Intern. J. Fuzzy Mathematical Archive Vol. 3, 2013, 50-57 ISSN: 2320 –3242 (P), 2320 –3250 (online) Published on 30 December 2013 www.researchmathsci.org

International Journal of **Fuzzy Mathematical Archive**

Interval-valued Fuzzy Ideals of Regular and Intraregular Semigroups

*D.Singaram*¹ and *PR. Kandasamy*² ¹Department of Mathematics, Karpagam University Coimbatore - 641 021, Tamilnadu, India ¹Department of Mathematics, PSG college of Technology Peelamedu, Coimbatore - 641 004, Tamilnadu, India Email: <u>dsingaram@yahoo.co.in</u> ²Department of Computer Applications, Hindustan Institute of Technology Coimbatore - 641 032, Tamilnadu, India Email: <u>pr_kandasamy@yahoo.com</u>

Received 12 December 2013; accepted 24 December 2013

Abstract. Let S be a semigroup. A mapping $\overline{A}: S \to D[0, 1]$ is called an interval-valued fuzzy subset of S where D[0, 1] denotes the family of all closed sub intervals of [0, 1]. A semigroup S is called an intraregular semigroup if for each element $a \in S$ there exist $x, y \in S$ such that $a = xa^2y$. In this paper, intraregular semigroups are characterized by means of interval-valued fuzzy left ideals (resp. right ideals, bi-ideals, interior ideals).

Keywords: Semigroup, Interval-valued fuzzy subsemigroup, Interval-valued fuzzy ideal, Interval-valued fuzzy bi-ideal, Interval-valued fuzzy interior ideal

AMS Mathematics Subject Classification (2010): 20N25, 20M12, 03E72, 08A72

1. Introduction

L.A. Zadeh [11] made an extension of the concept of a fuzzy set by an interval-valued fuzzy set with an interval-valued membership function. Interval-valued fuzzy sets have many applications in several areas. For example, Zadeh [11] constructed a method of approximate inference using his interval-valued fuzzy set. Gorzalczany [3] studied the interval-valued fuzzy sets for approximate reasoning, Roy and Biswas [1] studied interval-valued fuzzy relations and applied these in Sanxhez's approach for medical diagnosis. X.Y. Xie and J. Tang [10] studied regular and intraregular semigroups in terms of fuzzy sets. Y. Hang and X. Fang [4] characterized intraregular semigroups by intuitionistic fuzzy sets. In [8, 9] AL. Narayanan and T. Manikantan introduced the notions of interval-valued fuzzy subsemigroup and various kinds of interval-valued fuzzy ideals in semigroups. Kuroki [6] characterized regular semigroups, intraregular semigroups that are semilattices of left (right) simple semigroups in terms of fuzzy ideals, fuzzy bi-ideals and fuzzy generalized bi-ideals. In this paper, we characterized the regular and intraregular semigroups in terms of bi-ideals.

2. Preliminaries

Let *S* be a semigroup.

A non-empty subset A of S is called a *subsemigroup* of S if $AA \subseteq A$ and is called a *left* (resp. *right*) *ideal* of S if $SA \subseteq A$ (resp. $AS \subseteq A$).

By *two sided ideal* or simply *ideal*, we mean a non-empty subset of S which is both a left and a right ideal of S.

A subsemigroup A of S is called a *bi-ideal* of S if $ASA \subseteq A$.

A non-empty subset A of S is called a *interiorideal* of S if $SAS \subseteq A$.

Definition 2.1. A semigroup *S* is called *regular* if for each element $a \in S$ there exists $x \in S$ such that a = axa. In other words *S* is regular if $a \in aSa \quad \forall a \in S$.

Definition 2.2. A semigroup *S* is called *intraregular* if for each element $a \in S$ there exist $x, y \in S$ such that $a = xa^2y$. In other words *S* is intraregular if $a \in Sa^2S \quad \forall a \in S$.

We now review some fuzzy concepts.

A *fuzzy subset A* of a non-empty set *X* is a mapping from *X* to [0, 1].

Let S be a semigroup. A fuzzy subset A of S is called a *fuzzy subsemigroup* of S if $A(xy) \ge min\{A(x), A(y)\} \quad \forall x, y \in S$. A fuzzy subset A of S is called a *fuzzy left* (resp. right) ideal of S if $A(xy) \ge A(y)(resp. A(xy) \ge A(x)) \quad \forall x, y \in S$.

A fuzzy subset A of S is called a *fuzzy two-sided ideal* or simply *fuzzy ideal* of S if it is both a fuzzy left ideal and a fuzzy right ideal of S.

A fuzzy subsemigroup A of S is called a *fuzzy bi-ideal* of S if $A(xyz) \ge min\{A(x), A(z)\} \forall x, y, z \in S.$

An interval number on [0,1], say \bar{a} is a closed subinterval of [0,1], that is $\bar{a} = [a^-, a^+]$ where $0 \le a^- \le a^+ \le 1$. Let D[0,1] denote the family of all closed subintervals of [0,1], $\bar{0} = [0,0]$ and $\bar{1} = [1,1]$.

For any two elements $\bar{a} = [a^-, a^+]$ and $\bar{b} = [b^-, b^+]$ in D[0, 1], we define

(i) $\bar{a} \le \bar{b}$ if and only if $a^- \le b^-$ and $a^+ \le b^+$,

(ii) $\bar{a} = \bar{b}$ if and only if $a^- = b^-$ and $a^+ = b^+$,

(iii) $Min^i \{ \bar{a}, \bar{b} \} = [min\{a^-, b^-\}, min\{a^+, b^+\}],$

(iv) $Max^{i} \{\bar{a}, \bar{b}\} = [max\{a^{-}, b^{-}\}, max\{a^{+}, b^{+}\}].$

Similarly we can define Inf^i and Sup^i in case of family of elements in D[0, 1].

A mapping $\overline{A}: X \to D[0, 1]$ is called an *interval-valued fuzzy subset* (briefly, an *i-v fuzzy subset*) of X, where $\overline{A}(x) = [A^-(x), A^+(x)] \quad \forall x \in X, A^-$ and A^+ are fuzzy subsets in X such that $A^-(x) \leq A^+(x) \quad \forall x \in X$.

Definition 2.3. Let \overline{A} , \overline{B} be i-v fuzzy subsets of *X*. Then we have the following:

(i) $\bar{A} \leq \bar{B}$ if and only if $\bar{A}(x) \leq \bar{B}(x) \forall x$.

(ii) $\overline{A} = \overline{B}$ if and only if $\overline{A}(x) = \overline{B}(x) \forall x$.

(iii) $(\overline{A} \cup \overline{B})(x) = max^i \{\overline{A}(x), \overline{B}(x)\}$

(iv) $(\overline{A} \cap \overline{B})(x) = min^i \{\overline{A}(x), \overline{B}(x)\}.$

D. Singaram and PR. Kandasamy

Definition 2.4. Let '.' be a binary composition in a set S. The product $\overline{A} \circ \overline{B}$ of any two iv fuzzy subsets $\overline{A}, \overline{B}$ of S is defined by

$$(\bar{A} \circ \bar{B})(x) = \begin{cases} Sup^{i} \\ x = a \cdot b \\ \bar{0} \end{cases} \begin{cases} Min^{i} \{\bar{A}(a), \bar{B}(b)\} \end{cases} \text{ if } x \text{ is expressible as } x = a \cdot b \\ otherwise \end{cases}$$

Since semigroup S is associative, the operation \circ is associative. We denote xy instead of $x \cdot y$ and \overline{AB} for $\overline{A} \circ \overline{B}$.

Let *B* be a subset of a set *X*. Define a function $\overline{\chi_B}$: $X \to D[0,1]$ by

 $\overline{\chi_B}(x) = \begin{cases} \overline{1} & if \ x \in B \\ \overline{0} & otherwise \end{cases} \forall x \in X.$

Clearly $\overline{\chi_B}$ is an i-v fuzzy subset of X. Throughout this paper $\overline{\chi_S}$ is denoted by \overline{S} and S will denote a semigroup unless otherwise mentioned.

An i-v fuzzy subset \overline{A} of S is called an *interval–valued fuzzy subsemigroup* (briefly, *an i-v fuzzy subsemigroup*) of S if $\overline{A}(ab) \ge Min^i \{\overline{A}(a), \overline{A}(b)\} \forall a, b \in S$.

An i-v fuzzy subset \overline{A} of S is called an *interval-valued fuzzy left* (resp. *right*) *ideal* (briefly, *an i-v fuzzy left (resp. right) ideal*) of S if $\overline{A}(ab) \ge \overline{A}(b)$ (resp. $\overline{A}(ab) \ge \overline{A}(a)$) for all $a, b \in S$.

Every i-v fuzzy right (left, two sided) ideal of S is an i-v fuzzy subsemigroup of S. However the converse is not true.

An i-v fuzzy subset \overline{A} of S is called an *interval-valued fuzzy two-sided ideal* or simply *i-v fuzzy ideal* of S if it is both an i-v fuzzy left ideal and an i-v fuzzy right ideal of S.

An i-v fuzzy subsemigroup \overline{A} of S is called an *i-v fuzzy bi-ideal* of S if $\overline{A}(xyz) \ge Min^i \{\overline{A}(x), \overline{A}(z)\} \forall x, y, z \in S$.

An i-v fuzzy subset \overline{A} of S is called an *i-v fuzzy interior ideal* of S if $\overline{A}(xay) \ge \overline{A}(a)$.

3. Results

In this section, we obtained the structure of i-v fuzzy interior ideal of an intraregular semigroup and obtained equivalent conditions for a semigroup to be intraregular and showed that in an intraregular semigroup the concept of an i-v fuzzy ideal and an i-v fuzzy interior ideal are identical.

Theorem 3.1. Let *S* be an intraregular semigroup. Then $\overline{A} = \overline{S}\overline{A}\overline{S}$ for every i-v fuzzy interior ideal \overline{A} of *S*.

Proof: Let \overline{A} be an i-v fuzzy interior ideal of an intraregular semigroup S.

$$\bar{S}\bar{A}\bar{S}(a) = \frac{Sup^{i}}{a = xy} \left\{ Min^{i}\{(\bar{S}\bar{A})(x), \bar{S}(y)\} \right\}$$

$$= \frac{Sup^{i}}{a = xy} \{(\bar{S}\bar{A})(x)\}$$

$$= \frac{Sup^{i}}{a = xy} \left\{ \begin{array}{c} Sup^{i} \\ x = uv \end{array} \left\{ Min^{i}\{\bar{S}(u), \bar{A}(v)\} \right\} \right\}$$

$$= \frac{Sup^{i}}{a = xy} \left\{ \begin{array}{c} Sup^{i} \\ x = uv \end{array} \left\{ \bar{A}(v)\} \right\} \right\}$$

$$= \frac{Sup^{i}}{a = uvy} \{ \{\bar{A}(v)\} \}$$

$$\leq \frac{Sup^{i}}{a = uvy} \{ \{\bar{A}(uvy)\} \}$$

$$= Sup^{i} \{\bar{A}(a)\}$$

$$= \bar{A}(a).$$

Therefore, $\overline{S}\overline{A}\overline{S} \leq \overline{A}$.

$$\bar{S}\bar{A}\bar{S}(a) = \frac{Sup^{i}}{a = pq} \left\{ Min^{i} \{\bar{S}(p), (\bar{A}\bar{S})(q)\} \right\}$$

$$\geq Min^{i} \{\bar{S}(xa), (\bar{A}\bar{S})(ay)\}$$

$$= (\bar{A}\bar{S})(ay)$$

$$= \frac{Sup^{i}}{ay = uv} \left\{ Min^{i} \{\bar{A}(u), \bar{S}(v)\} \right\}$$

$$\geq Min^{i} \{\bar{A}(xaa), \bar{S}(y^{2})\}$$

$$= \bar{A}(xaa)$$

$$= \bar{A}(a), \text{ since } \bar{A} \text{ is an interior ideal.}$$

Thus $\bar{A} = \bar{S}\bar{A}\bar{S}$.

Lemma 3.2. [5] For a semigroup S, the following conditions are equivalent:

(i) *S* is intraregular

(ii) $A \cap B \subseteq AB$ holds for every left ideal A and every right ideal B of S.

Theorem 3.3. For a semigroup S, the following conditions are equivalent

- (i) *S* is intraregular
- (ii) $\overline{A} \cap \overline{B} \subseteq \overline{A} \circ \overline{B}$ holds for every i-v fuzzy left ideal \overline{A} and every i-v fuzzy right ideal \overline{B} of S.

Proof: Assume that *S* is intraregular. Therefore $\forall a \in S, \exists x, y \in S$ such that $a = xa^2y$. Then we have $(\bar{A} \circ \bar{B})(a) = \frac{Sup^i}{a = uv} \{Min^i \{\bar{A}(u), \bar{A}(v)\}\}$ $\geq Min^i \{\bar{A}(xa), \bar{B}(ay)\}$ $\geq Min^i \{\bar{A}(a), \bar{B}(a)\}$ $= (\bar{A} \cap \bar{B})(a) \quad \forall a \in S$ Hence by Definition 2.3(i) $\bar{A} \circ \bar{B} \geq \bar{A} \cap \bar{B}$. Conversely assume that $\bar{A} \cap \bar{B} \subseteq \bar{A} \circ \bar{B}$ for every left ideal \bar{A} and every right ideal \bar{B} of *S*. Let *R* be a right ideal and *L* be a left ideal of *S* respectively. Then $\overline{\chi_R}$ is an i-v fuzzy right ideal of *S* and $\overline{\chi_L}$ is an i-v fuzzy left ideal of *S*. By our assumption, $\overline{\chi_L} \cap \overline{\chi_R} \subseteq \overline{\chi_L} \circ \overline{\chi_R}$. Since $\overline{\chi_L} \cap \overline{\chi_R} = \overline{\chi_{L\cap R}}$, (lemma 2.3.12[2]) we have $\overline{\chi_{L\cap R}} \subseteq \overline{\chi_L} \circ \overline{\chi_R}$. Now, let $a \in L \cap R$. Therefore $\overline{\chi_{L\cap R}}(a) = \overline{1}$ and by our assumption $\overline{\chi_L} \circ \overline{\chi_R}(a) = \overline{1}$ that is $\frac{Sup^i}{a = uv} \{Min^i \{\overline{\chi_L}(u), \overline{\chi_R}(v)\}\} = \overline{1}$. Therefore $\exists x \in L$ and $\exists y \in R$ such that a = xy which implies that $a \in LR$. Therefore $L \cap R \subseteq LR$ for every left ideal *L* and every right ideal *R* of *S*.

By Lemma 3.2, we have *S* is intraregular.

D. Singaram and PR. Kandasamy

Theorem 3.4. A semigroup S is intraregular if and only if $(\forall a \in S) \ \overline{A}(a) = \overline{A}(a^2)$ for every i-v fuzzy ideal \overline{A} of S. **Proof:** \Rightarrow Let \overline{A} be an i-v fuzzy ideal of S. And $a \in S$. Then by hypothesis, as S is intraregular $\exists x, y \in S$ such that $a = xa^2y$. And $\bar{A}(a) = \bar{A}(xa^2y) \ge \bar{A}(a^2y) \ge \bar{A}(a^2) \ge \bar{A}(aa) \ge \bar{A}(aa)$. This implies that $\bar{A}(a) = \bar{A}(a^2)$. $\leftarrow I(a^2)$ is an ideal of S generated by a^2 . And $I(a^2) = \{a^2\} \cup \{Sa^2\} \cup \{a^2S\}.$ $\overline{\chi_{I(a^2)}}$ is an i-v fuzzy ideal of S. By our assumption $\overline{\chi_{I(a^2)}}(a^2) = \overline{\chi_{I(a^2)}}(a)$. We have $\overline{\chi_{I(a^2)}}(a) = \overline{1}$. Hence $a \in I(a^2) = \{a^2\} \cup \{Sa^2\} \cup \{a^2S\}.$ Suppose $a \in \{a^2\}$ Then $a = a^2 = aa = a^2a^2 = aa^2a$. Therefore $a \in Sa^2S$. If $a \in \{Sa^2\}$, then $\exists x \in S$ such that $a = xa^2 = xaa = x(xa^2)a = x^2a^2a$. Therefore $a \in Sa^2S$. If $a \in \{a^2S\}$, then $\exists x \in S$ such that $a = a^2x = aax = a(a^2x)x = aa^2x^2$. Therefore $a \in Sa^2S$. Thus in all the cases, by Definition 2.2, *S* is intraregular. This completes the proof.

Theorem 3.5. Let *S* be an intraregular semigroup. Then for any i-v fuzzy ideal \overline{A} of *S*, we have, $\overline{A}(ab) = \overline{A}(ba), \forall a, b \in S$ **Proof:** Let \overline{A} be any i-v fuzzy ideal of *S* and $a, b \in S$. Then by theorem 3.4 and hypothesis, we have

 $\bar{A}(ab) = \bar{A}((ab)^2) = \bar{A}(a(ba)b) \ge \bar{A}(ba) = \bar{A}((ba)^2) = \bar{A}(b(ab)a) \ge \bar{A}(ab)$ Thus we have $\bar{A}(ab) = \bar{A}(ba)$.

Lemma 3.6. A semigroup *S* is regular and intraregular if and only if every bi-ideal of *S* is idempotent, that is $B = B^2$ for every bi-ideal *B* of *S*.

Proof: Let *S* be both regular and intraregular semigroup and *B* be a bi-ideal of *S*. Since *B* is a bi-ideal, we have $BSB \subseteq B$ and since *S* is both regular and intraregular, we have $B \subseteq BSB$ and $B \subseteq SB^2S$ Thus $B \subseteq BSB$

 $\subseteq BSB$ $\subseteq BSBSB$ $\subseteq BS(SB^2S)SB$ $\subseteq BS^2B^2S^2B$ $\subseteq BSB^2SB$ $\subseteq BSB BSB$ $\subseteq B B$ $= B^2$ $= B^2$

That is $B \subseteq B^2$. On the other hand, since *B* is a bi-ideal of *S* we have $B^2 \subseteq B$. Hence we have $B = B^2$.

Conversely, let $B = B^2$ for every bi-ideal of *S* and let $a \in S$. But $B(a) = \{a \cup a^2 \cup aSa\}$ is a biideal. Since $a \in B(a)$, by our assumption $B(a) = B^2(a)$, $a \in B^2(a) = \{a^2 \cup a^2Sa \cup aSa^2\}$. Therefore either $a = a^2$ or $a \in a^2Sa$ or $a \in aSa^2$. In all the cases it can easily seen that $a \in aSa$ and $a \in SaS$. This is true for any $a \in S$.

Therefore S is both regular and intraregular.

Theorem 3.7. Let *S* be an intraregular semigroup. Then the following are equivalent.

(i) \overline{A} is an i-v fuzzy ideal of *S*.

(ii) \overline{A} is an i-v fuzzy interior ideal of S.

Proof: (*i*) \Rightarrow (*ii*). By Lemma 2.4.9 [2] every i-v fuzzy ideal of a semigroup S is an i-v fuzzy interior ideal of S.

 $(ii) \Rightarrow (i)$. Assume that \overline{A} is an i-v fuzzy interior ideal of a intraregular semigroup *S*. Let $a, b \in S$. Then since *S* is intraregular $\exists x, y, x', y' \in S$ such that $a = xa^2y$ and $b = x'b^2y'$.

Thus $\bar{A}(ab) = \bar{A}(xa^2yb) = \bar{A}((xa)a(yb)) \ge \bar{A}(a)$ and

$$\bar{A}(ab) = \bar{A}(ax'b^2y') = \bar{A}((ax')b(by')) \ge \bar{A}(b).$$

This implies that \overline{A} is an i-v fuzzy ideal of S.

Definition 3.8. An i-v fuzzy subset \overline{A} of a semigroup *S* is called idempotent if $(\overline{A}\overline{A})(x) = \overline{A}(x) \quad \forall x \in S$.

Theorem 3.9. Let *S* be a semigroup. Then the following are equivalent.

(i) S is both regular and intraregular semigroup

(ii) Every i-v fuzzy bi-ideal \overline{A} is idempotent.

Proof: Let \bar{A} be an i-v fuzzy bi-ideal of an regular and intraregular semigroup *S*. Since \bar{A} is an i-v fuzzy bi-ideal $\bar{A}(xy) \ge Min^i \{\bar{A}(x), \bar{A}(y)\}$ and $\bar{A}(xyz) \ge Min^i \{\bar{A}(x), \bar{A}(z)\}$ (1)

First we will prove that $\overline{A} \circ \overline{A} \subseteq \overline{A}$

Let $a \in S$. Since S is regular $\exists x \in S$ such that a = axa

$$(\bar{A} \circ \bar{A})(a) = \frac{Sup^{i}}{a = uv} \left\{ Min^{i} \{\bar{A}(u), \bar{A}(v)\} \right\}$$

$$\leq \frac{Sup^{i}}{a = uv} \{\bar{A}(uv)\}$$

$$= Sup^{i} \{\bar{A}(a)\}$$

$$= \bar{A}(a)$$
by (1)

That is $\overline{A} \circ \overline{A} \subseteq \overline{A}$.

Now we will prove that $\overline{A} \subseteq \overline{A} \circ \overline{A}$. Since *S* is regular $\forall a \in S, \exists x \in S$ such that a = axa. And since *S* is intraregular $\forall a \in S, \exists x', y' \in S$ such that $a = x'a^2y'$. Therefore a = axa

$$= axaxa$$

= $(ax)(x'a^2y')(xa)$
= $(axx'a)(ay'xa)$.

D. Singaram and PR. Kandasamy

Now
$$(\bar{A} \circ \bar{A})(a) = \frac{Sup^{i}}{a = uv} \left\{ Min^{i} \{\bar{A}(u), \bar{A}(v)\} \right\}$$

 $\geq Min^{i} \{\bar{A}(axx'a), \bar{A}(ay'xa)\}$
 $\geq Min^{i} \left\{ Min^{i} \{\bar{A}(a), \bar{A}(a)\}, Min^{i} \{\bar{A}(a), \bar{A}(a)\} \right\}$ by (1)
 $= Min^{i} \{\bar{A}(a), \bar{A}(a)\}$
 $= \bar{A}(a)$
 $\bar{A} \circ \bar{A} \supseteq \bar{A}$

Therefore \overline{A} is idempotent.

Conversely assume that any i-v fuzzy bi-ideal \overline{A} of S is idempotent. That is $\overline{A} \circ \overline{A} = \overline{A}$. Now let B be any bi-ideal of S. Therefore $B^2 \subseteq B$ and $\overline{\chi_B}$ is an i-v fuzzy bi-ideal of S. By our assumption $\overline{\chi_B} \circ \overline{\chi_B} = \overline{\chi_B}$. Let $a \in B$. Therefore $\overline{\chi_B}(a) = \overline{1}$ which implies $(\overline{\chi_B} \circ \overline{\chi_B})(a) = \overline{1}$ and therefore

Let $a \in B$. Therefore $\overline{\chi_B}(a) = \overline{1}$ which implies $(\overline{\chi_B} \circ \overline{\chi_B})(a) = \overline{1}$ and therefore $Sup^i \{Min^i \{\overline{\chi_B}(u), \overline{\chi_B}(v)\}\} = \overline{1}$. a = uvThus there exist $b, c \in B$ such that a = bc. Therefore $a \in B^2$ Hence $B \subseteq B^2$ and hence $B = B^2$. Then by lemma 3.6 *S* is both regular and intraregular.

Lemma 3.10. (Theorem 2.7.2 [2]) A semigroup is regular if and only if for every i-v fuzzy right ideal \overline{A} and every i-v fuzzy left ideal \overline{B} of S, we have $\overline{A} \circ \overline{B} = \overline{A} \cap \overline{B}$.

Theorem 3.11. Let *S* be an ordered semigroup. Then the following are equivalent.

- (i) S is regular and intraregular
- (ii) $\overline{A} \cap \overline{B} \subseteq (\overline{A} \circ \overline{B}) \cap (\overline{B} \circ \overline{A})$ for any i-v fuzzy bi-ideals \overline{A} and \overline{B} of S
- (iii) $\overline{A} \cap \overline{B} \subseteq (\overline{A} \circ \overline{B}) \cap (\overline{B} \circ \overline{A})$ for every i-v fuzzy bi-ideal \overline{A} and every i-v fuzzy left ideal \overline{B} of S.
- (iv) $\overline{A} \cap \overline{B} \subseteq (\overline{A} \circ \overline{B}) \cap (\overline{B} \circ \overline{A})$ for every i-v fuzzy right ideal \overline{A} and every i-v fuzzy bi-ideal \overline{B} of *S*.
- (v) $\overline{A} \cap \overline{B} \subseteq (\overline{A} \circ \overline{B}) \cap (\overline{B} \circ \overline{A})$ for every i-v fuzzy right ideal \overline{A} and every i-v fuzzy left ideal \overline{B} of *S*.

Proof: (*i*) \Rightarrow (*ii*). let \overline{A} and \overline{B} are i-v fuzzy bi-ideals of S. And $a \in S$. Then since S is both regular and intraregular, there exists $x \in S$ such that a = axa = axaxa

And there exist $y, z \in S$ such that $a = ya^2z$. Thus $a = axa = axaxa = ax(ya^2z)xa = (axya)(azxa)$. Since \overline{A} and \overline{B} are i-v fuzzy bi-ideals of S, we have $\overline{A}(axya) \ge Min^i \{\overline{A}(a), \overline{A}(a)\} = \overline{A}(a)$ and $\overline{B}(azxa) \ge Min^i \{\overline{B}(a), \overline{B}(a)\} = \overline{B}(a)$. Then $(\overline{A} \circ \overline{B})(a) = \frac{Sup^i}{a = uv} \{Min^i \{\overline{A}(u), \overline{B}(v)\}\}$ $\ge Min^i \{\overline{A}(axya), \overline{B}(azxa)\}$ $\ge Min^i \{\overline{A}(a), \overline{B}(a)\}$ $= (\overline{A} \cap \overline{B})(a)$ which means that $\overline{A} \cap \overline{B} \subseteq \overline{A} \circ \overline{B}$.

In the same way we can show that $\overline{A} \cap \overline{B} \subseteq \overline{B} \circ \overline{A}$. Hence $\overline{A} \cap \overline{B} \subseteq (\overline{A} \circ \overline{B}) \cap (\overline{B} \circ \overline{A})$. Since every i-v fuzzy left (right) ideal of *S* is a i-v fuzzy bi-ideal of *S*, we have $(ii) \Rightarrow (iii), (ii) \Rightarrow (iv), (ii) \Rightarrow (v), (iii) \Rightarrow (v)$ and $(iv) \Rightarrow (v)$ are clear. $(v) \Rightarrow (i)$. Let \overline{A} and \overline{B} are i-v fuzzy right ideal and a i-v fuzzy left ideal of *S* respectively. By hypothesis, $\overline{A} \cap \overline{B} \subseteq (\overline{A} \circ \overline{B}) \cap (\overline{B} \circ \overline{A}) \subseteq \overline{B} \circ \overline{A}$ By Theorem 3.3 *S* is intraregular. On the other hand, $\overline{A} \cap \overline{B} \subseteq (\overline{A} \circ \overline{B}) \cap (\overline{B} \circ \overline{A}) \subseteq \overline{A} \circ \overline{B}$ But $\overline{A} \circ \overline{B} \subseteq \overline{A} \circ \overline{S} \subseteq \overline{A}$ and $\overline{A} \circ \overline{B} \subseteq \overline{S} \circ \overline{B} \subseteq \overline{B}$ implies $\overline{A} \circ \overline{B} \subseteq \overline{A} \cap \overline{B}$ Thus $\overline{A} \circ \overline{B} = \overline{A} \cap \overline{B}$ By Lemma 3.10 *S* is regular. Thus *S* is both regular and intraregular.

REFERENCES

- 1. R. Biswas, Rosenfeld's fuzzy subgroups with interval-valued membership functions, *Fuzzy Sets and Systems*, 63(1) (1994) 87-90.
- 2. V. Chinnadurai, Contributions to the study of some fuzzy algebraic structures *Doctoral Thesis*, Annamalai University, 2010
- 3. M. B. Gorzalczany, A method of inference in approximate reasoning based on interval valued fuzzy sets, *Fuzzy Sets and Systems*, 21 (1987) 1-17.
- 4. Y. Hong and X. Fang, Characterizing intraregular semigroups by intuitionistic fuzzy sets, *Mathware and Soft Computing*, 12 (2005) 121-128.
- 5. K. Iseki, Acharacterization of regular semigroups, *Proceedings of the Japan Academy Ser. A*, 32 (9) (1956) 676-677.
- 6. N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, *Fuzzy Sets and Systems*, 5 (1981) 203-215.
- 7. D. M. Lee and S. K. Lee, On intra-regular ordered semigroups, *Kangweon- Kyungki Math. Journal*, 14(1) (2006) 95-100.
- AL. Narayanan and T. Manikantan, Interval-valued fuzzy interior ideal in semigroups, 19th Annual Conference of the Ramanujan Mathematical Society, Dr. B.R. Ambedkar University, Agra, India, July 21-24, 2004.
- 9. AL. Narayanan and T. Manikantan, Interval-valued fuzzy ideals generated by an interval-valued fuzzy subset in semigroups, *Journal of Applied Mathematics and Computing*, 20 (1-2) (2006) 455-464.
- 10. X. Y. Xie and J. Tang, Regular ordered semigroups and intra- regular ordered semigroups in terms of fuzzy sets, *Iranian Journal of Fuzzy Systems*, 7(2) (2010) 121-140.
- 11. L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I, *Information Sciences*, 8 (1975) 199-249.