
Intern. J. Fuzzy Mathematical Archive
Vol. 3, 2013, 58-67
ISSN: 2320 –3242 (P), 2320 –3250 (online)
Published on 30 December 2013
www.researchmathsci.org

58

International Journal of

Myhill Nerode Theorem for Fuzzy Automata
(Min-max Composition)
V. Ramaswamy1 and K. Chatrapathy2

1Bapuji College of Engineering and Technology, VTU-Belgaum, India
Email: researchwork04@yahoo.com

2School of Engineering and Technology, JAIN University, India
Email: kcpathy@yahoo.in

Received 20 December 2013; accepted 28 December 2013

Abstract. In this paper, Myhill Nerode theorem of finite automaton has been extended to
fuzzy automaton where the composition considered is min-max composition. In the case of
max-min composition, it has already been proved that if L is a fuzzy regular language, then
for any α ∈ [0, 1], Lα = L (Dα (M)) [3]. In the case of max-product composition Lα is only a
subset of L (Dα (M)). But still Myhill Nerode theorem has been extended to max-product
composition [4]. In the case of max-average composition, Lα is not even contained in L (Dα
(M)). This lead to lots of challenges and we had to resort to splitting to prove the analogue of
Myhill Nerode Theorem for max-average composition. In a similar line, an attempt has been
made in this paper to study the behavior of fuzzy automata under min-max composition and
to prove the analogue of Myhill Nerode Theorem for min - max composition. An algorithm to
compute L(s) for any string s is also developed.

Keywords: Monoid, min-max composition, finite automaton, equivalence class, fuzzy regular
language, fuzzy automaton

AMS Mathematics Subject Classification (2010): 68Q45, 68Q70

1. Introduction
Let A be a finite non empty set. A fuzzy automaton over A is a 4-tuple M = (Q, f, I, F) where
Q is a finite nonempty set, f is a fuzzy subset of Q x A x Q, I and F are fuzzy subsets of Q. In
other words, f: Q x A x Q � [0, 1] and I, F: Q �[0, 1].
Let S be a free monoid with identity element e generated by A. If s ∈ S, then s can be written
as a1a2…an where ai ∈ A. Here n is called the length of s and we write |s| = n. We now extend
f to a function f*: Q x S x Q � [0, 1] defined as
 f*(q, e, p) = 0 if q = p, 1 otherwise.
 f*(q, sa, p) = ∧ [f*(q, s, r) ∨ f (r, a, p)] (s ∈ S, a ∈ A)
 r ∈ Q
It can be shown that f* (q, a, p) = f (q, a, p) for all p, q ∈ Q and for all a ∈ A.

Myhill Nerode Theorem for Fuzzy Automata (Min-max Composition)

59

Definition 1.1. Let M = (Q, f*, I, F) be a fuzzy automaton over S. We define the language
accepted by M denoted by L (M) to be a fuzzy subset of S defined as L (M) (s) = I o fs

* o F
for all s ∈ S. Here o denotes min-max composition.

Definition 1.2. A fuzzy subset L of S is said to be a fuzzy regular language if L= L(M) where
M is a fuzzy automaton over S.

2. Myhill Nerode Theorem for Fuzzy Automata
Let S be a monoid with identity element e and L be a fuzzy subset of S. Then the following
statements are equivalent.
(i) L is a fuzzy regular language.
(ii) L can be expressed as a fuzzy union
 L = (δ1)L ∪ (δ2)L ∪…∪ (δt)L where δ1, δ2,…δt ∈ [0, 1]. For each i = 1,2…t, (δi)L = δi.
Lδi where Lδi = U [s]δi .
This union is a set theoretic union and [s]δi denotes the equivalence class of s of a right
invariant equivalence relation of finite index in Lδi .
(iii) Define a relation RL as follows.
 If s, t ε S, then s RL t if and only if for all u ∈ S and for all α ∈ [0, 1] , L(su) ≥ α only

when L(tu) ≥ α. Then RL is a right invariant equivalence relation of finite index.
Proof: (i) → (ii)
Since L is a fuzzy regular language, we have L = L (M) where M = (Q, f*, I, F) is a fuzzy
automaton. Consider any α ∈ [0, 1]. With M and α, we associate a non-deterministic
automaton Dα (M) = (Q, dα, Iα, Fα) where
dα: Q x S �2Q is defined as dα (q, s) = {p ∈ Q | f* (q, s, p) ≥ α},
Iα = {p ∈ Q | I (p) ≥ α} and
Fα = {p ∈ Q | F (p) ≥ α}.
For the sake of simplicity, we will denote L (Dα (M)) by Lα (M).
Let s ∈ Lα. Then L(s) = L(M)(s) ≥ α. ie (I ο fs* ο F) ≥ α which means
 ∧ [(fs* ο F) (p) ∨ I (p)] ≥ α
p∈ Q
This means for any state p ∈ Q, I (p) ≥ α OR (fs* ο F) (p) ≥ α. This leads to the following
three cases:
Case A: I (p) ≥ α and (fs* ο F) (p) ≥ α
Case B: I (p) < α and (fs* ο F) (p) ≥ α
Case C: I (p) ≥ α and (fs* ο F) (p) < α
We now consider each case separately.
Case A: I (p) ≥ α and (fs* ο F) (p) ≥ α. In this case p ∈ Iα.
 Now (fs* ο F) (p) ≥ α means
 ∧ [(fs*(p, r) ∨ F (r)] ≥ α
 r ∈ Q
This leads to the following three cases:
Case A1: fs* (p, r) ≥ α and F (r) ≥ α
Case A2: fs* (p, r) ≥ α and F (r) < α
Case A3: fs* (p, r) < α and F (r) ≥ α
Case A1: fs* (p, r) = f* (p, s, r) ≥ α and F(r) ≥ α

 V. Ramaswamy and K.Chatrapathy

60

 First alternative means r ∈ dα (p, s). F(r) ≥ α means r ∈ Fα.
 Thus r ∈ dα (p, s) ∩ Fα . Hence dα (p, s) ∩ Fα ≠ φ where p ∈ Iα. This
 proves that s ∈ L (Dα (M)) = Lα (M). (1)
Case A2: fs* (p, r) ≥ α and F (r) < α
 Let F (r) = β < α. Then r ∈ Fβ. I (p) ≥ α > β means
 p ∈ Iβ. Also fs* (p, r) ≥ α > β means r ∈ dβ (p, s) .
 Thus r ∈ dβ (p, s) and r ∈ Fβ so that dβ (p, s) ∩ Fβ ≠ φ where p ∈ Iβ.
 This proves that s ∈ L (Dβ (M)) = Lβ (M). (2)
Case A3: fs* (p, r) < α and F (r) ≥ α
 Let fs* (p, r) = γ < α. Then f*(p, s, r) = γ so that r ∈ dγ (p, s)
 F(r) ≥ α > γ means r ∈ Fγ. I (p) ≥ α > γ means p ∈ Iγ
 Thus r ∈ dγ (p, s) ∩ Fγ so that dγ (p, s) ∩ Fγ ≠ φ where p ∈ Iγ . This proves that
 s ∈ L (Dγ (M)) = Lγ (M) (3)

Case B: I (p) < α and (fs* ο F) (p) = ∧ [(fs*(p, r) ∨ F (r)] ≥ α.
 r ∈ Q
This leads to the following three cases.
Case B1: fs* (p, r) ≥ α and F (r) ≥ α
Case B2: fs* (p, r) ≥ α and F (r) < α
Case B3: fs* (p, r) < α and F (r) ≥ α
Case B1: fs* (p, r) ≥ α and F (r) ≥ α. We already have I (p) < α.
 Let I (p) = λ < α. This implies p ∈ Iλ . Now F (r) ≥ α > λ means r ∈ Fλ
 and fs* (p, r) = f* (p, s, r) ≥ α > λ means r ∈ dλ (p, s).
 Thus r ∈ dλ (p, s) ∩ Fλ so that dλ (p, s) ∩ Fλ ≠ φ where p ∈ Iλ . This proves that
 s ∈ L (Dλ (M)) = L λ (M). (4)
.Case B2: fs* (p, r) ≥ α and F (r) < α. We already have I (p) < α.
 Let I (p) = ρ < α. Then p ∈ Iρ. Let F(r) = ϕ < α. Then r ∈ Fϕ.
 If ρ > ϕ , then Iρ ⊆ Iϕ so that p ∈ Iϕ. Also fs* (p, r) = f* (p, s, r) ≥ α > ρ > ϕ which
 means r ∈ dϕ (p, s). Thus there exists p ∈ Iϕ such that dϕ (p, s) ∩ Fϕ ≠ φ. This
proves that s ∈ L (Dϕ (M)) = L ϕ (M). (5)
 If ρ < ϕ, then r ∈ Fϕ ⊆ Fρ Also f*(p, s, r) ≥ α > ρ implies r ∈ dρ (p, s). I (p) = ρ
 means p ∈ Iρ. Thus r ∈ dρ (p, s) ∩ Fρ so that dρ(p, s) ∩ Fρ ≠ φ where p ∈ Iρ. This
 proves that s ∈ L (Dρ (M)) = L ρ (M). (6)
Case B3: fs* (p, r) < α and F (r) ≥ α. We already have I (p) < α.
 Let I (p) = π < α. Then p ∈ Iπ and F(r) ≥ α > π implies r ∈ Fπ.
 Let fs* (p, r) = f*(p, s, r) = µ < α.
 If µ ≤ π, then F (r) ≥ α > µ implies r ∈ Fµ and f*(p, s, r) = µ means r ∈ dµ (p, s).
 Also I(p) = π ≥ µ means p ∈ Iµ. Thus r ∈ dµ (p, s) ∩ Fµ so that dµ (p, s) ∩ Fµ ≠ φ
 where p ∈ Iµ. This proves that s ∈ L (Dµ (M)) = L µ (M). (7)
 If µ > π, then f*(p, s, r) = µ > π means r ∈ dπ (p, s). Thus r ∈ dπ (p, s) ∩ Fπ so that
 dπ (p, s) ∩ Fπ ≠ φ where p ∈ Iπ.
 This proves that s ∈ L (Dπ (M)) = L π (M). (8)
Case C: I (p) ≥ α and (fs* ο F) (p) < α.
This implies fs* (p, r) < α and F (r) < α.

Myhill Nerode Theorem for Fuzzy Automata (Min-max Composition)

61

We already have I (p) ≥ α.
 Let fs* (p, r) = ν < α and F (r) = Ω < α.
 First assume that ν > Ω. Now F (r) = Ω means r ∈ FΩ. Also
 f*(p, s, r) = ν ≥ Ω means r ∈ dΩ (p, s). Hence dΩ(p, s) ∩ FΩ ≠ φ. Also
 I (p) ≥ α > ν > Ω means p ∈ IΩ. Hence
 s ∈ L (DΩ (M)) = L Ω (M). (9)
. Suppose ν < Ω. Now F (r) = Ω > ν means r ∈ Fν. f*(p, s, r) = ν means
 r ∈ dν (p, s) so that dν (p, s) ∩ Fν ≠ φ. Also I (p) ≥ α > ν means p ∈ Iν.
 Hence s ∈ L (Dν (M)) = Lν (M). (10)
From (1), (2), (3), (4), (5), (6), (7), (8), (9), and (10) it follows that
Lα ⊆ Lα(M) ∪ Lβ(M) ∪ Lγ(M) ∪ Lλ(M) ∪ Lφ(M) ∪ Lρ (M) ∪ Lµ(M) ∪ L π(M) ∪ L Ω (M)
∪ L ν(M) ∪ Lσ(M) ∪ Lη(M) where α, β, γ, λ, φ, ρ, π, ν, Ω, µ, σ, η ∈ [0,1].

Since each of the languages Lα(M), Lβ(M), Lγ(M) , …… Lπ(M) are fuzzy regular
languages accepted by non-deterministic automata Dα(M), Dβ(M), Dγ(M) , …… Dπ(M)
respectively, Myhill Nerode theorem for finite automata is applicable for each automaton. Let
Q = {q0, q1, q2 ….. qn}. For every s ∈ S, the possible values of L(s) are I(q0), I(q1),…I(qn),
f(qi , aj, qk) (qi, qk ∈ Q, aj ∈ A), F(q0), F(q1),…F(qn). Denote these fixed values (after
arranging them in non decreasing order) by δ1, δ2….δt. So, there can be only finitely many
values of L(s) (s ∈ S). Then δ1, δ2… δt ∈ [0, 1] and for each δi (1 ≤ i ≤ t),
Lδi ⊆ (Lα(M)∪ Lβ(M) ∪ Lγ(M) ∪ Lλ(M) ∪ Lφ(M) ∪ Lρ (M) ∪ Lµ(M) ∪ L π(M) ∪ L Ω (M) ∪
L ν(M) ∪ Lσ(M) ∪ Lη(M))

Since L (Dδi (M)) is the language accepted by a finite automaton, by Myhill Nerode
theorem for finite automata, it follows that there exists a right invariant equivalence relation
Ri of finite index. Let Ri' denotes it’s restriction on Lδi. Similarly, we obtain other restrictions
like Mi', Ni', Oi', Pi', Qi', Si', Ti', Ui', Vi', Wi', Xi', and Yi' from L (Dαi (M), L (Dβi (M), L (Dγi
(M), L (Dλi (M), L (Dϕi (M)), L (Dρi (M)), L (Dπi (M)), L (Dνi (M)), L (DΩi (M)), L (Dµi (M)),
L(Dσi (M)), L(Dηi (M)) respectively. Note that Mi', Ni', Oi', Pi', Qi', Si', Ti', Ui', Vi', Wi', Xi',
and Yi' are all right invariant equivalence relations of finite index. Hence Z i' = Mi' ∩ Ni' ∩ Oi'
∩ Pi'∩ Qi' ∩ Si' ∩ Ti' ∩ Ui' ∩ Vi' ∩ Wi' ∩ Xi' ∩ Yi' is a right invariant equivalence
relation in Lδi of finite index. Let [s]δi denote the equivalence class of S under this
equivalence relation. Since the equivalence classes partition Lδi, it follows that Lδi = ∪ [s]δi.
Next we will prove the fact that L = (δ1)L ∪ (δ2)L ∪…∪ (δt) L .

Define (δi) L = δi . Lδi. If s ∈ S such that L(s) ≥ δi (s ∈ Lδi), then (δi)L(s) = δi.
Otherwise, (δi)L (s) = 0. We note that each (δi)L is a fuzzy set. Let s ∈S and assume that
L(s) = δi. Now L(s) = δi ≤ δ i + 1 ≤ …≤ δt. Again, L(s) = δi ≥ δ i – 1 ≥…≥ δ1.
Hence ((δ1)L ∪ (δ2)L ∪…∪ (δt)L) (s) = (δ1)L (s) ∨ (δ2)L (s) ∨…(δt)L (s) = δ1 ∨ δ2 ∨ …∨ δi = δi
= L (s). This proves that L = (δ1)L ∪ (δ2)L ∪…∪ (δt)L .

Proof: (ii) → (iii).
If s ∈ S, then s RL s because for all u ∈ S and for all α ∈ [0,1] , L(su) ≥ α only when
L(su) ≥ α is obviously true. This proves that RL is reflexive. Clearly, RL is symmetric. If s
RL t and t RL v, then for all u ∈ S and for all α ∈ [0,1], L(su) ≥ α only when L(tu) ≥ α only

 V. Ramaswamy and K.Chatrapathy

62

when L(vu) ≥ α proving that s RL v. Hence RL is transitive. RL is thus an equivalence
relation.

To prove RL is right invariant, assume that s RL t and u ∈ S. We have to prove that su
RL tu. For this, we have to prove that for all v ∈ S and α ∈ [0,1], L(suv) ≥ α only when
L(tuv) ≥ α which is the same as saying that L(sz) ≥ α only when L(tz) ≥ α where z = uv.
But this is true since s RL t.

We will now prove that RL is of finite index. For i = 1,2,…,t, let Ri denote the right
invariant equivalence relation of finite index in Lδi . Let R = R1 ∩ R2 ∩…∩ Rt. Then R is an
equivalence relation of finite index. We will prove that s R t implies s RL t. This will mean
that index (RL) ≤ index (R). Since index (R) is finite, this will prove that index(RL) is also
finite.

Assume that s R t. Consider any u ∈ S and any α ∈ [0, 1]. Suppose su ∈ Lα. We have
to prove that tu ∈ Lα . Now α ≤ L (su) = δj (say). Then su ∈ Lδj which is a subset of Lα . By
definition of R, we have s Rj t. Since Rj is right invariant, su Rj tu. Since Lδj = U [v]δj , it
follows that su belongs to one of the equivalence classes of Rj and hence tu also belongs to
the same equivalence class. Hence tu ∈ Lδj and since Lδj is a subset of Lα , we have tu ∈ Lα.

Proof: (iii) → (i)
We have to define a fuzzy automaton M such that L = L (M). For every element s ∈ S, let [s]
denote the equivalence class of s under the equivalence relation RL.
Let Q = {[s] / s ∈ S}. Since RL is of finite index, it follows that Q is a finite set. Define
I: Q → [0, 1], f*: Q x S x Q → [0, 1] and F: Q → [0, 1] as follows.
I ([s]) = 0 if [s] = [e]
 = 1 otherwise.
f*([s], t, [u]) = 1 if [u] = [st] , 0 otherwise.
F ([s]) = L(s).

We will first prove that F is well defined. For this, we have to prove that if [s] =
[t], then L (s) = L (t). Assume that L (s) = β. We will prove that L (t) = β. Since [s] = [t], s
RL t so that L (s) = L (se) ≥ β only when L(t) = L (te) ≥ β. Since L(s) ≥ β, it follows that L[t]
≥ β.

Assume L [t] = γ > β. Take η = (β + γ) / 2. Clearly, β < η < γ = L[t]. Since s RL t, L[t]
> η implies that L[s] ≥ η > β. But this contradicts the fact that L(s) = β. Hence our assumption
that L[t] > β is wrong. Since L[t] ≥ β, it follows that L[t] = β.
Take M = (Q, I, f*, F). Then M is a fuzzy automaton and it remains to prove that L = L (M).
For this, we have to prove that for all s ∈ S, L (s) = L (M) (s).
We have
 L (M) (s) = I o fs

* o F
 = ∧{I ([t]) ∨ (f* s o F) ([t])}
 [t]
 (f*s o F) ([t]) = ∧{f* s ([t], [u]) ∨ F([u])}
 [u]
 = ∧{f* ([t], s, [u]) ∨ F([u])}
 [u]
Note that f*([t], s, [u]) = 0 if [ts] = [u] and 1 otherwise. Therefore, in the above expression
f*([t], s, [u]) = 0 only when [ts] = [u] . In all remaining cases (ie. whenever [ts] ≠ [u]) the
term f* ([t], s, [u]) ∨ F([u]) becomes 1. Thus the above equation becomes

Myhill Nerode Theorem for Fuzzy Automata (Min-max Composition)

63

 (f*s o F) ([t]) = F([u])
 = L(ts) (since F ([s]) = L(s)).
Hence L (M)(s) = ∧ {I([t]) ∨ (f* s o F) ([t])}
 [t]

Note that I([t]) = 0 only when [t] = [e], I([t]) = 1 whenever [t] ≠ [e]. Therefore,
{I([t]) ∨ (f*s o F) ([t])} = 1 whenever [t] ≠ [e] and {I([t]) ∨ (f* s o F) ([t])} = (f* s o F) ([t])
when [t] = [e]. Thus the above equation becomes
L (M)(s) = (f*s o F) ([t]) where [t] = [e].
 = L(ts) (by the above result)
 = L(es) (since I[t] = 0 when [t]=[e] and RL is a right invariant relation, [ts] = [es])
 = L(s)
Thus for all s all s ∈ S, L (s) = L (M) (s). This proves that L = L (M).

3. Implementation
The algorithm to compute L(s) = L(M)(s) for any string s of arbitrary length and any fuzzy
automata M with any number of states is developed and implemented in C++. Following
procedures are used to compute f*(qi, s, qj) and L(s) for all s ∈ S and qi,, qj ∈ Q.

Procedure MinMax(i,j,X,Y). This procedure computes and returns the min-max
composition value of row-I of matrix X and column-j of matrix Y. X and Y are the n x n
transition matrices, min, temp and r are temporary variables.

1. min = ∞
2. for r = 0 to n-1 do

2.1 if (X[i][r] ≥ Y[r][j]) then
 temp = X[i][j]
else
 temp = Y[i][j]

2.2 if (min>temp) then
min=temp

3. return min

Procedure computeFstar (s). This procedure computes f* - matrix for the input string s and
stores it in n x n matrix A. F0 and F1 are the transition matrices for the input symbols 0 and 1
respectively. The procedure call COPY(X, Y) copies the matrix X to matrix Y. B is the
temporary matrix of size n x n. The procedure call computeFstar(X, Y, Z) computes the f*-
value for each pair (qi , qj) ∈ Q x Q using transition matrices X , Y and stores the result in
the matrix Z.

1. if (s[0]=’0’) then
 COPY (A, F0)
else
 COPY (A, F1)

2. for i = 1 to (length(s) – 1) do
if (s[i] = ‘0’)
 computeFstar(A, F0, B)
else
 computeFstar(A, F1, B)

 V. Ramaswamy and K.Chatrapathy

64

else
3. COPY(A, B).
4. Exit

Procedure computeFstarCompF(q). This procedure computes and returns (f*s o F)(q) value
for a given state q ∈ Q . A is the f*s- matrix for the string s.

1. min = ∞
2. for r = 0 to n-1 do

2.1 temp = MAX(A[p][r], F[r])
2.2 if (temp < min) then

min = temp
3. return min

Procedure computeLs. This procedure computes and returns L(s) value for a given string s.

1. min = ∞
2. for p = 0 to n-1 do
2.1 temp = computeFstarCompF(p)
2.2 if (I [p] > temp) then

 temp = I [p]
2.3 if (temp < min) then

min = temp
3. return min

Procedure main(). This procedure inputs the fuzzy automaton M = (Q, f, I, F), computes
and returns L(s) value for a given input string s. F0, F1, n are transition matrix for 0,
transition matrix 1 and number of states in Q respectively. Fe is the f*-matrix for e. I and F
are array of size n. Ls stores the L(s) value of the input string s.

1. read number of states n
2. read arrays I and F
3. set f*e – matrix Fe
4. read transition matrices F0, F1
5. ch = ‘y’
6. while (ch = ‘y’) do

6.1 Read input string s
6.2 A = computeFstar(s)
6.3 Ls = computeLs()
6.4 Print transition matrix A
6.5 Print Ls
6.6 read input character ch = ‘y’ to continue, ch = ‘n’ to stop

7. Exit

The program is tested for large number of fuzzy automata and strings of arbitrary length.

4. Example

Myhill Nerode Theorem for Fuzzy Automata (Min-max Composition)

65

Let Σ = {0, 1} and S = Σ*, the set of all strings over the alphabet Σ. Consider the fuzzy
automaton M = (Q, f, I, F) where Q = {q0, q1, q2}, f is the fuzzy subset f: Q x Σ x Q → [0, 1]
defined as

f (q0, 0, q0) = 0.0, f (q0, 0, q1) = 0.8, f (q0, 0, q2) = 0.6
f (q1, 0, q0) = 0.5, f (q1, 0, q1) = 0.0, f (q1, 0, q2) = 0.7
f (q2, 0, q0) = 0.3, f (q2, 0, q1) = 0.6, f (q2, 0, q2) = 0.0
f (q0, 1, q0) = 0.0, f (q0, 1, q1) = 0.6, f (q0, 1, q2) = 0.7
f (q1, 1, q0) = 0.5, f (q1, 1, q1) = 0.0, f (q1, 1, q2) = 0.8
f (q2, 1, q0) = 0.4, f (q2, 1, q1) = 0.2, f (q2, 1, q2) = 0.0

I = {q0} and F is the fuzzy subset of Q defined as F (q1) = 0.4 and F (q2) = 0.9.
For any string w = sa of length two or more we will calculate f*(qi, w, qj) as follows:
 f*(q, sa, p) = ∧ [f*(q, s, r) ∨ f (r, a, p)] (s ∈ S, a ∈ A, qi, qj ∈ Q)
 r∈Q

After computing f*-matrix for a given string s, we will compute L(M)(s) as follows:
L(M)(s) = I o f0* o F
 = ∧ [I(p) ∨ (fs* o F) (p)]
 p∈Q
 = [I(q0) ∨ (fs* o F) (q0)] ∧ [I(q1) ∨ (fs* o F) (q1)] ∧ [I(q2) ∨ (fs* o F) (q2)]
 = (fs* o F) (q1) ∧ (fs* o F) (q2)
Therefore,for any string s∈ S L(M)(s) = (fs* o F) (q1) ∧ (fs* o F) (q2) (11)

 (fs* o F) (q1) = ∧ [F(r) ∨ fs*(q1, r)]
 r∈Q
 = [F(q0) ∨ fs*(q1, q0)] ∧ [F(q1) ∨ fs*(q1, q1)] ∧ [F(q2) ∨ fs*(q1, q2)]
 = 0.4 ∧ fs*(q1, q0) ∧ [0.9 ∨ fs*(q1, q2)]
Therefore, for any string s ∈ S, (fs* o F) (q1) = 0.4 ∧ fs*(q1, q0) ∧ [0.9 ∨ fs*(q1, q2)]) (12)

 (fs* o F) (q2) = ∧ [F(r) ∨ fs*(q2,, r)]
 r∈Q
 = [F(q0) ∨ fs*(q2, q0)] ∧ [F(q1) ∨ fs*(q2, q1) ∧ [F(q2) ∨ fs*(q2, q2)]
 = 0.9 ∧ fs*(q2, q0)] ∧ [0.4 ∨ fs*(q2, q1)]
Therefore for any string s ∈ S, (fs* o F) (q2) = 0.9 ∧ fs*(q0, q2) ∧ [0.4 ∨ fs*(q1, q2)] (13)

L (0) = L (M)(0) = I o f0* o F
 = (f0* o F) (q1) ∧ (f0* o F) (q2)
 = {0.4 ∧ f0*(q1, q0) ∧ [0.9 ∨ f0*(q1, q2)] } ∧ { 0.9 ∧ f0*(q2, q0) ∧
 [0.4 ∨ f0*(q2, q1)]}= 0.3

Similarly, L(1) = 0.4
f00* (q0, q0) = f* (q0, 00, q0)
 = [f (q0, 0, q0) ∨ f (q0, 0, q0)] ∧ [f (q0, 0, q1) ∨ f (q1, 0, q0)] ∧ [f (q0, 0, q2) ∨ f (q2, 0, q0)] = 0

 V. Ramaswamy and K.Chatrapathy

66

f00* (q0, q1) = f* (q0, 00, q0)
 = [f (q0, 0, q0) ∨ f (q0,0,q1)] ∧ [f (q0,0,q1) ∨ f (q1,0,q1)] ∧
 [f (q0,0,q2) ∨ f (q2,0,q1)] = 0.6

Similarly, the f00

* - matrix is computed as follows;
f00* (q0, q0) = 0 f00* (q0, q1) = 0.6 f00* (q0, q2) = 0.6
f00* (q1, q0) = 0.5 f00* (q1, q1) = 0 f00* (q1, q2) = 0.6
f00* (q2, q0) = 0.3 f00* (q2, q1) = 0.6 f00* (q2, q2) = 0

L(00) = (f00* o F) (q1) ∧ (f00* o F) (q2)
 = {0.4 ∧ f00*(q1,q0) ∧ [0.9 ∨ f00*(q1,q2)] } ∧ { 0.9 ∧ f00*(q2,q0) ∧ [0.4∨f00*(q2,q1)]}
 = {0.4 ∧ 0.5 ∧ [0.9 ∨ 0.6] } ∧ { 0.9 ∧ 0.3 ∧ [0.4 ∨ 0.6] } = 0.3

Using the program for the example fuzzy automata, f* s – matrix and L(s) values are
computed for various strings and the same values are checked using manual calculations.
Both manually calculated values and computer results are tallied. Some of the L(s) values are
as follows.
L(0) = 0.3, L(1)=0.4, L(00)=L(01)=L(10)=0.3, L(11) = 0.4, L(000)=L(001)= . . . L(110) =
0.3, L(111) = 0.4,
L(0000)=...L(1110)=0.3,L(1111)=0.4,
L(00000000)=0.3, L(00001111)=0.3, L(11110000)=0.3, L(01011100)=0.3,
L(11010110101)=0.3, L(0010101000011)=0.3,
L(11010101001001101010001)=0.3, L(111111111111111)=0.4,
L(1111111111111111)=0.4.

It is found that L(s)=0.4 only when every symbol in s is 1. Otherwise, L(s)=0.3.
The possible values of δi (after arranging them in nondecreasing order) are 0.3, 0.4.

Suppose 0 < α ≤ 0.3.
Let Dα (M) = Mα denote the nondeterministic automaton corresponding to α.
Then Iα = { q0 }, Fα = { q1, q2 }, dα(q0 , s) = { p ∈ Q / f0

*(q0, s) ≥ 0.3 } = {q1, q2}

L (Dα (M)) = {s ∈ S / there exists q ∈ I α such that (d α (q, s) ∩ F α) ≠φ}
 = {s ∈ S / there exists q ∈ I 0.3 such that (d 0.3 (q, s) ∩ F 0.3) ≠φ}
 = {0, 1}+
Lα = {s ∈ S / L(s) ≥ α}
 = {s ∈ S / L(s) ≥ 0.3}
 = {0,1}+

L (D α (M)) = Lα.
Furthermore, [0] α = {0, 01, 10, 000, 001, 010, 110, 0000, 1110, 00000,…… 11110. ….}
 [1]α = { 1, 11, 111, 1111, ……..}
 Lα = ∪ [s]α = [0] α ∪ [1] α .

Suppose 0.3 < α ≤ 0.4.
Let Dα (M) = Mα denote the nondeterministic automaton corresponding to α.
Then Iα = { q0 }, Fα = { q1, q2 }, dα(q0 , s) = { p ∈ Q / f0

*(q0, s) ≥ 0.4 } = {q1, q2}

L (Dα (M)) = {s ∈ S / there exists q ∈ I α such that (d α (q, s) ∩ F α) ≠ φ}
 = {s ∈ S / there exists q ∈ I 0.4 such that (d 0.4 (q, s) ∩ F 0.4) ≠ φ} = {0, 1} +
Lα = {s ∈ S / L(s) ≥ α}

Myhill Nerode Theorem for Fuzzy Automata (Min-max Composition)

67

 = {s ∈ S / L(s) ≥ 0.4} = {1} +

L (D α(M)) ≠ Lα. and also Lα ⊆ L (D α (M)).
Furthermore, [1] α = {1, 11, 111, 1111 …}
 Lα = ∪ [s] α = [1] α .

If α > 0.4, then there exists no corresponding nondeterministic automaton and L (D α (M)) =
Lα = φ.
When α = 0.3
 αL(s) = α if L(s) ≥ α, 0 otherwise.
 αL(0) = αL(00) = αL(01) = αL(10) = αL(000) = … αL(110) = αL(0000) = … αL(1110) =
 ….. = 0.3
 αL(1) = αL(11) = αL(111) = αL(1111) = … αL(11111…111) = 0
When α = 0.4
 αL(s) = α if L(s) ≥ α, 0 otherwise.
 αL(0) = αL(00) = αL(01) = αL(10) = αL(000) = … αL(110) = αL(0000) = … αL(1110) = 0
 αL(1) = αL(11) = αL(111) = αL(1111) = … αL(11111…111) = 0.4
 L = ∪ αL where ∪ denotes fuzzy union.
 α ∈ [0, 1]
(∪ αL) (0) = ∨ αL(0) = 0.3 ∨ 0 = 0.3 = L(0)
(∪ αL) (1) = ∨ αL(1) = 0 ∨ 0.4 = 0.4 = L(1)
Similarly, (∪ αL) (s) = ∨ αL(s) = 0.3 ∨ 0 = 0.3 = L(s) for all s ∈ S.
This verifies L = ∪ αL

5. Results and Conclusions
In this paper, Myhill Nerode theorem of finite automaton has been extended to fuzzy
automaton where the composition considered is min-max composition. The algorithm to
compute f*(qi, s, qj) and L(s) is developed and implemented in C++. The program is tested
with different fuzzy automata and strings of different lengths. In min-max composition, it is
found that Lα need not even be contained in L (Dα (M)). Anyway, we have been able to prove
the analogue of Myhill Nerode Theorem for fuzzy automata even for min-max composition.

REFERENCES

1. Jiri Mockr, Fuzzy and non-deterministic automata, Research Report No. 8, University of
Ostrava, Czech Republic, 1997.

2. V. Ramaswamy and H.A. Girijamma, An extension of Myhill Nerode theorem for fuzzy
automata, Advances in Fuzzy Mathematics, 4(1) (2009) 41- 47

3. V. Ramaswamy and H.A. Girijamma, Characterization of fuzzy regular languages,
Intern. J. Computer Science and Network Security, 8(12) (2008) 306 -308.

4. W.Cheng and Z.-W.Mo, Minimization algorithm of fuzzy finite automata, Fuzzy Sets and
Systems, 141 (2004) 439-448.

5. J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and
Computation, Addison-Wesley Publishing, Reading, MA,1979.

6. Vivek Raich, Archana Gawande and Seema Modi, Fuzzy matrix solution for the study
of teacher’s evaluation, Intern. J. Fuzzy Mathematical Archive, 3 (2013) 9-15.

7. J.Boobalan and S.Sriram, The semi inverse of max-min product of fuzzy matrices, Intern.
J. Fuzzy Mathematical Archive, 3 (2013) 23-27.

