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Abstract. In this paper, Myhill Nerode theorem of finite amtaton has been extended to
fuzzy automaton where the composition consideredilsmax composition. In the case of
max-min composition, it has already been proved ifhais a fuzzy regular language, then
forany o 00, 1], L, = L (D, (M)) [3]. In the case of max-product compositiopis only a
subset of L ([ (M)). But still Myhill Nerode theorem has been extled to max-product
composition [4]. In the case of max-average conjmosil, is not even contained in L (D
(M)). This lead to lots of challenges and we hadesort to splitting to prove the analogue of
Myhill Nerode Theorem for max-average compositiona similar line, an attempt has been
made in this paper to study the behavior of fuaztpmata under min-max composition and
to prove the analogue of Myhill Nerode Theoremrfin - max composition. An algorithm to
compute L(s) for any string s is also developed.

Keywords: Monoid, min-max composition, finite automaton, ealence class, fuzzy regular
language, fuzzy automaton
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1. Introduction
Let A be a finite non empty set. fizzy automaton over i& a 4-tuple M = (Q, f, I, F) where
Q is a finite nonempty set, fis a fuzzy subseof A x Q, | and F are fuzzy subsets of Q. In
other words, : Q x Ax @ [0, 1] and |, F: Q>[0, 1].
Let S be a free monoid with identity element e geteel by A. If 1 S, then s can be written
as ax...a, where ald A. Here n is called the length of s and we wste=|n. We now extend
f to a function f: Q x S x Q= [0, 1] defined as

f(q,e,p) = 0ifq=p, 1otherwise.

f(q, sa, p) =0[f (g, s, NOf(r,a p)] (&2 S, adA)

raQ

It can be shown that f* (q, a, p) = (q, a, p) &irp, g0 Q and for all &1 A.
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Definition 1.1. Let M = (Q, f, I, F) be a fuzzy automaton over S. We defineléimguage
accepted by denoted by L (M) to be a fuzzy subset of S defias L (M) (s) =l odo F
for all sO S. Here o denotes min-max composition.

Definition 1.2. A fuzzy subset L of S is said to béuzzy regular languagi L= L(M) where
M is a fuzzy automaton over S.

2. Myhill Nerode Theorem for Fuzzy Automata
Let S be a monoid with identity element e and Labieizzy subset of S. Then the following
statements are equivalent.
() Lis afuzzy regular language.
(i) L can be expressed as a fuzzy union
L=0). 0 (62 O...0 (6). wheredy, 6,,...6; O [0, 1]. For each i =1,2...t,d),. =3di.
Lsiwhere L5 = U [s]; .
This union is a set theoretic union ands;[dgnotes the equivalence class of s of a right
invariant equivalence relation of finite index ig .L
(i) Define a relation R as follows.
If s, te S, then s Rt if and only if for all ud S and for allke O [0, 1] , L(su)> o only
when L(tu)> a. Then Ris a right invariant equivalence relation of finitelex.
Proof: (i) — (ii)
Since L is a fuzzy regular language, we have L €M) where M = (Q, f*, I, F) is a fuzzy
automaton. Consider any 00 [0, 1]. With M anda, we associate a non-deterministic
automaton R(M) = (Q, d,, ls, F) where
do: Q x S>2%s defined asg(qg, s) = {p0 Q| f* (q, s, pr a},
la={p0Q[I(p)= o} and
Fa={pU0Q|F(p)= a}.
For the sake of simplicity, we will denote L{[M)) by L, (M).
Let s Lg. Then L(s) = L(M)(s)=a. ie (lo f* 0 F )= o which means
O [(fs o F) (U I (p)] 2 «
pU Q
This means for any statelpQ, | (p)= a OR (§* o F) (p)= a. This leads to the following
three cases:
CaeA:l(p) 2a and(f*oF) (p) = a
CaseB: I (p)<a and (fFoF) (p) = a
CaseC: I (p)za and (f* o F) (p) <a
We now consider each case separately.
CaseA: 1 (p) =2 a and (f* o F) (p) = a. In this case fl |.
Now ¢ o F) (p) = a means
O [(f*p.n O FM]z a
0Q
This leads to the following three cases:
CaseAifF(p,r) 2aandF(N= a
CaseAz f&f(p,) 2 aandF(N<a
CaseAs fF(p,ND<aandF (= a
CaseAifF(p, = (p,s, Nz aand F(n= a
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First alternative mean8id, (p, s). F(r)= a means 1 F,,

Thus il dy(p, s)n F, . Hence d(p, s)n Fy # @where p l,. This

proves that$ L (Da (M)) = La (M). (1)
CaseAx fF(p,) 2 aandF (N <a

LetF () <a.ThenrdF. 1 (p) 2 a > B means

@l lg Alsof* (p,r) 2 a > pmeansidds(p, s) .

Thus O d; (p, s)and B F; sothatd(p, s)n FgZ @where pll I;.

This proves that[sL (Dg (M)) = Lg (M). (2)
CaseAz ff(p,D<aandF (N= a

Letf (p, r) =y < a. Then f*(p, s, r) =y so that 1 d, (p, S)

F(nza >ymeans J F,. | (p) 2 a >y means i I,

Thus 1 d, (p, s)n F, sothat d(p, s)n F, # @where pl I, . This proves that

sTL(Dy (M) = Ly(M) 3)

CaseB: I (p)<aand (£ oF) (p) =0[(fs*(p, ) O F(N]=a.
rbQ
This leads to the following three cases.
CaseByf*(p,r) 2 aandF (nN= a
CaseB,: f* (p,r) 2 aand F (r) <a
CaseBsz f*(p,<aandF (= a
CaseBy f* (p,r) =2 aand F ()= a. We already have | (p) &.
Let | (p) % <a. Thisimplies pgd I, . Now F (r)= a >A means 1 F,
andsf (p,r) =f*(p, s, = a > A means f1d, (p, s).
Thus il d, (p, s)n F.sothatg(p,s) n F.#@where pd I, . This proves that
STL (Ds. (M) = L (M). 4)
.Case By fs¥ (p, )= aand F (r) <a. We already have | (p) .
Letl (p) # <a. Then pdl,. Let F(r) =¢ < a. Then rd F.
lfp> ¢, then} O Iy so that @11, Also f* (p, r) = f* (p, s, 1)= a >p >¢ which
means(d d, (p, s). Thus there existspl, such that gl(p, s)n Fy # @ This
proves that 8L (Dy (M)) =Ly (M). (5)
Ifp<¢, thenrOF, O F, Also f*(p, s, = a >pimplies rd d, (p, s). | (p) =
meansip |, Thus rO d, (p, s)n F, sothatgp,s) n F, # @ where pO I, This
proves thatiSL (D, (M)) = L, (M). (6)
CaseBa ff(p,r) < aandF (r)= a. We already have | (p) &.
Letl (p) = <a. Thenpd l,and F(r)= a >=implies rOF,,
Let f& (p, r) =f*(p, s, r) = 4 <.
If u<m, then F ()= a > p implies 1J Fu and f*(p, s, r) = g0 means Ord, (p, S).
Also I(p) =t=p means @ I,. Thus rd d, (p, s)n Fu so thatd(p, s)n Fu # @
where @ |,. This proves that S L (D, (M)) =L (M). @)
If u >m, then f(p, s, r) = K x means £ d, (p, s). Thus 1 d, (p, s)n F, so that
d(p, s)n F, # @ where g1 Ix.
This proves that[EL (D, (M)) = L, (M). (8)
CaseC: | (p)za and (f* o F) (p) <a.
This implies § (p, r) < a and F (r) <a.
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We already have | () a.

Letf* (p,r)=v< aand F () N2 <a.

First assume that Q. Now F (r) =Q means ] F,. Also

*(p, s, r) =v >Q means £ dy (p, s). Henceglp, s)n Fo # @. Also

I (p a >v>Q means ] l,. Hence

$1L (Do (M) = Lo (M). )

Suppose< Q. Now F (r) =Q >v means 1 F,. f(p, s, r) =v means

i d, (p, s) so thatdp, s)n F, #Z @ Also | (p)= a >v means ] |..

HenceE L (D, (M)) =L, (M). (20)
From (1), (2), (3), (4), (5), (6), (7), (8), (9n&(10) it follows that
Lo O Lo(M) O Lg(M) O L,(M) O L,(M) O Le(M) O Lp (M) O Lp(M) O Lz(M) O Lo (M)
OL.(M) OLs(M) O L,(M) where a, B, v, A, ¢, p, 7, v, o M,0,n O[0,1].

Since each of the languageg(M), Lg(M), L,(M) , ...... L.(M) are fuzzy regular
languages accepted by non-deterministic automa{d)y Dg(M), D,(M) , ...... D.(M)
respectively, Myhill Nerode theorem for finite amtata is applicable for each automaton. Let
Q={d 0 % ..... ¢}. For every sI S, the possible values of L(s) areg)(d(dy),...1(qn),
fai ., 8 q) (@ &« O Q, al A), F(), F(a),...F(ar). Denote these fixed values (after
arranging them in non decreasing order)dhyd,....6;. So, there can be only finitely many
values of L(s) (&] S). Therdy, 3,... 8,0 [0, 1] and for eachi (1 <i <t),

Lsi O (La(M)O Lg(M) O L,(M) O Li(M) O Le(M) O Lp (M) O Lu(M) O L (M) O Lo (M) O
L.(M) O Ly(M) O Ly(M))

Since L (i (M)) is the language accepted by a finite automalbgnMyhill Nerode
theorem for finite automata, it follows that thengsts a right invariant equivalence relation
R; of finite index. Let R denotes it's restriction onsL Similarly, we obtain other restrictions
like M, N, O, R, Q', §', T¢", U, Vi', W', X{", and Y' from L (D (M), L (Dg (M), L (D,
(M), L (D (M), L (Dgi (M)), L (Di (M), L (D (M), L (Dyi (M), L Dz (M)), L (Dyi (M),
L(Dsi (M), L(D, (M)) respectively. Note that MN;, O', R, Q', §', T/, U, Vi', W/", X',
and Y/ are all right invariant equivalence relationdinite index. Hence Z=M'n N/ n O/
NPNnQ'nSn T'n U n Vin W' n X'n Y,is aright invariant equivalence
relation in Ly of finite index. Let [s} denote the equivalence class of S under this
equivalence relation. Since the equivalence clasaiion Ly, it follows that L = O [S]s;.

Next we will prove the fact that L 54, O (5,), O...0 () . -

Define ¢) L= 8. Ls. If sO S such that L(s)= & (sO Lg), then §).(s) = 3.
Otherwise, §)_(s) = 0. We note that each)( is a fuzzy set. Let 8IS and assume that
L(s) =&;. Now L(S) =6; <8 i+1<...< 8. Again, L(S) =6; >6i_1>...> 61.

Hence (§1). U (32)u U...0 (8)1) () = G2 ()T @2 (S)T-..(3) (8) = 6: 0 8 0.0 & =
=L (s). This proves that L 5{). 0 (3,). O...0 (&), .

Proof: (i) — (iii).
If sO S, then s Rs because for all I S and for alle O [0,1] , L(su)> a only when

L(su) > a is obviously true. This proves that B reflexive. Clearly, Ris symmetric. If s
R, tand t R v, then for all ud S and for alk O [0,1], L(su)> a only when L(tu) > a only
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when L(vu) > o proving that s Rv. Hence R is transitive. Ris thus an equivalence
relation.

To prove R is right invariant, assume that s Rand ul S. We have to prove that su
R, tu. For this, we have to prove that for alllvS anda O [0,1], L(suv)> o only when
L(tuv) > o which is the same as saying that  L(szp only when L(tz> o where z = uv.
But this is true since s,R.

We will now prove that Ris of finite index. For i = 1,2,....t, let;Renote the right
invariant equivalence relation of finite index In. Let R=R N R, N...N R. Then R is an
equivalence relation of finite index. We will protieat s R t implies s |Rt. This will mean
that index (R) < index (R). Since index (R) is finite, this will gore that index(R is also
finite.

Assume that s R t. Consider aniZis and anw O [0, 1]. Suppose st L,. We have
to prove that tuJ L, . Nowa < L (su) =§; (say). Then sl L which is a subset of ,L By
definition of R, we have s;R. Since Ris right invariant, su Riu. Since k; = U [v] , it
follows that su belongs to one of the equivaleriesses of Rand hence tu also belongs to
the same equivalence class. Hencé t; and since §; is a subset of L, we have tuJ L,.

Proof: (iii) — (i)
We have to define a fuzzy automaton M such thatlLL(M). For every element(s S, let [s]
denote the equivalence class of s under the eguigalrelation R
Let Q ={[s] / sO0 S}. Since R is of finite index, it follows that Q is a finitget. Define
LQ—[0,1], * QxS xQ— [0, 1] and F: Q- [0, 1] as follows.
I ([s]) = 0 if [s] = [e]

= 1 otherwise.
f*([s], t, [u]) = 1 if [u] = [st], O otherwise.
F ([s]) = L(s).

We will first prove that F is well defined. Finis, we have to prove that if [s] =

[t], thenL (s) =L (t). Assume that L (s)B=We will prove that L (t) $. Since [s] = [t], s
R.tsothatL (s) =L (se} g only when L(t) =L (te> B. Since L(s}k B, it follows that L][t]

>B.

Assume L [t] =y > . Taken = (B +vy) / 2. Clearly,§ <n <y = L[t]. Since s Rt, L[t]
> 7 implies that L[s}> n > B. But this contradicts the fact that L(sp=Hence our assumption
that L[t] >p is wrong. Since L[t} B, it follows that L[t] =p.
Take M = (Q, |, ¥, F). Then M is a fuzzy automatand it remains to prove that L = L (M).
For this, we have to prove that for alllsS, L (s) = L (M) (s).
We have

L(M)(s)=lofoF

ﬂ[{; ([t D(fsoF) (Ith}
t

(Fso F) (tD =D[{f’]* s ([t], [u]) OF(uD}
u
= ([t s, [ul) OF(uD}

[u]
Note that f*([t], s, [u]) = O if [ts] = [u] and 1tberwise. Therefore, in the above expression
*([t], s, [u]) =0 only when [ts] = [u] . In alfemaining cases (ie. whenever fs]u]) the

term f* ([t], s, [u]) O F([u]) becomes 1. Thus the above equation becomes
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(Fso F) ([t]) = F(ul) _
=L(ts)  (e& F ([s]) = L(s)).
Hence L (M)(s) ZJ{I([t]) D (FsoF) ([t}
[t]
Note that I([t]) = 0 only when [t] = [e], I([t]) =L whenever [t} [e]. Therefore,
{I(th O (f*s o F) ([th} = 1 whenever [t} [e] and {I([t]) O (f*s o F) ([t} = (Fs 0 F) ([t])
when [t] = [e]. Thus the above equation becomes
L (M)(s) = (f*soF) ([t]) where [t] = [e].
=L(ts) (bythe above redult
=L(es) (since I[t] = 0 whendf¢] and R is a right invariant relation, [ts] = [eSs] )
=L(s)
Thusforallsall$1 S, L (s) =L (M) (s). This proves that L =L (M).

3. Implementation

The algorithm to compute L(s) = L(M)(s) for anyisgy) s of arbitrary length and any fuzzy
automata M with any number of states is developatl implemented in C++. Following
procedures are used to compute;fs, g) and L(s) for all$1Sand g g 0 Q.

Procedure MinMax(i,j,X,Y). This procedure computes and returns the min-max
composition value of row-l of matrix X and colummf matrix Y. X and Y are the n x n
transition matrices, min, temp and r are tempovarjables.
1. min =
2. forr=0ton-1do
2.1if (X[i[r] > Y[r]G]) then
temp = X[i][j]
else
temp = Y[i][j]
2.2 if (min>temp) then
min=temp
3. return min

Procedure computeFstar (s). This procedure computes f* - matrix for the inptring s and
stores it in n x n matrix A. FO and F1 are the $ion matrices for the input symbols 0 and 1
respectively. The procedure c&8IOPY (X, Y) copies the matrix X to matrix Y. B is the
temporary matrix of size n x n. The procedure cathputeFstar(X, Y, Z) computes the f*-
value for each pair (gg) O Q x Q using transition matrices X , Y and stdies result in
the matrix Z.
1. if (s[0]='0") then
COPY (A, FO)
else
COPY (A, F1)
2. fori=1to (length(s) — 1) do
if (s[i] ='0")
computeFstar(A, FO, B)
else
computeFstar(A, F1, B)
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else
3. COPY(A, B).
4. EXxit

Procedure computeFstar CompF(q). This procedure computes and returng ¢ff)(q) value
for a given state @ Q . A is the % matrix for the string s.
1. min= o
2. forr=0ton-1do
2.1 temp = MAX(A[p]r], FIrD
2.2 if (temp < min ) then
min = temp
3. return min

Procedure computel s. This procedure computes and returns L(s) value ffiven string s.

1. min= o
2. forp=0ton-1do

2.1 temp = computeFstarCompF( p )

2.2if (I[p] > temp) then

temp =1 [p]
2.3if (temp < min ) then
min = temp

3. return min

Procedure main( ). This procedure inputs the fuzzy automaton M =f(Q, F), computes
and returns L(s) value for a given input stringFe, F1, n are transition matrix for O,
transition matrix 1 and number of states in Q retipely. Fe is the f*-matrix for e. | and F
are array of size n. Ls stores the L(s) value efitiput string s.

read number of states n

read arrays | and F

set f, — matrix Fe

read transition matrices FO, F1

ch=1y

while (ch ="y’ ) do

6.1 Read input string s

6.2 A = computeFstar(s)

6.3 Ls = computelLs()

6.4 Print transition matrix A

6.5 Print Ls

6.6 read input character ch = 'y’ to continue, ch =tm'stop

7. Exit

ogakwnE

The program is tested for large number of fuzzpaata and strings of arbitrary length.

4. Example
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Let ¥ = {0, 1} and S =X*, the set of all strings over the alphal&tConsider the fuzzy
automaton M = (Q, f, I, F) where Q =, &}, fis the fuzzy subset f: Q X x Q — [0, 1]
defined as

f (9o, 0, @) = 0.0, f(¢0,9)=0.8, f(g0,0) =06
f(qy, 0, q) =05 f(g0,q) =00 f(g0, g =0.7
f(gz2 0, @) =0.3, f(¢0,9)=06, f(g0,3) =0.0
f(de 1,q)=0.0, f(g1l,q =06 f(g1 ) =0.7
f(gy, 1, @) = 0.5, f(g 1, q) =0.0, f(g 1, ) =0.8
f(g 1, @) = 0.4, f(g 1,q)=0.2, f(g 1, ) =0.0

| = {qo} and F is the fuzzy subset of Q defined as # 0.4 and F (g = 0.9.
For any string w = sa of length two or more we wilculate f*(g w, q) as follows:
f(q! Sa, p) = D [f*(ql S, r)Df (rl a, p)] (S:| S’ al:l A1 qil q D Q)
0oQ

After computing f*-matrix for a given string s, wéll compute L(M)(s) as follows:
LIM)(s)=lof*o F
= [I(p)O(fs*oF) (p) ]
pIQ
= [I@0O(fsoF) (@ ]10[(a) O(fs*oF) () 10[1(g2) O(fs* 0 F) (@) ]
= foF)(w)0(Ff*0F) ()
Therefore,for any stringsS L(M)(s)=(fFo F) () O(fs* 0 F) (op) (12)

(fF o F) (o) =0 [F(r) O f(q2,n)]
Q
= [F(@ O f*( d1,90)] O[F(a) O f*(au a)] O[F(e) O (a1, )]
= 0.4 (a1, o) U[0.90 f*( 01, )]
Therefore, for any stringl[S S, (o F) (qu) = 0.40 f*(qy, o) O[0.90f*(qu, )]) (12)

(fF o F) () =0 [F(n) O f( gz, 1]
bQ
= [F(@) U f*(d2, qo)] D[F(aw) U (g2, o) D[F(R) U f*( d2, )]
= 0.9 (g2, q)] U[0.401*( gz, o) ]
Therefore for any stringlS§ S, (f*o F) () = 0.90f*(qo, &) O[0.40fX(qy, )] (13)

L(O)=L(M)O)=lof*0F
=ffoF) () O(f* o F) (o)
={0.4 fo*( g1, ) U[0.900 fo*(gu, )] } O {0.90 fo*( 2, o) O
[03fs*( 2, aw)]}= 0.3

Similarly, L(1) = 0.4

fos* (do, @) = * (o, 00, @)
= [f (q)! 0! Q)) of (qO! 0! Q))] 0 [f (qO! 0! q.) Of (q1! 0! q))] 0 [f (qO! 0! Cb) of (qZ! 0! q))] =0
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foo* (o, 1) = f* (o, 00, @)
=[f (a1 O, @) Of (qo,0,a1)] U [f (4o,0,q) U F (0,0,0)] T
[f (60,) Of (02,0,q)] = 0.6

Similarly, the o~ matrix is computed as follows;

foo* (do, ) = 0 foo* (do, &) = 0.6 bo* (o, @) = 0.6
foo* (d1, %) = 0.5 bo* (1, ) =0 bo* (41, @) = 0.6
foo* (92, 0p) = 0.3 bo* (02, 1) = 0.6 fo* (02, ) =0

L(00) = (foc* 0 F) () U (foo* 0 F) ()
={0.40 foo*(d1,00) U[0.90foc*( )] } U {0.90 foo*( g200) U [0-4K00*(020n) I}
={0.40 0.50[0.90 0.6]} 0 {0.90 0.30[0.4000.6]1}=0.3

Using the program for the example fuzzy autométa;-fmatrix and L(s) values are
computed for various strings and the same valweschecked using manual calculations.
Both manually calculated values and computer resait tallied. Some of the L(s) values are
as follows.

L(0) = 0.3, L(1)=0.4, L(00)=L(01)=L(10)=0.3, L(1135 0.4, L(000)=L(001)=". .. L(110) =
0.3, L(111) = 0.4,

L(0000)=...L.(1110)=0.3,L(1111)=0.4,

L(00000000)=0.3, L(00001111)=0.3, L(11110000)=0(®1011100)=0.3,
L(11010110101)=0.3, L(0010101000011)=0.3,

L(11010101001001101010001)=0.3, L(11111111111+0.4)
1(1111121122112111)=0.4.

It is found that L(s)=0.4 only when every symbalsiis 1. Otherwise, L(s)=0.3.

The possible values 6f (after arranging them in nondecreasing orderDa3e0.4.

Suppose 0 € <0.3.

Let D, (M) = M, denote the nondeterministic automaton correspgngin.
Then |, ={do}, F.={0ql, 02}, d(q,s) ={p0Q /% (d 5)2 0.3} = {an, &}
L (D, (M)) ={s O S/ there exists @ | ,such that (d (q, s)N F,) #¢}
= {41 S/ there exists O | g 3 such that (dz (q, s)N Fo3) #@
={0, 1}
L,={sOS/L(s)= a}
={sOdS/L(s)z 0.3}
={0,1}"
L(D, (M) =L,
Furthermore, [0] = {0, 01, 10, 000, 001, 010, 110, 0000, 1110, 000Q0. 11110. ....}
[A]={1,11, 111, 1111, ........ }
=01sl.= [0]. O [1]..
Suppose 0.3 6 <0.4.
Let D, (M) = M, denote the nondeterministic automaton correspgngin.
Then |, ={do}, F.={ql, 02}, d(q,s) ={p0Q /% (d, 5)2 0.4} ={q1, g2}
L (D, (M)) ={s O S/ there exists g | ,such that (d (q, s)N F,) # ¢
= {$1 S/ there exists @ | o, such that (d4(q, S)N Foq #@ ={0, 1} *
L,={sOS/L(s)= a}
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={sO0S/L(s)= 0.4} ={1}"
L (D (M)) # L, and alsa_, O L (D, (M)).
Furthermore, [1]-{1, 11, 111, 1111 ...}
L=0[s].= [1]a.
If a > 0.4, then there exists no corresponding nonchééstic automaton and L (D(M)) =
L.= @
Whena = 0.3
a,(s) = a if L(s)=a, O otherwise.
(XL(O) :(XL(OO) :aL(Ol) :(XL(].O) :aL(OOO) = aL(110) :(XL(OOOO) = (XL(lllo) =
..... =0.3
o (1) =a(11) =0 (111) =0y (1112) = ... 0 (11211...112)=0
Whena =0.4
a,(s) = a if L(s)=a, O otherwise.
(XL(O) :(XL(OO) :aL(Ol) :(XL(].O) :aL(OOO) = aL(110) :(XL(OOOO) = (XL(lllo) =0
o (1) =a(11) =0 (111) =0y (1112) = ... 0(1121121...111)=0.4
L=0 o whered denotes fuzzy union.
a0, 1]
(0 o )(0) =00.(0) =0.300=0.3=L(0)
(Do )(1)=00.(1)=000.4=0.4=1L(1)
Similarly, (0 o) (s) =0o.(s) =0.300=0.3=1L(s) forall & S.
This verifies L =00 o,

5. Resultsand Conclusions

In this paper, Myhill Nerode theorem of finite amtaton has been extended to fuzzy
automaton where the composition considered is n@r-womposition. The algorithm to
compute f*(q s, g) and L(s) is developed and implemented in C++. ptegram is tested
with different fuzzy automata and strings of diffet lengths. In min-max composition, it is
found that L, need not even be contained in L, ()). Anyway, we have been able to prove
the analogue of Myhill Nerode Theorem for fuzzyaméata even for min-max composition.
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