Intern. J. Fuzzy Mathematical Archive Vol. 3, 2013, 68-75 ISSN: 2320–3242 (P), 2320–3250 (online) Published on 30 December 2013 www.researchmathsci.org

International Journal of Fuzzy Mathematical Archive

On Fuzzy Strongly g^{*}-Closed Sets in Fuzzy Topological Spaces

T.Rajendrakumar¹ and G.Anandajothi²

 ¹Department of Mathematics, K.S.Rangasamy College of Arts& Science Tiruchengode – 637 215, Tamil Nadu, India E-mail: <u>tnraju11@gmail.com</u>
²Department of Mathematics, K.S.Rangasamy College of Arts& Science Tiruchengode – 637 215, Tamil Nadu, India E-mail: jothi.anandhi@gmail.com

Received 12 December 2013; accepted 24 December 2013

Abstract. In this paper, a new class of fuzzy sets called fuzzy strongly g^* -closed sets is introduced and its properties are investigated.

Keywords: fuzzy generalized closed sets , fuzzy g^{*}-closed sets and fuzzy strongly g^{*}-closed sets

AMS Mathematics Subject Classification (2010): 54A40

1. Introduction

In 1965, Zadeh [16] introduced the concept of fuzzy sets . Subsequently many researchers have been worked in this area and related areas which have applications in different field based on this concept. As a generalization of topological spaces Chang [6] introduced the concept of fuzzy topological space in 1968. g^* -closed sets were introduced and studied by Veerakumar [14] for general topology. Recently Parimelazhagan and Subramonia pillai introduced strongly g^* -closed sets in topological space [9].

In the present paper, we introduce fuzzy strongly g^* -closed sets in fuzzy topological space and investigate certain basic properties of these fuzzy sets.

2. Basic Concepts

A family τ of fuzzy sets of X is called a fuzzy topology on X if 0 and 1 belong to τ and τ is closed with respect to arbitrary union and finite intersection. [6]. The members of τ are called fuzzy open sets and their complements are fuzzy closed sets.

Throughout the present paper, (X, τ) or simply X mean fuzzy topological space (abbreviated as fts) on which no separation axioms are assumed unless otherwise mentioned. We denote and define the closure and interior for a fuzzy set A by $Cl(A) = \wedge \{\mu : \mu \ge A, 1 - \mu \in \tau\}$ and $Int(A) = \vee \{\mu : \mu \le A, \mu \in \tau\}$ respectively.

Definition 2.1. A fuzzy set A of (X, τ) is called fuzzy semiopen (in short, fs-open) if $A \leq Cl(Int(A))$ and a fuzzy semi closed (in short, fs-closed) if $Int(Cl(A)) \leq A$ [1].

Definition 2.2. A fuzzy set A of (X, τ) is called fuzzy preopen (in short, fp-open) if $A \leq Int(Cl(A))$ and a fuzzy pre-closed (in short, fp-closed) if $Cl(Int(A)) \leq A$ [3].

Definition 2.3. A fuzzy set A of (X, τ) is called fuzzy α -open (in short, $f\alpha$ -open) if $A \leq Int(Cl(Int(A)))$ and a fuzzy α -closed (in short, $f\alpha$ -closed) if

$$Cl(Int(Cl(A))) \le A$$
 [3].

Definition 2.4. A fuzzy set A of (X, τ) is called fuzzy semi-preopen (in short, fsp-open) if $A \leq Cl Int(Cl(A))$ and a fuzzy semi-preclosed (in short, fsp-closed) if

$$Int(Cl(Int(A))) \leq A[13].$$

Definition 2.5. A fuzzy set A of (X, τ) is called fuzzy θ -open (in short, f θ -open) if $A = Int_{\theta}(A)$ and a fuzzy θ -closed (in short, f θ -closed) if $A = Cl_{\theta}(A)$ where $Cl_{\theta}(A) = \wedge \{cl(\mu) : A \leq \mu, \mu \in \tau\}$ [7].

The semi closure [15] (respectively pre closure[3], α -closure [13] and semi preclosure[14]) of a fuzzy set A of (X, τ) is the intersection of all fs-Closed (respectively fp-closed, f α -closed and fsp-closed) sets that contain A and is denoted by sCl(A) (respectively $pCl(A), \alpha Cl(A)$ and spCl(A)).

Definition 2.6. A fuzzy set A of (X, τ) is called fuzzy generalized closed (in short, fg-closed) if $Cl A \leq H$, whenever $A \leq H$ and H is fuzzy open set in X [4]

Definition 2.7. A fuzzy set A of (X, τ) is called fuzzy generalized fuzzy semi closed (in short, gfs-closed) if $sCl(A) \le H$, whenever $A \le H$ and H is fs-open set in X. This set is also called generalized fuzzy weakly semi closed set. [2]

Definition 2.8. A fuzzy set A of (X, τ) is called fuzzy generalized semi closed (in short, fgs-closed) if $sCl(A) \le H$ whenever $A \le H$ and H is fuzzy open set in X [13].

T.Rajendrakumar and G.Anandajothi

Definition 2.9. A fuzzy set A of (X, τ) is called fuzzy generalized pre closed (in short, fgp-closed) if $pCl(A) \le H$ whenever $A \le H$ and H is fuzzy open set in X [8].

Definition 2.10. A fuzzy set A of (X, τ) is called fuzzy α -generalized closed (in short, f α g – closed) if $\alpha Cl(A) \leq H$ whenever $A \leq H$ and H is fuzzy open set in X [11]

Definition 2.11. A fuzzy set A of (X, τ) is called fuzzy $\operatorname{Fg} \alpha$ -closed if $\alpha Cl(A) \leq H$ whenever H is fuzzy open set in X [12].

Definition 2.12. A fuzzy set A of (X, τ) is called fuzzy generalized semi pre closed (in short, fsp-closed) if $spCl(A) \le H$ whenever $A \le H$ and H is fuzzy open set in X [8]

Definition 2.13. A fuzzy set A of (X, τ) is called fuzzy semi-pre-generalized closed (in short, fspg-closed) if $spCl(A) \le H$, whenever $A \le H$ and H is fs-open in X [11]

Definition 2.14. A fuzzy set A of (X, τ) is called fuzzy θ -generalized closed (in short, $f \theta$ gclosed) if $Cl_{\theta}(A) \leq H$, whenever $A \leq H$ and H is fuzzy open in X [7].

Definition 2.15. A fuzzy set A of (X, τ) is called fuzzy g^* - closed (in short, f g^* -closed) if $Cl(A) \le H$, whenever $A \le H$ and H is fg- open in X [5].

Definition 2.16. A fuzzy point $x_p \in A$ is said to be quasi-coincident with the fuzzy set A denoted by $x_p qA$ iff P + A(x) > 1. A fuzzy set A is quasi-coincident with a fuzzy set B denoted by AqB iff there exists $x \in X$ such that A(x) + B(x) > 1. If A and B are not quasi-coincident. Then we write $A\overline{qB}$. Note that $A \leq B \Leftrightarrow A\overline{q}(1-B)$. [10]

3. Fuzzy strongly g^{*}-closed sets in fuzzy topological spaces

Definition 3.1. Let (X, τ) be a fuzzy topological space. A fuzzy set A of (X, τ) is called fuzzy strongly g*-closed if $Cl(Int(A)) \le H$ whenever $A \le H$ and H is fg –open in X.

Theorem 3.1. Every fuzzy closed set is fuzzy strongly g^* - closed set in a fuzzy topological space (X, τ) .

Proof: Let A be fuzzy closed set in X. Let H be a fg- open set in X such that $A \le H$. Since A is fuzzy closed, Cl(A) = A. Therefore $Cl(A) \le H$. Now $Cl(Int(A)) \le Cl(A) \le H$. Hence A is fuzzy strongly g*-closed set in X.

The converse of the above theorem need not be true in general which can be seen from the following example.

Example 3.1. Let $X = \{a, b, c\}$. Fuzzy sets A and B are defined by A (a) = 0.7, A(b)=0.3, A(c)=0.5; B(a)=0.2, B(b) = 0.1, B(c) = 0.3. Let $\tau = \{0, A, 1\}$. Then B is a fuzzy strongly g* - closed set but it is not a fuzzy closed set in (X, τ) .

Theorem 3.2. Every fuzzy g - closed set is fuzzy strongly g *- closed sets in X. **Proof:** Obvious

Converse of the above theorem need not be true it can be seen by the following example

Example 3.2. Let $X = \{a, b\}$ and the fuzzy sets A and B be defined as follows A (a) = 0.3, A(b)=0.3; B(a)=0.5, B(b) = 0.4. Let $\tau = \{0, B, 1\}$. Then A is fuzzy strongly g^{*}-closed but it is not fg-closed, since $Cl(B) \leq B$.

Theorem 3.3. Every fuzzy g^* - closed set is a fuzzy strongly g^* - closed sets in X. **Proof:** Suppose that A is fg^* - closed in X. Let H be a fg-open set in X such that $A \le H$. Then $Cl(A) \le H$, since A is fg * - closed. Now $Cl(Int(A)) \le Cl(A) \le H$. Hence A is fuzzy strongly g^* - closed set in X.

However the converse of the above theorem need not be true as seen from the following example:

Example 3.3. Let $X=\{a,b\}$, $\tau = \{0, A, B, D, 1\}$ and fuzzy sets A, B, D and H are defined as follows.

A(a) = 0.2, A(b)=0.4; B(a) = 0.6, B(b)=0.7; D(a)=0.4, D(b)=0.6 H(a)=0.4, H(b)=0.5. Then H is fuzzy strongly g* -closed set but it not fg*-closed in (X, τ) , because $Cl(H) \leq D$ where as $H \leq D$ and D is fg-open.

Theorem 3.4. A fuzzy set A of fuzzy topological space (X, τ) is fuzzy strongly g^{*} -closed iff A \overline{q} B \Rightarrow $Cl(Int(A))\overline{q}B$ for every fg -closed set B of X

Proof: Suppose that A is a fuzzy strongly g^* - closed set of X such that $A \overline{q} B$ Then $A \le 1-B$ and 1-B is a fuzzy g- open set X. which implies that $Cl(Int(A)) \le 1-B$, since A is fuzzy strongly g^* -closed. Hence $Cl(Int(A))\overline{q}B$.

Conversely, let E be a fuzzy g- open let in X such that $A \le E$. Then $A\overline{q}1-E$ and 1-E is fg- closed set in X. By hypothesis, $Cl(Int(A))\overline{q}(1-E)$ which implies $Cl(Int(A)) \le E$. Hence A is fuzzy strongly g*- closed in X.

T.Rajendrakumar and G.Anandajothi

Theorem 3.5. Let A be fuzzy strongly g^* - closed set in (X, τ) and x_p be a fuzzy point of (X, τ) such that $x_p qCl(Int(A))$ then $Cl(Int(x_p))qA$ **Proof:** Let A be a fuzzy strongly g^* - Closed set (X, τ) and x_p be a fuzzy point of (X, τ)

Proof: Let A be a fuzzy strongly g^* - Closed set (X, τ) and x_p be a fuzzy point of (X, τ) such that $x_p qCl(Int(A))$. Suppose $Cl(Int(x_p))\overline{q}A$, then $Cl(Int(x_p))q1 - A$ and hence $A \le 1 - Cl(Int(x_p))$

Now, $1 - Cl(Int(x_p))$ is fuzzy open. Moreover, since A is fuzzy strongly g*-closed, $Cl(Int(A)) \le 1 - Cl(Int(x_p)) \le 1 - x_p$. Hence $x_p \overline{q} Cl(Int(A))$, which is a contradiction.

Theorem 3.6. If A is a fuzzy strongly g^* - closed set in (X, τ) and $A \le B \le Cl(Int(A))$, then B is fuzzy strongly g^* - closed in (X, τ) .

Proof: Let A be a fuzzy strongly g^* - closed set in (X, τ) . Let $B \le H$ where H is a fuzzy gopen se in X. Then $A \le H$. Since A is fuzzy strongly g^* - closed set, it follows that $Cl(Int(A)) \le H$.

Now $B \leq Cl(Int(A))$ implies $Cl(Int(B)) \leq Cl(Int(Cl(Int(A)))) = Cl(Int(A))$ We get, $Cl(Int(B)) \leq H$. Hence, B is fuzzy strongly g* - closed set in (X, τ) .

Definition 3.2. A fuzzy set A of (X, τ) is called fuzzy strongly g^* - open set in X iff 1-A is fuzzy strongly g^* - closed in X. In other words, A is fuzzy strongly g^* -open iff $H \leq Cl(Int(A))$ whenever $H \leq A$ of H is fg closed in X.

Theorem 3.7. Let A be a fuzzy strongly g^* - open in X and $Int(Cl(A)) \le B \le A$ then B is fuzzy strongly g^* -open in X.

Proof: Suppose that A is fuzzy strongly g^* - open in X and $Int(Cl(A)) \le B \le A$. Then 1-A is fuzzy strongly g^* - closed in X and $1 - A \le 1 - B \le Cl(Int(1 - A))$. Then by theorem 3.6, 1 - B is fuzzy strongly g^* - closed, Hence B is fuzzy strongly g^* -open in X.

Theorem 3.8. Let (Y, τ_Y) be a subspace of a fuzzy topological space (X, τ) and A be a fuzzy set of Y. If A is fuzzy strongly g^* - closed in X, then A is a fuzzy strongly g^* - closed in Y. **Proof:** Let Y be a subspace of X. Let H be a fg – open get in Y such that $A \le H$ We have to prove that $Cl_y(Int_y(A)) \le H$. Since H is fg-open in Y. We have $H=G \cap Y$ where G is fg- open in X. Hence $A \le H = G \cap Y$ Implies $A \le G$ and A is fuzzy strongly g^* open in X. We get $Cl(Int(A)) \le G$. Therefore $Cl(Int(A)) \cap Y \le G \cap Y = H$. Thus $Cl(Int(A)) \le H$ whenever $A \le H$ and H is fuzzy g – open in Y. Hence A is fuzzy strongly g^* – open in Y.

Theorem 3.9. If a fuzzy set A of a fuzzy topological space X is both fuzzy open and fuzzy strongly g * - closed then it is fuzzy closed.

Proof: Suppose that a fuzzy set A of X is both fuzzy open and fuzzy strongly g^* -closed. Now $A \ge Cl(Int(A)) \ge Cl(A)$. That is $A \ge Cl(A)$. Since $A \le Cl(A)$. We get A = Cl(A). Hence A is fuzzy closed in X.

Theorem 3.10. If a fuzzy set A of a fuzzy topological space X is both fuzzy strongly g * - closed and fuzzy semi-open then it is fg*-closed.

Proof: Suppose a fuzzy set A of X is both fuzzy strongly g^* - closed and fuzzy semi-open in X. Let H be a fg-open set such that $A \le H$. Since A is fuzzy strongly g^* -closed, therefore $Cl(Int(A)) \le H$. Also since A is fs-open, $A \le Cl(Int(A))$.

We have $Cl(A) \leq Cl(Int(A)) \leq H$. Hence A is fg*-closed in X.

Theorem 3.11. Every f θ – closed set is a fuzzy strongly g * - closed set. **Proof:** Obvious

The following example shows that the converse of the above theorem is not true in general.

Example 3.4. Let X={a,b}, $\tau = \{0, A, 1\}$ and fuzzy sets A & B are defined as follows. A(a) = 0.3, A(b)=0.7; B(a)=0.6, B(b)=0.5;

Then B is strongly g^{*} - closed but it is not f θ - closed, because $Cl_{\theta}(B) = 1 \neq B$.

Observation: Every fp-closed, fsp-closed, gfs-closed, fg α -closed and fspg- closed sets are fuzzy strongly g* - closed. But the converse may not be true in general.

Example 3.5. Let X={a,b} and τ ={0, A,1} and fuzzy sets A and B are in X defined by A(a)=0.8,A(b)=0.2; B(a)=0.9,B(b)=0.6.

Then B is a fuzzy strongly g*-closed in (X, τ) but it is not fp-closed set in (X, τ) , because $Cl(Int(B)) \leq B$.

Example 3.6. Let $X=\{a,b\}$. Define fuzzy sets A and B are in X defined by A(a)=0.2, A(b)=0.6; B(a)=0.5, B(b)=0.7.

Let $\tau = \{0, A, 1\}$. Then B is a fuzzy strongly g*-closed in (X, τ) but it is not fsp-closed set in (X, τ) , since $Int(Cl(Int(B))) \leq B$.

Example 3.7. Let $X = \{a, b, c\}$. Define fuzzy sets A,B & C in X as follows

A(a)=0.1,A(b)=0.2,A(c)=0.7; B(a)=0.9,B(b)=0.1,B(c)=0.6; D(a)=0.9,D(b)=0.2,D(c)=0.8 Let $\tau = \{0, A, 1\}$ then B is strongly g*- closed set in (X, τ) but it not gfs- closed set in (X, τ). For, $sCl(B) \neq D$ where B < D and D is fs-open in (X, τ).

Example 3.8. Let X={a,b,c}, $\tau =$ {0, A,1} and fuzzy sets A and B are defined by A(a)=0.8,A(b)=0.3,A(c)=0.1; B(a)=0.8,B(b)=0.1,B(c)=0.1

T.Rajendrakumar and G.Anandajothi

Then B is strongly g*- closed set in (X, τ) but it is neither fgs-closed, because $sCl(B) = 1 \leq A$ where as $B \leq A$ and A is fuzzy open and nor fg α -closed, since $\alpha Cl(B) = 1 \leq A$ where as $B \leq A$ and A is f α -open in X.

Example 3.9. Let X={a,b} and $\tau = \{0, A, 1\}$. Define fuzzy set A, B and D in X by A(a)=0.3, A(b)=0.6; B(a)=0.6, B(b)=0.6; D(a)=0.9, D(b)=0.8

Then B is fuzzy strongly g^* - closed but it is not Fspg- closed because, $spCl(B) \not\leq D$ where as $B \leq D$ and D is fs-open in X.

From the above discussions and known results we have the following implications.

REFERENCES

- 1. K.K. Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, *J. Math. Anal. Appl.*, 82(1) (1981) 14 32.
- 2. G. Balasubramanian, On fuzzy-pre-separation axiom, *Bull., Calcutta Math Soc.*, 90(6) (1998) 427 434.
- 3. G. Balasubramanian, and V. Chandrasekar, Totally fuzzy semi continuous functions, *Bull. Calcutta Mat Soc*, 92(4) (2000) 305 312.
- 4. G. Balasubramanian and P. Sundaram, On some generalization of fuzzy continuous functions, *Fuzzy Sets and Systems*, 86 (1) (1997) 93-100.
- 5. S.S. Benchalli and G.P. Siddapur, Fuzzy g^{*} pre-continuous maps in fuzzy topological spaces, *Int. Jou. Comp. Appl*, 16 (2) (2011) 12-15.
- 6. C. L. Chang, Fuzzy topological spaces, J. Math Anal Appl., 24 (1968) 182 190.

- 7. M.E. El- Shafei and A. Zakari, θ generalized closed sets in fuzzy topological spaces, *The Arabian Journal for Science and Engineering*, 31 (2A) (2006) 197 206.
- 8. S. Murugesan and P. Thangavelu, Fuzzy pre-semi-closed sets, *Bull. Malays, Math Sci. Soc.* 31 (2) (2008) 223 232.
- 9. R. Parimelazhagan and V. Subramoniapillai, Strongly g^{*}-Closed sets in topological spaces, *Int. Jou. Of Math. Analy.*, 6(30) (2012) 1481-1489.
- 10. P.M. Pu and Y.M. Liu, Fuzzy topology I. neighbourhood structure of a fuzzy point and Moore-smith convergence, *J. Math Anal Appl.*, 76(2) (1980) 571 599.
- 11. R.K. Saraf, G. Navalagi and M. Khanna, On fuzzy semi-pre-generalized closed sets, *Bull. Malays. Math Sci. Soc.*, 28(1) (2005) 19 30.
- 12. R.K. Saraf and M. Khanna, On gs-closed set in fuzzy topology, *J. Indian Acad. Math.*, 25(1) (2003) 133-143.
- 13. S.S. Thakur and S. Sing, On fuzzy semi-pre open sets and fuzzy semi-pre continuity, *Fuzzy* Sets and Systems, 98(3) (1998) 383 391.
- 14. M.K. R. S. Veerakumar, Between closed sets and g-closed sets, *Mem. Fac. Sci. Kochi Univ. Ser. A. Math.*, 17 (21)(2000) 1-19.
- 15. T.H. Yalvac, Semi-interior and semi-closure of a fuzzy set, J.Math. Anal. Appl., (132)(2) (1988) 356-364.
- 16. L.A. Zadeh, Fuzzy sets, Inform. and Control, 8(1965) 338 353.