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Abstract. In this paper, Myhill Nerode theorem of finite automaton has been extended to 
fuzzy automaton where the composition considered is min-max composition. In the case of 
max-min composition, it has already been proved that if L is a fuzzy regular language, then 
for any   α ∈ [0, 1], Lα = L (Dα (M)) [3]. In the case of max-product composition Lα is only a 
subset of L (Dα (M)). But still Myhill Nerode theorem has been extended to max-product 
composition [4]. In the case of max-average composition, Lα is not even contained in L (Dα 
(M)). This lead to lots of challenges and we had to resort to splitting to prove the analogue of 
Myhill Nerode Theorem for max-average composition. In a similar line, an attempt has been 
made in this paper to study the behavior of fuzzy automata under min-max composition and 
to prove the analogue of Myhill Nerode Theorem for min - max composition. An algorithm to 
compute L(s) for any string s is also developed. 

Keywords: Monoid, min-max composition, finite automaton, equivalence class, fuzzy regular 
language, fuzzy automaton 
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1. Introduction 
Let A be a finite non empty set. A fuzzy automaton over A is a 4-tuple M = (Q, f, I, F) where 
Q is a finite nonempty set, f is a fuzzy subset of Q x A x Q, I and F are fuzzy subsets of Q. In 
other words, f: Q x A x Q � [0, 1] and I, F: Q �[0, 1].  
Let S be a free monoid with identity element e generated by A. If s ∈ S, then s can be written 
as a1a2…an where ai ∈ A. Here n is called the length of s and we write |s| = n. We now extend 
f to a function f*: Q x S x Q � [0, 1] defined as 
      f*(q, e, p)  =   0 if q = p,   1 otherwise. 
      f*(q, sa, p) =  ∧ [ f*(q, s, r) ∨ f (r, a, p)]   (s ∈ S, a ∈ A) 
                           r ∈ Q 
It can be shown that f* (q, a, p) = f (q, a, p) for all p, q ∈ Q and for all a ∈ A. 
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Definition 1.1. Let M = (Q, f*, I, F) be a fuzzy automaton over S. We define the language 
accepted by M denoted by L (M) to be a fuzzy subset of S defined as L (M) (s) = I o fs

* o F 
for all s ∈ S. Here o denotes min-max composition. 
 
Definition 1.2. A fuzzy subset L of S is said to be a fuzzy regular language if L= L(M) where 
M is a fuzzy automaton over S. 
 
2. Myhill Nerode Theorem for Fuzzy Automata 
Let S be a monoid with identity element e and L be a fuzzy subset of S. Then the following 
statements are equivalent.  
(i)  L is a fuzzy regular language. 
(ii) L can be expressed as a fuzzy union 
      L = (δ1)L ∪  (δ2)L ∪…∪ (δt)L  where δ1, δ2,…δt  ∈ [0, 1]. For each i = 1,2…t,  (δi)L  = δi. 
Lδi where Lδi  = U [s]δi .  
This union is a set theoretic union and [s]δi denotes the equivalence class of s of a right 
invariant equivalence relation of finite index in Lδi . 
(iii) Define a relation RL as follows.  
       If s, t ε S, then s RL t if and only if for all u ∈ S and for all α ∈ [0, 1] , L(su) ≥ α only 

when L(tu) ≥ α. Then RL is a right invariant equivalence relation of finite index. 
Proof: (i) → (ii)  
Since L is a fuzzy regular language, we have L = L (M) where M = (Q, f*, I, F) is a fuzzy 
automaton.  Consider any α ∈ [0, 1]. With M and α, we associate a non-deterministic 
automaton Dα (M) = (Q, dα, Iα, Fα) where  
dα: Q x S �2Q is defined as dα (q, s) = {p ∈ Q |  f* (q, s, p) ≥ α},  
Iα = {p ∈ Q | I (p)  ≥  α} and  
Fα = {p ∈ Q | F (p)  ≥  α}.  
For the sake of simplicity, we will denote L (Dα (M)) by Lα (M).   
Let s ∈ Lα. Then L(s) = L(M)(s)  ≥ α. ie (I ο fs* ο F ) ≥  α which means  
  ∧   [(fs*  ο  F) (p) ∨  I (p)]  ≥  α  
p∈ Q 
This means for any state p ∈ Q, I (p) ≥  α OR (fs*  ο  F) (p) ≥  α. This leads to the following 
three cases: 
Case A: I (p)  ≥  α  and (fs* ο F) (p)  ≥  α   
Case B: I (p) < α  and (fs* ο F) (p)  ≥  α   
Case C: I (p) ≥ α  and (fs* ο F) (p) < α 
We now consider each case separately. 
Case A: I (p)  ≥  α  and (fs* ο F) (p)  ≥  α. In this case p ∈ Iα. 
               Now (fs* ο F) (p)  ≥  α  means 
                 ∧  [(fs*(p, r) ∨  F (r)] ≥  α   
               r ∈ Q 
This leads to the following three cases:  
Case A1: fs* (p, r)  ≥  α and F (r)  ≥  α  
Case A2: fs* (p, r)  ≥  α and F (r) <   α  
Case A3: fs* (p, r) <  α and F (r)  ≥  α  
Case A1: fs* (p, r) = f* (p, s, r) ≥  α and F(r)  ≥  α 
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               First alternative means r ∈ dα (p, s). F(r)  ≥   α means r ∈ Fα. 
               Thus r ∈ dα (p, s) ∩  Fα  .  Hence dα (p, s) ∩  Fα  ≠  φ where p ∈ Iα. This 
               proves that s ∈ L (Dα (M)) = Lα (M).                                                                      (1) 
Case A2: fs* (p, r)  ≥  α and F (r) <   α   
               Let F (r) =  β  <  α. Then r ∈ Fβ. I (p)  ≥  α  >  β  means   
               p ∈ Iβ.  Also fs* (p, r)  ≥   α  >  β means r ∈ dβ (p, s) .     
              Thus r ∈  dβ (p, s) and   r ∈  Fβ   so that dβ (p, s) ∩ Fβ ≠  φ where p ∈ Iβ.      
              This proves that  s ∈ L (Dβ (M)) = Lβ (M).                                                                (2) 
Case A3: fs* (p, r) <  α and F (r)  ≥  α  
               Let fs* (p, r) = γ  <  α. Then f*(p, s, r) =  γ so that  r ∈ dγ (p, s)  
               F(r)  ≥ α  > γ means r ∈ Fγ. I (p)  ≥  α > γ means p ∈ Iγ 
               Thus r ∈ dγ (p, s) ∩ Fγ so that dγ (p, s) ∩ Fγ ≠ φ where p ∈ Iγ . This proves that  
               s ∈ L (Dγ (M)) =  Lγ (M)                                                                                           (3) 
 
Case B:  I (p) <  α and (fs* ο F) (p) = ∧ [(fs*(p, r) ∨  F (r)] ≥ α.  
                                                   r ∈ Q 
This leads to the following three cases. 
Case B1: fs* (p, r)  ≥  α and F (r)  ≥  α  
Case B2: fs* (p, r)  ≥  α and F (r) <  α  
Case B3: fs* (p, r) <  α and F (r) ≥  α  
Case B1: fs* (p, r)  ≥  α and F (r)  ≥  α. We already have I (p) < α.                    
               Let I (p) = λ < α. This implies p ∈ Iλ . Now F (r)  ≥  α  > λ means r ∈  Fλ  
               and fs* (p, r)  = f* (p, s, r) ≥  α  >  λ means r ∈ dλ (p, s). 
               Thus r ∈ dλ (p, s) ∩  Fλ so that dλ (p, s)  ∩  Fλ ≠ φ where p ∈ Iλ . This proves that  
               s ∈ L (Dλ (M)) = L λ (M).                                                                                          (4) 
.Case B2: fs* (p, r) ≥  α and   F (r) < α. We already have I (p) < α.  
                Let I (p) = ρ < α. Then  p ∈ Iρ. Let F(r) = ϕ  <  α. Then r ∈ Fϕ. 
                If ρ >  ϕ , then Iρ  ⊆  Iϕ  so that p ∈ Iϕ. Also fs* (p, r) = f* (p, s, r) ≥  α > ρ > ϕ which                 
                means r ∈ dϕ (p, s). Thus there exists p ∈ Iϕ  such that dϕ (p, s) ∩ Fϕ  ≠  φ. This 
proves  that   s ∈ L (Dϕ (M)) = L ϕ (M).                                                                      (5) 
               If ρ < ϕ, then r ∈ Fϕ  ⊆  Fρ  Also  f*(p, s, r) ≥  α > ρ implies r ∈ dρ (p, s). I (p) = ρ 
               means p ∈ Iρ. Thus r ∈ dρ (p, s) ∩  Fρ  so that dρ(p, s)  ∩  Fρ  ≠  φ  where p ∈ Iρ.  This  
               proves that s ∈ L (Dρ (M)) = L ρ (M).                                                                       (6) 
Case B3:  fs* (p, r) <  α and F (r)  ≥  α. We already have I (p) < α.   
                Let I (p) = π < α. Then p ∈ Iπ and F(r)  ≥  α  > π implies r ∈ Fπ.  
                        Let fs* (p, r) = f*(p, s, r) = µ < α. 
               If µ ≤ π, then F (r)  ≥  α  > µ implies r ∈ Fµ and f*(p, s, r) = µ means   r ∈ dµ (p, s).    
              Also I(p) = π ≥ µ  means p ∈ Iµ. Thus r ∈ dµ (p, s) ∩  Fµ  so that dµ (p, s) ∩ Fµ  ≠  φ  
              where p ∈ Iµ. This proves that   s ∈ L (Dµ (M)) = L µ (M).                                       (7) 
              If  µ  >  π, then f*(p, s, r) = µ > π means r ∈ dπ (p, s). Thus  r ∈ dπ (p, s) ∩ Fπ  so that    
              dπ (p, s) ∩ Fπ  ≠  φ  where p ∈ Iπ.  
              This proves that  s ∈ L (Dπ (M)) = L π (M).                                                               (8) 
Case C: I (p) ≥ α  and (fs* ο F) (p) < α. 
This implies fs* (p, r) <  α and F (r) <  α.  
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We already have I (p) ≥  α.    
               Let fs* (p, r) = ν <  α and F (r) = Ω < α. 
               First assume that ν > Ω. Now F (r) = Ω means r ∈ FΩ. Also  
               f*(p, s, r) =  ν  ≥ Ω  means r ∈ dΩ (p, s). Hence dΩ(p, s) ∩ FΩ  ≠  φ. Also  
               I (p) ≥  α > ν > Ω means p ∈ IΩ. Hence  
               s ∈ L (DΩ (M)) = L Ω (M).                                                                                         (9) 
.              Suppose ν < Ω. Now F (r) = Ω > ν means r ∈ Fν. f*(p, s, r) = ν means  
               r ∈ dν (p, s) so that dν (p, s) ∩ Fν  ≠  φ. Also I (p) ≥  α  > ν means p ∈ Iν. 
               Hence s ∈ L (Dν (M)) = Lν (M).                                                                              (10) 
From (1), (2), (3), (4), (5), (6), (7), (8), (9), and (10) it follows that  
Lα  ⊆  Lα(M) ∪ Lβ(M) ∪ Lγ(M) ∪ Lλ(M) ∪ Lφ(M) ∪ Lρ (M) ∪ Lµ(M) ∪ L π(M) ∪ L Ω (M) 
∪ L ν(M) ∪ Lσ(M) ∪ Lη(M) where  α, β, γ, λ, φ,  ρ, π, ν, Ω, µ, σ, η  ∈ [0,1].  
 

Since each of the languages Lα(M), Lβ(M), Lγ(M) , ……  Lπ(M) are fuzzy regular 
languages accepted by non-deterministic automata Dα(M), Dβ(M), Dγ(M) , ……  Dπ(M) 
respectively, Myhill Nerode theorem for finite automata is applicable for each automaton. Let 
Q = {q0, q1, q2 ….. qn}.  For every s ∈ S, the possible values of L(s) are I(q0), I(q1),…I(qn), 
f(qi  , aj, qk) (qi, qk ∈ Q, aj ∈ A), F(q0), F(q1),…F(qn). Denote these fixed values (after 
arranging them in non decreasing order) by δ1, δ2….δt. So, there can be only finitely many 
values of L(s) (s ∈ S). Then δ1, δ2… δt ∈ [0, 1] and for each δi  (1 ≤ i ≤ t),   
Lδi ⊆ (Lα(M)∪ Lβ(M) ∪ Lγ(M) ∪ Lλ(M) ∪ Lφ(M) ∪ Lρ (M) ∪ Lµ(M) ∪ L π(M) ∪ L Ω (M) ∪   
L  ν(M) ∪ Lσ(M) ∪ Lη(M)) 

Since L (Dδi (M)) is the language accepted by a finite automaton, by Myhill Nerode 
theorem for finite automata, it follows that there exists a right invariant equivalence relation 
Ri of finite index. Let Ri' denotes it’s restriction on Lδi. Similarly, we obtain other restrictions 
like Mi', Ni', Oi', Pi', Qi', Si', Ti', Ui', Vi', Wi', Xi', and Yi' from L (Dαi (M), L (Dβi (M), L (Dγi 
(M), L (Dλi (M), L (Dϕi (M)), L (Dρi (M)), L (Dπi (M)),  L (Dνi (M)), L (DΩi (M)),  L (Dµi (M)), 
L(Dσi (M)),    L(Dηi (M)) respectively. Note that Mi', Ni', Oi', Pi', Qi', Si', Ti', Ui', Vi', Wi', Xi', 
and Yi' are all right invariant equivalence relations of finite index. Hence Z i' = Mi' ∩ Ni' ∩ Oi' 
∩ Pi'∩ Qi' ∩ Si' ∩  Ti' ∩  Ui' ∩  Vi' ∩  Wi' ∩  Xi' ∩  Yi' is a right invariant equivalence 
relation in Lδi of finite index. Let [s]δi denote the equivalence class of S under this 
equivalence relation. Since the equivalence classes partition Lδi, it follows that Lδi = ∪ [s]δi.  
Next we will prove the fact that L = (δ1)L ∪ (δ2)L ∪…∪ (δt) L .  

Define (δi) L = δi . Lδi. If s ∈ S such that L(s)  ≥  δi   (s ∈ Lδi), then (δi)L(s) =  δi.  
Otherwise,     (δi)L (s) = 0.  We note that each (δi)L is a fuzzy set. Let s ∈S and assume that 
L(s) = δi. Now L(s) = δi ≤ δ i + 1 ≤ …≤ δt. Again, L(s) = δi  ≥ δ i – 1 ≥…≥ δ1.   
Hence ((δ1)L ∪ (δ2)L ∪…∪ (δt)L) (s) = (δ1)L (s) ∨ (δ2)L (s) ∨…(δt)L (s) =  δ1 ∨  δ2 ∨ …∨  δi = δi 
= L (s). This proves that L = (δ1)L ∪ (δ2)L ∪…∪ (δt)L .

 

 
Proof: (ii) → (iii). 
If s ∈ S, then s RL s  because for all u ∈  S and for all α ∈ [0,1] , L(su) ≥  α only when          
L(su)  ≥  α is obviously true. This proves that RL is reflexive. Clearly, RL is symmetric.  If s 
RL t and t RL v, then for all u  ∈ S and for all α ∈ [0,1], L(su) ≥  α only when L(tu)  ≥  α only 
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when L(vu)  ≥  α proving that s RL v. Hence RL   is transitive.   RL is thus an equivalence 
relation.  

To prove RL is right invariant, assume that s RL t and u ∈ S. We have to prove that su 
RL tu. For this, we have to prove that for all v ∈ S and α ∈ [0,1], L(suv) ≥  α only when 
L(tuv) ≥  α which is the same as saying that     L(sz)  ≥  α only when L(tz) ≥  α where z = uv. 
But this is true since s RL t. 

We will now prove that RL is of finite index. For i =  1,2,…,t, let Ri  denote the right 
invariant equivalence relation of finite index in  Lδi . Let R = R1 ∩ R2 ∩…∩ Rt. Then R is an 
equivalence relation of finite index. We will prove that s R t implies s RL t.  This will mean 
that index (RL)  ≤ index (R). Since index (R) is finite, this will prove that index(RL) is also 
finite. 

Assume that s R t. Consider any u ∈ S and any α ∈ [0, 1]. Suppose su ∈ Lα. We have 
to prove that tu ∈ Lα . Now α ≤ L (su) = δj (say). Then su ∈ Lδj which is a subset of  Lα . By 
definition of R, we have s Rj t. Since Rj is right invariant, su Rj tu. Since Lδj = U [v]δj , it 
follows that su belongs to one of the equivalence classes of Rj and hence tu also belongs to 
the same equivalence class. Hence tu ∈ Lδj  and since Lδj  is a subset of  Lα , we have tu ∈ Lα. 
 
Proof: (iii) → (i)  
We have to define a fuzzy automaton M such that L = L (M).  For every element s ∈ S, let [s] 
denote the equivalence class of s under the equivalence relation RL.   
Let Q = {[s] / s ∈ S}. Since RL is of finite index, it follows that Q is a finite set. Define  
I: Q → [0, 1], f*: Q x S x Q → [0, 1] and F: Q → [0, 1] as follows. 
I ([s]) = 0 if [s] = [e]  
          = 1 otherwise. 
f*([s], t, [u]) = 1 if [u] =  [st] ,  0 otherwise. 
F ([s]) = L(s). 

We   will first prove that F is well   defined. For this,    we have   to prove that if [s] = 
[t],   then L (s) = L (t). Assume that L (s) = β. We will prove that L (t) = β. Since [s] = [t], s 
RL t so that L (s) = L (se) ≥ β only when L(t) = L (te) ≥  β.  Since L(s) ≥ β, it follows that L[t] 
≥ β.  

Assume L [t] = γ > β. Take η = (β + γ) / 2. Clearly, β < η < γ = L[t]. Since s RL t, L[t] 
> η implies that L[s] ≥ η > β. But this contradicts the fact that L(s) = β. Hence our assumption 
that L[t] > β is wrong.  Since L[t] ≥ β, it follows that L[t] = β. 
Take M = (Q, I, f*, F). Then M is a fuzzy automaton and it remains to prove that L = L (M). 
For this, we have to prove that for all s ∈  S, L (s) = L (M) (s).  
We have 
          L (M) (s) = I o fs

* o F   
                         = ∧{I ([t]) ∨ (f* s o F) ([t])} 
                           [t] 
         (f*s o F) ([t])  = ∧{f* s ([t], [u]) ∨ F([u])} 
                                 [u] 
                               = ∧{f* ([t], s, [u]) ∨ F([u])} 
                                 [u] 
Note that f*([t], s, [u]) = 0 if [ts] = [u] and 1 otherwise. Therefore, in the above expression 
f*([t], s, [u]) = 0   only when [ts] = [u] . In all remaining cases (ie. whenever [ts] ≠ [u]) the 
term f* ([t], s, [u]) ∨ F([u]) becomes 1. Thus the above equation becomes  
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         (f*s o F) ([t])  = F([u])  
                               = L(ts)        ( since  F ([s]) = L(s)). 
Hence L (M)(s) = ∧ {I([t]) ∨ (f* s o F) ([t])} 
                          [t] 

Note that I([t]) = 0 only when [t] = [e], I([t]) = 1 whenever [t] ≠ [e].  Therefore,                   
{I([t]) ∨  (f*s o F) ([t])} = 1 whenever [t] ≠ [e] and  {I([t]) ∨ (f* s o F) ([t])} = (f* s o F) ([t]) 
when [t] = [e]. Thus the above equation becomes 
L (M)(s)   = (f*s o F) ([t]) where [t] = [e]. 
                = L(ts)      ( by the above result ) 
                = L(es)   ( since I[t] = 0 when [t]=[e] and RL is a right invariant relation, [ts] = [es] ) 
                = L(s)  
Thus for all s all s ∈  S, L (s) = L (M) (s). This proves that L = L (M). 
 
3. Implementation 
The algorithm to compute L(s) = L(M)(s)  for any string s of arbitrary length and any fuzzy 
automata M with any number of states is developed and implemented in C++.  Following 
procedures are used to compute f*(qi, s, qj) and L(s) for all s ∈ S and qi,, qj ∈  Q. 
 
Procedure MinMax(i,j,X,Y). This procedure computes and returns the min-max 
composition value of row-I of matrix X and column-j of matrix Y. X and Y are the n x n 
transition matrices, min, temp and r are temporary variables. 

1. min  = ∞ 
2. for r = 0 to n-1 do 

2.1 if (X[i][r] ≥ Y[r][j]) then 
   temp = X[i][j] 
else 
   temp = Y[i][j] 

2.2 if (min>temp) then 
min=temp 

3. return min 
 

Procedure computeFstar (s). This procedure computes f* - matrix for the input string s and 
stores it in n x n matrix A. F0 and F1 are the transition matrices for the input symbols 0 and 1 
respectively. The procedure call COPY(X, Y) copies the matrix X to matrix Y. B is the 
temporary matrix of size n x n. The procedure call computeFstar(X, Y, Z) computes the f*-
value for each pair (qi , qj ) ∈  Q x Q using transition matrices X , Y and stores the    result in 
the matrix Z.  

1. if (s[0]=’0’) then    
    COPY (A, F0) 
else 
    COPY (A, F1) 

2. for i = 1 to (length(s) – 1) do 
if (s[i] = ‘0’) 
    computeFstar(A, F0, B) 
else 
    computeFstar(A, F1, B) 
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else 
3. COPY(A, B). 
4. Exit 

 
Procedure computeFstarCompF(q). This procedure computes and returns (f*s o F)(q) value 
for a given state q ∈  Q . A is the f*s- matrix for the string s.    

1. min =   ∞ 
2. for r = 0 to n-1 do 

2.1 temp = MAX(A[p][r], F[r]) 
2.2 if (temp < min ) then 

min = temp 
3. return min 

 
Procedure computeLs. This procedure computes and returns L(s) value for a given string s.  

1. min =   ∞ 
2. for p = 0 to n-1 do 
2.1 temp = computeFstarCompF( p ) 
2.2 if  (I [p] > temp ) then  

     temp = I [p] 
2.3 if (temp < min ) then 

min = temp 
3. return min 

 
Procedure main( ). This procedure inputs the fuzzy automaton M = (Q, f, I, F), computes 
and returns L(s) value for a given input string s. F0, F1, n are transition matrix for 0, 
transition matrix 1 and number of states in Q respectively. Fe is the f*-matrix for e. I and F 
are array of size n. Ls stores the L(s) value of the input string s. 

1. read number of states n 
2. read arrays I and F 
3. set f*e – matrix Fe 
4. read transition matrices F0, F1 
5. ch = ‘y’ 
6. while ( ch = ‘y’ ) do 

6.1 Read input string s 
6.2 A = computeFstar(s) 
6.3 Ls = computeLs( ) 
6.4 Print transition matrix A 
6.5 Print Ls 
6.6 read input character ch = ‘y’ to continue, ch = ‘n’ to stop 

7. Exit 
 

The program  is tested for large number of fuzzy automata and strings of arbitrary length. 
 
4. Example 
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Let Σ = {0, 1} and S = Σ*, the set of all strings over the alphabet Σ. Consider the fuzzy 
automaton M = (Q, f, I, F) where  Q = {q0, q1, q2}, f is the fuzzy subset f: Q x Σ x Q → [0, 1] 
defined as  
 
f (q0, 0, q0) = 0.0,       f (q0, 0, q1) = 0.8,      f (q0, 0, q2) = 0.6 
f (q1, 0, q0) = 0.5,       f (q1, 0, q1) = 0.0,      f (q1, 0, q2) = 0.7 
f (q2, 0, q0) = 0.3,       f (q2, 0, q1) = 0.6,      f (q2, 0, q2) = 0.0 
f (q0, 1, q0) = 0.0,       f (q0, 1, q1) = 0.6,      f (q0, 1, q2) = 0.7 
f (q1, 1, q0) = 0.5,       f (q1, 1, q1) = 0.0,      f (q1, 1, q2) = 0.8 
f (q2, 1, q0) = 0.4,       f (q2, 1, q1) = 0.2,      f (q2, 1, q2) = 0.0 
 
I = {q0} and F is the fuzzy subset of Q defined as F (q1) = 0.4 and F (q2) = 0.9.  
For any string w = sa of length two or more we will calculate f*(qi, w, qj) as follows: 
      f*(q, sa, p) =   ∧  [ f*(q, s, r) ∨ f (r, a, p)]   (s ∈ S, a ∈ A, qi, qj ∈ Q ) 
                            r∈Q 
 
After computing f*-matrix for a given string s, we will compute L(M)(s) as follows: 
L(M)(s) = I o f0* o F   
              = ∧  [ I(p) ∨ (fs* o F) (p) ] 
                p∈Q 
              =  [ I(q0) ∨ (fs* o F) (q0) ] ∧ [ I(q1) ∨ (fs* o F) (q1) ] ∧ [ I(q2) ∨ (fs* o F) (q2) ] 
              =  (fs* o F) (q1) ∧ (fs* o F) (q2) 
Therefore,for any string s∈ S   L(M)(s) = (fs* o F) (q1) ∧ (fs* o F) (q2)                                (11) 
                 
 (fs* o F) (q1)  = ∧  [F(r) ∨  fs*(q1, r)] 
                          r∈Q 
           = [F(q0) ∨  fs*( q1, q0)] ∧ [F(q1) ∨  fs*( q1, q1)] ∧ [F(q2) ∨  fs*(q1, q2)] 
                       = 0.4 ∧  fs*( q1, q0) ∧ [0.9 ∨  fs*( q1, q2)] 
Therefore, for any string s ∈ S,  (fs* o F) (q1) = 0.4 ∧  fs*( q1, q0) ∧ [0.9 ∨ fs*( q1, q2)])    (12) 
 
 (fs* o F) (q2)  = ∧  [F(r) ∨  fs*( q2,, r)] 
                          r∈Q 
           = [F(q0) ∨  fs*( q2, q0)] ∧ [F(q1) ∨  fs*( q2, q1) ∧ [F(q2) ∨  fs*( q2, q2)] 
                       = 0.9 ∧  fs*( q2, q0)] ∧ [0.4 ∨ fs*( q2, q1) ] 
Therefore for any string s ∈ S,  (fs* o F) (q2)  =  0.9 ∧ fs*( q0, q2) ∧ [0.4 ∨ fs*( q1, q2) ]   (13) 
 
L (0) = L (M)(0) = I o f0* o F   
                            = (f0* o F) (q1) ∧ (f0* o F) (q2)     
                            = {0.4 ∧  f0*( q1, q0) ∧ [0.9 ∨  f0*( q1, q2)] }  ∧  { 0.9 ∧  f0*( q2, q0) ∧                           
                                  [0.4 ∨ f0*( q2, q1)]}= 0.3 
                             
Similarly, L(1) = 0.4 
f00* (q0, q0) = f* (q0, 00, q0)                                          
    = [f (q0, 0, q0) ∨ f (q0, 0, q0)] ∧ [f (q0, 0, q1) ∨ f (q1, 0, q0)] ∧ [f (q0, 0, q2) ∨ f (q2, 0, q0)] = 0 
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f00* (q0, q1) = f* (q0, 00, q0)                                          
                   = [f (q0, 0, q0) ∨ f (q0,0,q1)] ∧ [f (q0,0,q1) ∨ f (q1,0,q1)] ∧ 
                      [f (q0,0,q2) ∨ f (q2,0,q1)] = 0.6 
                                           
Similarly, the f00

* - matrix is computed as follows; 
f00* (q0, q0) = 0  f00* (q0, q1) = 0.6    f00* (q0, q2) = 0.6   
f00* (q1, q0) = 0.5   f00* (q1, q1) = 0      f00* (q1, q2) = 0.6  
f00* (q2, q0) = 0.3   f00* (q2, q1) = 0.6   f00* (q2, q2) = 0 
 
L(00) = (f00* o F) (q1) ∧ (f00* o F) (q2)     
           = {0.4 ∧  f00*(q1,q0) ∧ [0.9 ∨ f00*( q1,q2)] }  ∧  { 0.9 ∧  f00*( q2,q0) ∧ [0.4∨f00*(q2,q1) ]} 
           = {0.4 ∧  0.5 ∧ [0.9 ∨  0.6 ] }  ∧  { 0.9 ∧  0.3 ∧ [0.4 ∨ 0.6 ] } = 0.3 
                             

Using the program for the example fuzzy automata, f* s – matrix and L(s) values are 
computed  for various strings and  the same values are checked using manual calculations. 
Both manually calculated values and computer results  are tallied. Some of the L(s) values are 
as follows. 
L(0) = 0.3, L(1)=0.4, L(00)=L(01)=L(10)=0.3, L(11 ) = 0.4, L(000)=L(001)= . . .  L(110) = 
0.3, L(111) = 0.4, 
L(0000)=...L(1110)=0.3,L(1111)=0.4, 
L(00000000)=0.3, L(00001111)=0.3, L(11110000)=0.3, L(01011100)=0.3,  
L(11010110101)=0.3, L(0010101000011)=0.3,  
L(11010101001001101010001)=0.3,  L(111111111111111)=0.4,   
L(1111111111111111)=0.4. 

It is found that L(s)=0.4 only when every symbol  in s is 1. Otherwise, L(s)=0.3. 
The possible values of δi (after arranging them in nondecreasing order) are 0.3, 0.4. 

Suppose 0 < α ≤ 0.3. 
Let Dα (M) = Mα denote the nondeterministic automaton corresponding to α.  
Then Iα = { q0 }, Fα = { q1, q2 }, dα(q0 , s) = { p ∈ Q / f0

*(q0, s) ≥ 0.3 } = {q1, q2}   
 

L (Dα (M)) = {s ∈ S / there exists q ∈ I α such that (d α (q, s) ∩ F α) ≠φ}        
                   = {s ∈ S / there exists q ∈ I 0.3 such that (d 0.3 (q, s) ∩ F 0.3) ≠φ} 
                   = {0, 1}+      
Lα = {s ∈ S / L(s) ≥  α} 
     = {s ∈ S / L(s) ≥  0.3} 
     = {0,1}+      

L (D α (M)) = Lα. 
Furthermore, [0] α  = {0, 01, 10, 000, 001, 010, 110, 0000, 1110, 00000,…… 11110. ….} 
                       [1]α  = { 1, 11, 111, 1111, ……..} 
                       Lα = ∪ [s]α =   [0]  α  ∪ [1] α  . 

Suppose 0.3 < α ≤ 0.4. 
Let Dα (M) = Mα denote the nondeterministic automaton corresponding to α.  
Then Iα = { q0 }, Fα = { q1, q2 }, dα(q0 , s) = { p ∈ Q / f0

*(q0, s) ≥ 0.4 } = {q1, q2}    

L (Dα (M)) = {s ∈ S / there exists q ∈ I α such that (d α (q, s) ∩ F α) ≠ φ}        
                   = {s ∈ S / there exists q ∈ I 0.4 such that (d 0.4 (q, s) ∩ F 0.4) ≠ φ} = {0, 1}  +      
Lα = {s ∈ S / L(s) ≥  α} 
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     = {s ∈ S / L(s) ≥  0.4} = {1} +      

L (D α(M)) ≠ Lα. and also  Lα  ⊆ L (D α (M)). 
Furthermore, [1] α = {1, 11, 111, 1111 …} 
                       Lα  = ∪ [ s ] α  =    [1] α  . 

If α > 0.4, then there exists no corresponding nondeterministic automaton and L (D α (M)) = 
Lα =  φ. 
When α = 0.3 
          αL(s) =  α   if L(s) ≥ α,  0 otherwise. 
          αL(0) = αL(00) = αL(01) = αL(10) = αL(000) = … αL(110) = αL(0000) = … αL(1110) =     
          ….. = 0.3 
          αL(1) = αL(11) = αL(111) = αL(1111) = …   αL(11111…111) = 0 
When α = 0.4 
          αL(s) =  α   if L(s) ≥ α,  0 otherwise. 
          αL(0) = αL(00) = αL(01) = αL(10) = αL(000) = … αL(110) = αL(0000) = … αL(1110) = 0    
          αL(1) = αL(11) = αL(111) = αL(1111) = …   αL(11111…111) = 0.4 
          L =  ∪  αL     where  ∪ denotes fuzzy union. 
                α ∈ [0, 1] 
(∪ αL ) (0) = ∨ αL(0) = 0.3 ∨ 0 = 0.3 = L(0) 
(∪ αL ) (1) = ∨ αL(1) = 0 ∨ 0.4 = 0.4 = L(1) 
Similarly, (∪ αL) (s) = ∨ αL(s) = 0.3 ∨ 0 = 0.3 = L(s)   for all s ∈ S. 
This verifies L = ∪ αL 

 

5. Results and Conclusions 
In this paper, Myhill Nerode theorem of finite automaton has been extended to fuzzy 
automaton where the composition considered is min-max composition. The algorithm to 
compute f*(qi, s, qj) and L(s) is developed and implemented in C++. The program is tested 
with different fuzzy automata and strings of different lengths. In min-max composition, it is 
found that Lα need not even be contained in L (Dα (M)). Anyway, we have been able to prove 
the analogue of Myhill Nerode Theorem for fuzzy automata even for min-max composition. 
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