/ . 
  
Theorem 3.3.  Every fuzzy g* - closed set is a fuzzy strongly g *- closed sets in X. 
Proof: Suppose that A is fg* - closed in X.  Let H  be a fg-open set in X such that A H≤ .Then 

( )Cl A H≤ , since A  is fg * - closed. Now ( ( )) ( )Cl Int A Cl A H≤ ≤ . Hence A is fuzzy 
strongly g* - closed set in X. 
 
However  the converse of the above theorem need not be true as seen from the following 
example: 
 
Example 3.3. Let X={a,b} , τ  = {0, A, B, D,1}and  fuzzy sets A, B, D and H are  defined 
as follows. 
A(a) = 0.2 , A(b)=0.4; B(a) = 0.6 , B(b)=0.7; (a)=0.4 , D(b)=0.6D  H(a)=0.4, H(b)=0.5. 
Then H is fuzzy strongly g* -closed set but it not fg*-closed in ( , )X τ , because  ( )Cl H D≤/  

where as H D≤ andD  is fg-open. 
 
Theorem 3.4. A fuzzy set A of fuzzy topological space ( , )X τ  is fuzzy strongly g* -closed iff  

A q B ⇒  ( ( ))Cl Int A qBfor every fg -closed set B of X 

Proof:  Suppose that A is a fuzzy strongly g* - closed set of X such that A q B 

Then 1A B≤ −  and 1 B−  is a fuzzy g- open set X. which implies that  ( ( )) 1Cl Int A B≤ − , 

since A is fuzzy strongly g* -closed. Hence ( ( ))Cl Int A qB.  

 Conversely,  let E be a fuzzy g- open let in X  such that A E≤ . Then  1Aq E−  and 

1 E−  is fg- closed set in X. By hypothesis, ( ( )) (1 )Cl Int A q E−  which implies ( ( ))Cl Int A E≤ . 
Hence A is fuzzy strongly g*- closed in X. 
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Theorem 3.5.  Let A be fuzzy strongly g* - closed set in ( , )X τ  and px be a fuzzy point  of  

( , )X τ  such that ( ( ))px qCl Int A  then ( ( ))pCl Int x qA 

Proof: Let A be a fuzzy strongly g* - Closed set ( , )X τ and px  be a fuzzy point of  ( , )X τ  

such that ( ( ))px qCl Int A . Suppose ( ( ))pCl Int x qA, then ( ( )) 1pCl Int x q A−   and hence  

1 ( ( ))pA Cl Int x≤ −  

 Now, 1 ( ( ))pCl Int x−  is fuzzy open. Moreover, since A is fuzzy strongly g*-closed, 

( ( )) 1 ( ( )) 1p pCl Int A Cl Int x x≤ − ≤ − .Hence ( ( ))px qCl Int A , which  is a contradiction. 

 
Theorem 3.6. If A is a fuzzy strongly g* - closed set in ( , )X τ  and  A B ( ( ))Cl Int A≤ ≤ , then 

B is fuzzy strongly g *- closed in ( , )X τ . 

Proof: Let A be a fuzzy strongly g* - closed set in ( , )X τ . Let B H≤  where H is a fuzzy g- 

open se in X. Then A H≤ . Since A is fuzzy strongly g* - closed set, it follows that 
( ( ))Cl Int A H≤ . 

          Now ( ( ))B Cl Int A≤  implies ( ( )) ( ( ( ( )))) ( ( ))Cl Int B Cl Int Cl Int A Cl Int A≤ =   

We get, ( ( ))Cl Int B H≤ . Hence, B is fuzzy strongly g* - closed set in ( , )X τ . 
 
Definition 3.2. A fuzzy set A of ( , )X τ is called fuzzy strongly g* - open set in X iff 1 A−  is 

fuzzy strongly g* - closed in X. In other words , A is fuzzy strongly g*-open iff ( ( ))H Cl Int A≤  

whenever H A≤   of H is fg closed in X. 
 
Theorem 3.7.  Let A be a fuzzy strongly g* - open in X and ( ( ))Int Cl A B A≤ ≤  then B is fuzzy 
strongly g * -open in X. 
Proof: Suppose that A is fuzzy strongly g* - open in X and ( ( ))Int Cl A B A≤ ≤  . Then 1-A is 

fuzzy strongly g* - closed in X and 1 1 ( (1 ))A B Cl Int A− ≤ − ≤ − . Then by theorem 3.6, 1 B−  
is fuzzy strongly g* - closed, Hence B is fuzzy  strongly g*-open in X. 
 
Theorem 3.8.  Let ( , )YY τ  be a subspace of a fuzzy topological space( , )X τ  and A be a fuzzy 

set of Y. If A is fuzzy strongly g* - closed in X , then A is a fuzzy strongly  g* - closed in Y. 
Proof: Let Y be a subspace of X. Let H  be a fg – open get in Y such that A H≤  
We have to prove that ( ( ))y yCl Int A H≤ .Since H  is fg-open  in Y. We have  H=G Y∩   

where G is fg- open in X. Hence A H G Y≤ = ∩  Implies A G≤  and A  is fuzzy strongly g*-
open in X. We get ( ( ))Cl Int A G≤ . Therefore  ( ( ))Cl Int A Y G Y H∩ ≤ ∩ = .Thus 

( ( ))Cl Int A H≤  whenever A H≤  and H is  fuzzy g – open in Y. Hence A is fuzzy strongly 
g* – open in Y. 
 
Theorem 3.9.  If  a fuzzy set A of a fuzzy topological space X  is both fuzzy  open and fuzzy 
strongly g * - closed then it is fuzzy closed. 
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Proof:    Suppose that a fuzzy set A of X is both fuzzy open and fuzzy strongly  g*-closed. Now 
( ( )) ( )A Cl Int A Cl A≥ ≥ .That is ( )A Cl A≥ . Since ( )A Cl A≤ . We get ( )A Cl A= . Hence A 

is  fuzzy closed in X. 
 
Theorem 3.10.  If  a fuzzy set A of a fuzzy topological space X  is both fuzzy  strongly g * - 
closed and fuzzy semi-open then it is fg*-closed. 
Proof:    Suppose a fuzzy set A of X is both fuzzy strongly g* - closed and fuzzy semi-open in X. 
Let H be a fg-open set such that A H≤ . Since A is fuzzy strongly g*-closed, therefore 

( ( ))Cl Int A H≤ . Also since A is fs-open, ( ( ))A Cl Int A≤ .  

We have ( ) ( ( ))Cl A Cl Int A H≤ ≤ . Hence A is fg*-closed in X. 
 
Theorem 3.11. Every  f θ  – closed set is a fuzzy strongly g * - closed set.  
Proof: Obvious 
 
The following example shows that the converse of the above theorem is not true in general. 
 
Example 3.4. Let X={a,b} , τ ={0, A,1} and fuzzy sets A & B are defined as  follows. 

( ) 0.3,A a =  A(b)=0.7;   B(a)=0.6,    B(b)=0.5; 

 Then B is strongly g* - closed but it is not f θ - closed , because ( ) 1Cl B Bθ = ≠ . 

 
Observation: Every fp-closed, fsp-closed, gfs-closed, fg α -closed and fspg- closed sets are 
fuzzy strongly g* - closed. But the converse may not be true in general. 
 
Example 3.5. Let X={a,b}  and τ ={0, A,1} and fuzzy sets A and B are in X defined by  

A(a)=0.8,A(b)=0.2; B(a)=0.9,B(b)=0.6. 
Then B is a fuzzy strongly g*-closed in ( , )X τ but it is not fp-closed set in ( , )X τ , 

because ( ( ))Cl Int B B≤/ . 
 
Example 3.6. Let X={a,b} . Define fuzzy sets A and B are in X defined by  

A(a)=0.2,A(b)=0.6; B(a)=0.5,B(b)=0.7. 
 Let τ ={0, A,1} .  Then B is a fuzzy strongly g*-closed in ( , )X τ  but it is not fsp-closed 

set in ( , )X τ ,  since ( ( ( )))Int Cl Int B B≤/ . 
 
Example  3.7. Let .X={a,b,c} . Define fuzzy sets A,B & C in X as follows 

A(a)=0.1,A(b)=0.2,A(c)=0.7; B(a)=0.9,B(b)=0.1,B(c)=0.6; D(a)=0.9,D(b)=0.2,D(c)=0.8 
 Let τ ={0, A,1} then B is strongly g*- closed set in ( , )X τ but it not gfs- closed set in 

( , )X τ .For, ( )sCl B D≤ where B D< and D is fs-open in ( , )X τ . 
 
Example 3.8. Let X={a,b,c} , τ ={0, A,1} and  fuzzy sets A and B are defined by  

 A(a)=0.8,A(b)=0.3,A(c)=0.1; B(a)=0.8,B(b)=0.1,B(c)=0.1  
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Then B is strongly g*- closed set in ( , )X τ but it is neither fgs-closed, because 

( ) 1sCl B A= ≤/ where as B A≤ and A is fuzzy open and nor fgα -closed, since 

( ) 1Cl B Aα = ≤ where as B A≤ and A is fα -open in X. 
        
Example 3.9. Let X={a,b} and τ ={0, A,1} . Define fuzzy set A, B and D in X by 

 A(a)=0.3,A(b)=0.6; B(a)=0.6,B(b)=0.6; D(a)=0.9,D(b)=0.8 
Then B is fuzzy strongly g* - closed but it is not Fspg- closed because, ( )spCl B D≤ where as 

B D≤ and D is fs-open in X. 
 
From the above discussions and known results we have the following implications. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 
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