Intern. J. Fuzzy Mathematical Archive Vol. 4, No. 2, 2014, 61-71 ISSN: 2320 –3242 (P), 2320 –3250 (online) Published on 2 May 2014 www.researchmathsci.org

International Journal of **Fuzzy Mathematical** Archive

Anti Q-Fuzzy R-Closed KU-Ideals in KU-Algebras and its Lower Level Cuts

P.M.Sithar Selvam¹, T.Priya¹, T.Ramachandran² and K.T.Nagalakshmi³

¹Department of Mathematics, PSNA College of Engineering and Technology Dindigul-624 622, Tamilnadu, India E-mail : sitharselvam@gmail.com; tpriyasuriya@gmail.com

²Department of Mathematics, M.V.Muthiah Government Arts College for Women Dindigul-624001,Tamilnadu, India E-mail: <u>vasrams@gmail.com</u>

³ Department of Mathematics, K L N College of Information and Technology pottapalayam- 630611, Sivagangai District, Tamilnadu, India E-mail : <u>gloryratna@yahoo.co.in</u>

Received 15 April 2014; accepted 23 April 2014

Abstract. In this paper, we introduce the concept of anti Q-fuzzy R-closed KU-ideals of KU-algebras, lower level cuts of a fuzzy set, lower level R-closed KU-ideals and prove some results . We show that a Q-fuzzy set of a KU-algebra is a R- closed KU-ideal if and only if the complement of this Q-fuzzy set is an anti Q-fuzzy R-closed KU-ideal. Also we discussed few results of R-closed KU-ideals of KU-algebras under homomorphism and anti homomorphism. Cartesian Product of Anti Q-fuzzy KU-ideals of KU-algebras are also discussed.

Keywords: KU-algebra, fuzzy KU- ideal, fuzzy R-closed KU- ideal, Anti Q-fuzzy R-closed KU-ideal, lower level cuts

AMS Mathematics Subject Classification (2010): 20N25,03E72, 03F055, 06F35

1. Introduction

Imai and Iseki [6,7] introduced two classes of abstract algebras: BCK-algebras and BCIalgebras. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. Hu and Li [4,5] introduced a wide class of abstract BCH-algebras. They have shown that the class of BCI-algebras. Neggers, Ahn [1] and Kim introduced Qalgebras which is a generalization of BCK/BCI algebras and obtained several results. Fuzzification of ideals in BCC algebras are studied in [3]. Recently, Senapathi et al. [12] have studied on Fuzzy closed ideals of B-algebras with interval valued membership function. Prabpayak and Leerawat [8] introduced a new algebraic structure which is called KU-algebras and investigated some properties. Samy Mostafa and Abdel Naby [13] introduced fuzzy KU-ideals in KU-algebras. Biswas [2] introduced the concept of Anti fuzzy subgroups of groups. Modifying his idea, in this paper we apply the idea in KU-algebras. We introduce the notion of anti Q-fuzzy R-closed KU-ideals of KUalgebras and investigate some of its properties.

2. Preliminaries

In this section we site the fundamental definitions that will be used in the sequel.

Definition 2.1. [13] A non empty set X with a constant 0 and a binary operation * is called a KU-algebra if it satisfies the following axioms.

 $\begin{array}{l} 1. \ (x \, {}^{*} \, y) \, {}^{*}[(y \, {}^{*} \, z) \, {}^{*} \, (x \, {}^{*} \, z) \,] = 0 \\ 2. \ 0 \, {}^{*} \, x = x \\ 3. \, x \, {}^{*} \, 0 \, = 0 \\ 4. \, x \, {}^{*} \, y = 0 = y \, {}^{*} \, x \ \text{implies} \ x = y \ \text{, for all } x, \, y \, \text{, } z \in X. \end{array}$

In X we can define a binary operation \leq by $x \leq y$ if and only if y * x = 0. Then (X,*,0) is a KU-algebra if and only if it satisfies that

i. $(y * z) * (x * z) \le (x * y)$ ii. $0 \le x$ iii. $x \le y$, $y \le x$ implies x = y. iv. $x \le y$ if and only if y * x = 0, for all $x, y, z \in X$. In a KU-algebra, the following identities are true [13]: 1. z * z = 0. 2. z * (x * z) = 03. $x \le y \implies y * z \le x * z$ 4. z * (y * x) = y * (z * x)

5. y * [(y * x) * x] =0 , for all x, y , z \in X.

Example 2.1. Let $X = \{ 0, a, b, c, d \}$ be a set with a binary operation * defined by the following table

*	0	а	b	с	d
0	0	а	b	с	d
a	0	0	b	с	d
b	0	а	0	с	с
c	0	0	b	0	b
d	0	0	0	0	0

Then clearly (X, *, 0) is a KU-algebra.

Definition 2.2. [13] Let (X, *, 0) be a KU-algebra. A non empty set I of X is called an ideal of X if it satisfies

- i) $0 \in I$
- ii) $x * y \in I$ and $y \in I$ imply $x \in I$, for all $x, y \in X$.

Definition 2.3. [13] Let (X, *, 0) be a KU-algebra. A non empty subset I of X is called KU ideal of X if it satisfies the following conditions

(1) $0 \in I$ (2) $x * (y * z) \in I$ and $y \in I \Rightarrow x * z \in I$ for all $x, y, z \in X$.

Definition 2.4. [15] Let X be a non-empty set. A fuzzy subset μ of the set X is a mapping $\mu: X \rightarrow [0, 1]$.

Definition 2.5. [10] Let Q and G be any two sets. A mapping β : G x Q \rightarrow [0, 1] is called a Q –fuzzy set in G.

Definition 2.6. [10] A Q- fuzzy set μ in X is called a Q-fuzzy KU- ideal of X if

(i) $\mu(0,q) \ge \mu(x,q)$

(ii) $\mu(x^* z, q) \ge \min\{\mu(x^*(y^* z), q), \mu(y, q)\}$, for all x, y, $z \in X$ and $q \in Q$.

Definition 2.7. [10] A Q-fuzzy set μ of a KU-algebra X is called an anti Q-fuzzy KU-ideal of X, if

(i) $\mu(0,q) \leq \mu(x,q)$

(ii) $\mu(x * z, q) \le \max \{ \mu ((x * (y * z)), q), \mu(y, q) \}$, for all x,y,z $\in X$ and $q \in Q$.

Example 2.2. Let $X = \{0, 1, 2, 3, 4\}$ be a set with a binary operation * defined by the following table

*	0	1	2	3	4
0	0	1	2	3	4
1	0	0	2	2	4
2	0	0	0	1	4
3	0	0	0	0	4
4	0	0	0	1	0

Then Clearly (X, *, 0) is a KU-algebra. Let $t_0, t_1, t_2 \in [0, 1]$ be such that $t_0 < t_1 < t_2$. Define a Q-fuzzy set μ : X x Q \rightarrow [0, 1] by $\mu(0,q) = t_0, \mu(1,q) = t_1 = \mu(2,q), \mu(3,q) = t_2 = \mu(4,q)$, By routine calculations μ is an anti Q-fuzzy KU- ideal of X and $q \in Q$.

Definition 2.8. [10] If μ is a Q-fuzzy set in set X then the complement denoted by μ^c is the Q-fuzzy subset of X given by $\mu^c(x,q) = 1 - \mu(x,q)$, for all $x,y \in X$ and $q \in Q$.

3. Anti Q-fuzzy R-closed KU- ideal

Definition 3.1. An ideal A of a KU-algebra X is said to be R-closed if $x * 0 \in A$ for all $x \in A$.

Definition 3.2. Let (X , * , 0) be a KU-algebra. A non empty subset I of X is called R-closed KU ideal of X if

(1) $x * 0 \in I$

(2) $x * (y * z) \in I$ and $y \in I \implies x * z \in I$ for all $x, y, z \in X$.

Remark: From Example 2.1, It is clear that $A_1 = \{0,a\}$ and $A_2 = \{0,a,b\}$ are R- closed KU-ideals of X.

Definition 3.3. A Q- fuzzy set μ in X is called a Q-fuzzy R-closed KU- ideal of X if

 $\begin{array}{l} (i) \ \mu(x^{*}0,q) \ \geq \mu(x,q) \\ (ii) \ \mu(x^{*} \ z \ ,q) \geq \min\{\mu(x^{*}(\ y^{*} \ z),q), \ \mu(y,q)\}, \text{for all } x, \ y, \ z \in \ X \ \text{and} \ q \in Q. \end{array}$

Definition 3.4. A Q-fuzzy set μ of a KU-algebra X is called an anti Q-fuzzy R-closed KU-ideal of X, if

(i) $\mu(x * 0,q) \le \mu(x,q)$

(ii) $\mu(x * z, q) \le \max \{ \mu ((x * (y * z)), q), \mu(y, q) \}$, for all x,y,z $\in X$ and $q \in Q$.

Theorem 3.1. Every Anti Q-fuzzy R-closed KU- ideal μ of a KU-algebra X is order preserving.

Proof: Let μ be an anti Q-fuzzy R-closed KU- ideal of a KU-algebra X and let x , $y \in X$ and $q \in Q$.

Then
$$\mu(x,q) = \mu (0 * x, q)$$

 $\leq \max \{\mu (0 * (y * x), q), \mu (y,q)\}$
 $= \max \{\mu (0 * 0, q), \mu (y,q)\}$
 $= \max \{\mu (0 * (y*0), q), \mu (y,q)\}$
 $= \max \{\mu (y * 0, q), \mu (y,q)\}$
 $= \mu (y,q)$
 $\mu(x,q) \leq \mu (y,q).$

Theorem 3.2. μ is a Q-fuzzy R-closed KU-ideal of a KU-algebra X if and only if μ^c is an anti Q-fuzzy R-closed KU-ideal of X.

Proof: Let μ be a Q-fuzzy closed KU- ideal of X and let x , y , $z \in X$ and $q \in Q$.

(i) $\mu(x *0,q) \ge \mu(x,q)$ $1 - \mu^{c} (x * 0,q) \ge 1 - \mu^{c} (x,q)$ $\mu^{c} (x*0,q) \le \mu^{c} (x,q)$ That is $\mu^{c}(x *0,q) \le \mu^{c} (x,q)$.

(ii)
$$\mu^{c}(x * z, q) = 1 - \mu(x * z, q)$$

 $\leq 1 - \min \{ \mu(x * (y * z), q), \mu(y, q) \}$
 $= 1 - \min \{ 1 - \mu^{c}(x * (y * z), q), 1 - \mu^{c}(y, q) \}$
 $= \max \{ \mu^{c}(x * (y * z), q), \mu^{c}(y, q) \}$

That is $\mu^{c}(x * z, q) \le \max \{ \mu^{c}(x * (y * z), q), \mu^{c}(y, q) \}$. Thus μ^{c} is an anti Q-fuzzy R-closed KU-ideal of X. The converse also can be proved similarly.

Theorem 3.3. Let μ be an anti Q-fuzzy R-closed KU-ideal of KU – algebra X.If the inequality $x * y \le z$, then $\mu(y,q) \le \max \{\mu(x,q),\mu(z,q)\}$ for all $x,y,z \in X$ and $q \in Q$. **Proof:** Assume that the inequality $x * y \le z$ for all $x,y,z \in X$ and $q \in Q$. Then z * (x * y) = 0. Now, $\mu(y,q) = \mu(0 * y,q]$ $\le \max \{\mu(0 * (x * y), q), \mu(x,q)\}$ $= \max \{\mu(x * y,q), \mu(x,q)\}$ $\le \max \{\max \{\mu(x * (z * y), q), \mu(z,q)\}, \mu(x,q)\}$ $= \max \{\max \{\mu(z * (x * y), q), \mu(z,q)\}, \mu(x,q)\}$

 $= \max \{ \max \{ \mu (0, q), \mu (z, q) \}, \mu (x,q) \}$ = max { max { $\mu (z *0, q), \mu (z, q) \}, \mu (x,q) }$ $= max { <math>\mu (z, q)$, $\mu (x,q)$ } $\therefore \mu (y,q) \le \max \{ \mu (x,q), \mu (z,q) \}.$

Theorem 3.4. If μ is an anti Q-fuzzy R-closed KU-ideal of KU– algebra X, then for all $x, y \in X$ and $q \in Q$, $\mu (x * (x * y), q) \le \mu (y, q)$. **Proof:** Let $x, y \in X$ and $q \in Q$. $\mu (x * (x * y), q) \le \max \{ \mu (x * (y * (x * y)), q), \mu (y, q) \}$ $= \max \{ \mu (x * (x * (y * y)), q), \mu (y, q) \}$ $= \max \{ \mu (x * (x * 0), q), \mu (y, q) \}$ $= \max \{ \mu (x * 0, q), \mu (y, q) \}$ $= \max \{ \mu (0, q), \mu (y, q) \}$ $= \max \{ \mu (y^{*}0, q), \mu (y, q) \}$ $= \mu (y, q)$ $\therefore \mu (x * (x * y), q) \le \mu (y, q)$

4. Lower level cuts in anti Q-fuzzy R-closed KU-ideals of KU-algebra **Definition 4.1.[10]** Let μ be a Q-fuzzy set of X. For a fixed $t \in [0, 1]$, the set $\mu^t = \{x \in X | \mu(x,q) \le t \text{ for all } q \in Q\}$ is called the lower level subset of μ . Clearly $\mu^t \cup \mu_t = X$ for $t \in [0,1]$ if $t_1 < t_2$, then $\mu^{t1} \subseteq \mu^{t2}$.

Theorem 4.1. If μ is an anti Q-fuzzy R-closed KU-ideal of KU-algebra X,then μ^t is a R-closed KU-ideal of X for every $t \in [0,1]$.

Proof: Let μ be an anti Q-fuzzy R-closed KU-ideal of KU-algebra X. (i) Let $y \in \mu^t \implies \mu(y, q) \le t$.

 $\mu (x * 0, q) \le \max \{ \mu (x * (y * 0), q), \mu(y, q) \}$ $= \max \{ \mu (y * (x * 0)), q), \mu(y, q) \}$ $= \max \{ \mu (y * 0), q), \mu(y, q) \}$ $= \mu(y, q) \le t.$ $\Rightarrow x * 0 \in \mu^{t}.$

(ii) Let $x * (y * z) \in \mu^t$ and $y \in \mu^t$, for all $x,y,z \in X$ and $q \in Q$. $\Rightarrow \mu (x * (y * z), q) \leq t$ and $\mu (y,q) \leq t$. $\mu ((x * z), q) \leq \max \{ \mu ((x * (y * z)), q), \mu(y, q) \} \leq \max \{t,t\} = t$. $\Rightarrow x * z \in \mu^t$.

Hence, μ^{t} is an R-closed KU- ideal of X for every $t \in [0,1]$.

Theorem 4.2. Let μ be a Q-fuzzy set of KU- algebra X.If for each $t \in [0,1]$, the lower level cut μ^t is a R-closed KU-ideal of X, then μ is an anti Q- fuzzy R-closed KU-ideal of X.

Proof: Let μ^t be a R-closed KU-ideal of X. If $\mu(x^* 0,q) > \mu(x,q)$ for some $x \in X$ and $q \in Q$. Then $\mu(x^*0,q) > t_0 > \mu(x,q)$ by taking $t_0 = \frac{4}{\pi} \{ \mu(x^*0,q) + \mu(x,q) \}$. Hence $x^*0 \notin \mu^{t0}$ and $x \in \mu^{t0}$, which is a contradiction. Therefore, $\mu(x^*0,q) \leq \mu(x,q)$.

Let $x,y,z \in X$ and $q \in Q$ be such that $\mu((x * z), q) > \max\{\mu(x * (y * z), q), \mu(y,q)\}$ Taking $t_1 = \frac{1}{2} \{ \mu((x * z), q) + \max\{\mu(x * (y * z), q), \mu(y,q)\} \}$ and $\mu((x * z), q) > t_1 > \max\{\mu(x * (y * z), q), \mu(y,q)\}.$ It follows that $(x * (y * z)), y \in \mu^{t1}$ and $x * z \notin \mu^{t1}$. This is a contradiction. Hence $\mu((x * z), q) \le \max\{\mu(x * (y * z), q), \mu(y,q)\}$ Therefore μ is an anti Q-fuzzy R-closed KU-ideal of X.

Definition 4.2.[11] Let X be an KU- algebra and $a, b \in X$. We can define an set A(a,b) by $A(a,b) = \{ x \in X / a * (b * x) = 0 \}$. It is easy to see that $0,a,b \in A(a,b)$ for all $a,b \in X$.

Theorem 4.3. Let μ be a Q-fuzzy set in KU-algebra X.Then μ is an anti Q-fuzzy R-closed KU- ideal of X iff μ satisfies the following condition:

(for all $(\forall a, b \in X), (\forall t \in [0,1]) (a, b) \in \mu^t \Rightarrow A(a, b) \subseteq \mu^t$. **Proof:** Assume that μ is an anti Q-fuzzy R-closed KU-ideal of X. Let $a, b \in \mu^t$. Then $\mu(a,q) \le t$ and $\mu(b,q) \le t$. Let $x \in A(a,b)$. Then a * (b * x) = 0. Now. μ (x,q) = μ (0 * x , q) $\leq \max \{ \mu (0 * (b * x), q), \mu (b,q) \}$ = max { μ ((b * x), q), μ (b,q)} $\leq \max \{ \max \{ \mu (b * (a * x), q), \mu (a,q) \}, \mu(b,q) \}$ = max { max { μ (a * (b * x), q), μ (a,q)}, μ (b,q) } = max { max { μ (0,q) , μ (a,q) } , μ (b,q) } = max { max { μ (a * 0,q), μ (a,q)}, μ (b,q) } $= \max \{ \mu (a,q) \}, \mu(b,q) \}$ $\leq \max \{t, t\} = t$ $\Rightarrow \mu(x,q) \leq t$. $\Rightarrow x \in u^t$. Therefore, $A(a,b) \subseteq \mu^t$. Conversely, suppose that $A(a,b) \subseteq \mu^t$. Obviously $x^*0 = 0 \in A(a,b) \subseteq \mu^t$ for all $a,b \in X$. Let $x, y, z \in X$ be such that $x * (y * z) \in \mu^t$ and $y \in \mu^t$. Since (x * (y * z)) * (y * (x * z)) = (x * (y * z)) * (x * (y * z)) = 0.We have $x * z \in A(x * (y * z), y) \subseteq \mu^t$. $\therefore \mu^{t}$ is a R-closed KU- ideal of X. Hence, by Theorem 4.2, μ is an anti Q-fuzzy R-closed KU-ideal of X.

Theorem 4.4. Let μ be a Q-fuzzy set in KU-algebra X.If μ is an anti Q-fuzzy R-closed KU-ideal of X then

 $(\forall t \in [0,1]) \mu^t \neq \phi \Longrightarrow \mu^t = \bigcup_{a,b \in \mu^t} A(a,b).$

Proof: Let $t \in [0,1]$ be such that $\mu^t \neq \phi$. Since $x^*0 = 0 \in \mu^t$, we have

$$\mu^{t} \subseteq \bigcup_{a \in \mu^{t}} A(a, 0) \subseteq \bigcup_{a, b \in \mu^{t}} A(a, b).$$
Now, let $x \in \bigcup_{a, b \in \mu^{t}} A(a, b).$
Then there exists $(u, v) \in \mu^{t}$ such that $x \in A$ $(u, v) \subseteq \mu^{t}$ by theorem 3.3. Thus
$$\bigcup_{a, b \in \mu^{t}} A(a, b) \subseteq \mu^{t}.$$

$$\therefore \mu^{t} = \bigcup A(a, b).$$

 $a,b \in \mu^t$

5. Homomorphism and anti Homomorphism on anti Q-fuzzy R-closed KU-algebras In this section, we discussed about ideals in KU-algebra under homomorphism and anti homomorphism and some of its properties.

Definition 5.1.[10] Let (X,*,0) and $(Y,\Delta,0)$ be KU– algebras. A mapping $f: X \to Y$ is said to be a homomorphism if $f(x * y) = f(x) \Delta f(y)$ for all $x, y \in X$.

Definition 5.2. [10] Let (X, *, 0) and $(Y, \Delta, 0)$ be KU–algebras. A mapping f: $X \to Y$ is said to be an anti homomorphism if $f(x * y) = f(y) \Delta f(x)$ for all $x, y \in X$.

Definition 5.3. [10] Let f: X \rightarrow X be an endomorphism and μ be a fuzzy set in X. We define a new fuzzy set in X by μ_f in X as $\mu_f(x) = \mu(f(x))$ for all x in X.

Definition 5.4. [10] For any homomorphism f: $X \to Y$, the set $\{x \in X / f(x) = 0'\}$ is called the kernel of f, denoted by Ker(f) and the set $\{f(x) / x \in X\}$ is called the image of f, denoted by Im(f).

Theorem 5.1. Let f be an endomorphism of a KU- algebra X. If μ is an anti Q- fuzzy R-closed KU-ideal of X, then so is μ_f .

Theorem 5.2. Let f: X \rightarrow Y be an epimorphism of KU- algebra. If μ_f is an anti Q-fuzzy R-closed KU-ideal of X, then μ is an anti Q-fuzzy R-closed KU-ideal of Y.

Proof: Let μ_f be an anti Q-fuzzy R-closed KU-ideal of X. Let $y \in Y$ and $q \in Q$. Then there exists $x \in X$ such that f(x, q) = (y, q). Now, $\mu(y * 0,q) = \mu((y,q) \Delta(0,q))$ $= \mu (f(x,q) \Delta f(0,q))$ $= \mu (f((x,q) * (0,q)))$ $= \mu_{f} ((x,q) * (0,q))$ $\leq \mu_{f}(x,q) = \mu(f(x,q)) = \mu(y,q)$ $\therefore \mu (y * 0,q) \le \mu (y,q)$ Let $y_1, y_2 \in Y$ and $q \in Q$. $\mu ((y_{1},q) \Delta (y_{2},q)) = \mu (f(x_{1},q) \Delta f(x_{2},q))$ $= \mu (f((x_1,q) * (x_2,q)))$ $= \mu_{f}((x_{1},q) * (x_{2},q))$ $\leq \max \{ \mu_{f}((x_{1,q}) * ((x_{3,q}) * (x_{2,q})), \mu_{f}(x_{3,q}) \}$ = max { μ [f ((x₁,q) * ((x₃,q) * (x₂,q)))], μ (f(x₃,q))} = max { μ [f (x₁,q) Δ f((x₃,q) * (x₂,q))], μ (f(x₃,q))} = max { μ [f (x₁,q) Δ (f (x₃,q) Δ f (x₂,q))] , μ (f(x₃,q))} = max { μ [(y₁,q) Δ ((y₃,q) Δ (y₂,q))], μ (y₃,q)} $\therefore \mu ((y_{1},q) \Delta (y_{2},q)) \leq \max \{ \mu [(y_{1},q) \Delta ((y_{3},q) \Delta (y_{2},q))], \mu (y_{3},q) \}$ \Rightarrow µ is an anti Q-fuzzy R-closed KU-ideal of Y.

Theorem 5.3. Let f: X → Y be a homomorphism of KU- algebra. If µ is an anti Q-fuzzy R-closed KU-ideal of Y then µ_f is an anti Q-fuzzy R-closed KU-ideal of X. Proof: Let µ be an anti Q-fuzzy R-closed KU-ideal of Y. Let x, y ∈ X and q∈ Q. µ_f (x*0,q) = µ [f(x*0,q)] ≤ µ [f(x,q)]= µ_f (x,q) ⇒ µ_f (0,q) ≤ µ_f (x,q). µ_f (x * z, q) = µ (f ((x * z),q) = µ (f(x,q) Δ f (z,q)) ≤ max{ µ [f(x,q) Δ (f((y,q) Δ f(z,q))], µ (f (y,q)) } = max{ µ [f(x,q) Δ (f(((y * z),q)], µ (f (y,q)) } = max{ µ [f(x * (y * z),q)], µ (f (y,q)) } = max{ µ [f(x * (y * z),q)], µ (f (y,q) } ∴ µ_f (x * z, q) ≤ max{ µ_f (x * (y * z),q), µ_f (y,q)}

Hence, μ_f is an anti Q-fuzzy R-closed KU-ideal of X.

6. Cartesian product of anti Q-fuzzy KU-ideals of KU-algebras

In this section, we introduce the concept of Cartesian product of anti Q-fuzzy R-closed KU-ideals of KU-algebra.

Definition 6.1. [9] Let μ and δ be the fuzzy sets in X. The Cartesian product $\mu \ge \delta : X \ge X \Rightarrow [0,1]$ is defined by $(\mu \ge \delta) (x, y) = \min \{\mu(x), \delta(y)\}$, for all $x, y \in X$.

Definition 6.2. [9] Let μ and δ be the anti fuzzy sets in X. The Cartesian product $\mu \ge \delta$: X $\ge X \ge [0,1]$ is defined by $(\mu \ge \delta)(x, y) = \max \{\mu(x), \delta(y)\}$, for all $x, y \in X$.

Definition 6.3. [9] Let μ and δ be the anti Q-fuzzy sets in X. The Cartesian product $\mu \ge \delta$: X $\ge X \ge [0,1]$ is defined by ($\mu \ge \delta$) ((x, y),q) = max { $\mu(x, q), \delta(y, q)$ }, for all x, y \in X and q \in Q.

Theorem 6.1. If μ and δ are anti Q-fuzzy R-closed KU-ideals in a KU – algebra X, then $\mu \ge \delta$ is an anti Q-fuzzy R-closed KU-ideal in X $\ge X$.

Proof: Let $(x_1, x_2) \in X \times X$ and $q \in Q$. $(\mu \times \delta)((x_1 * 0, x_2 * 0), q) = \max \{ \mu (x_1 * 0, q), \delta (x_2 * 0, q) \}$ $\leq \max \{ \mu (x_1, q), \delta (x_2, q) \}$

= $(\mu x \delta) ((x_{1.}x_{2).}q)$

:
$$(\mu \ x \ \delta)((x_1 * 0, x_2 * 0), q) \le (\mu \ x \ \delta) ((x_1, x_2), q)$$

Let ($x_1, x_2)$, ($y_1, y_2)$, ($z_1, z_2) \in X \ x \ X$ and $q {\in} Q.$ Now,

 $(\mu \ x \ \delta) (((x_1, x_2), q) * ((z_1, z_2), q)) = (\mu \ x \ \delta) ((x_1 * z_1, q), (x_2 * z_2, q))$ = max { $\mu (x_1 * z_1, q), \delta (x_2 * z_2, q)$ }

 $\leq \max \{ \max \{ \mu(x_1 * (y_1 * z_1), q), \mu(y_1, q) \}, \max \{ \delta (x_2 * (y_2 * z_2), q), \delta (y_2, q) \} \}$ = max {max { $\mu(x_1 * (y_1 * z_1), q), \delta (x_2 * (y_2 * z_2), q) \}, \max \{ \mu(y_1, q), \delta(y_2, q) \} \}$ = max {($\mu \times \delta$)(((x_1, x_2), q) * ((($y_1 * y_2$), q) * ((z_1, z_2), q))), ($\mu \times \delta$) ((y_1, y_2), q) } $\therefore (\mu \times \delta)(((x_1, x_2), q)^*((z_1, z_2), q)) \leq \max \{ (\mu \times \delta)(((x_1, x_2), q) * (((y_1 * y_2), q) * ((z_1, z_2), q))), (\mu \times \delta) ((y_1, y_2), q) \}.$ Hence, $\mu \times \delta$ is an anti Q-fuzzy R-closed KU- ideal in X x X.

Theorem 6.2. Let μ and δ be fuzzy sets in a KU-algebra X such that $\mu \times \delta$ is an Anti Q-fuzzy R-closed KU-ideal of X x X. Then

(i) Either $\mu(x * 0,q) \le \mu(x, q)$ (or) $\delta(x * 0,q) \le \delta(x,q)$ for all $x \in X$ and $q \in Q$.

- (ii) If $\mu(x * 0,q) \le \mu(x,q)$ for all $x \in X$ and $q \in Q$, then either $\delta(x * 0,q) \le \mu(x,q)$ (or) $\delta(x * 0,q) \le \delta(x,q)$
- (iii) If $\delta(x * 0,q) \leq \delta(x,q)$ for all $x \in X$ and $q \in Q$, then either $\mu(x * 0,q) \leq \mu(x,q)$ (or) $\mu(x * 0,q) \leq \delta(x,q)$.

Proof: Let $\mu \ge \delta$ be an anti Q- fuzzy R-closed KU-ideal of X $\ge X$.

(i) Suppose that $\mu(x *0,q) > \mu(x,q)$ and $\delta(x*0,q) > \delta(x,q)$ for some $x, y \in X$ and $q \in Q$. Then $(\mu x \delta)((x,y),q) = \max\{\mu(x,q), \delta(y,q)\}$

$$< \max \{ \mu (x * 0,q), \delta(y* 0,q) \}$$

= $(\mu \times \delta)$ ((x*0,y*0),q), Which is a contradiction.

Therefore $\mu(x*0,q) \le \mu(x,q)$ or $\delta(x*0,q) \le \delta(x,q)$ for all $x \in X$ and $q \in Q$.

(ii) Assume that there exists $x, y \in X$ and $q \in Q$ such that

 $\delta(x^{*}0,q) > \mu(x,q)$ and $\delta(x^{*}0,q) > \delta(x,q)$.

Then $(\mu \ x \ \delta) ((x^{*}0, y^{*}0), q) = \max \{ \mu(x^{*}0, q), \delta(y^{*}0, q) \} = \delta(y^{*}0, q)$ and hence

 $(\mu \ge \delta) \ ((x \ , \ y),q) = max \ \{ \ \mu(x,q), \delta(y,q) \ \} < \delta(y^*0,q) = (\ \mu \ge \delta \) \ ((x^*0,y^*0),q)$ which is a contradiction.

Hence, if $\mu(x^{*}0,q) \leq \mu(x,q)$ for all $x \in X$ and $q \in Q$, then either $\delta(x^{*}0,q) \leq \mu(x,q)$ (or) $\delta(x^{*}0,q) \leq \delta(x,q)$.

Similarly, we can prove that if $\delta(x^*0,q) \leq \delta(x,q)$ for all $x \in X$ and $q \in Q$, then either $\mu(x^*0,q) \leq \mu(x,q)$ (or) $\mu(x^*0,q) \leq \delta(y,q)$, which yields (iii).

Theorem 6.3. Let μ and δ be fuzzy sets in a KU-algebra X such that $\mu x \delta$ is an Anti Q-fuzzy R-closed KU-ideal of X x X. Then either μ or δ is an anti Q-fuzzy R-closed KU-ideal of X.

Proof: First we prove that δ is an anti Q- fuzzy R-closed KU-ideal of X.

Since by 6.2(i) either $\mu(x^{*}0,q) \leq \mu(x,q)$ or $\delta(x^{*}0,q) \leq \delta(x,q)$ for all $x \in X$ and $q \in Q$. Assume that $\delta(x^{*}0,q) \leq \delta(x,q)$ for all $x \in X$ and $q \in Q$. It follows from 6.2(iii) that either $\mu(x^{*}0,q) \leq \mu(x,q)$ (or) $\mu(x^{*}0,q) \leq \delta(x,q)$.

If $\mu(x^*0,q) \leq \delta(x,q)$, for any $x \in X$ and $q \in Q$, then $\delta(x,q) = \max \{\mu(x^*0,q), \delta(x,q)\} = \max \{\mu(0,q), \delta(x,q)\} = (\mu \times \delta) ((0, x),q)$

 $\delta((x * z),q) = \max \{\mu(0,q), \delta((x * z),q)\}.$ $= (\mu x \delta) ((0, x^*z),q)$ $= (\mu \ x \ \delta) (((0*0),q),((x*z),q))$ $= (\mu x \delta) (((0,x),q) * ((0,z),q))$ $\leq \max \{(\mu \times \delta)[((0, x),q) * (((0,y),q) * ((0,z),q))], (\mu \times \delta) ((0, y),q)\}$ $= \max \{ (\mu \times \delta)[((0, x),q) * ((0*0,y*z),q)], (\mu \times \delta) ((0, y),q) \}$ = max { $(\mu \times \delta)[(0^* (0^*0), x^*(y^*z)), q)], (\mu \times \delta) ((0, y), q)$ } $= \max \{ (\mu \times \delta) [((0, x^{*}(y^{*}z)), q)], (\mu \times \delta) ((0, y), q) \}$ $= \max \{ \delta(x^*(y^*z),q), \delta(y,q) \}$ Hence δ is an anti Q- fuzzy R-closed KU-ideal of X. Next we will prove that μ is an anti Q- fuzzy R-closed KU-ideal of X. Let $\mu(x^{*}0,q) \leq \mu(x,q)$. Since by theorem 6.2(ii), either $\delta(x^{*}0,q) \le \mu(x, q)$ or $\delta(x^{*}0,q) \le \delta(x, q)$. Assume that $\delta(x^{*}0,q) \leq \mu(x,q)$, then $\mu(x,q) = \max \{ \mu(x,q), \delta(x^{*}0,q) \} = \max \{ \mu(x,q), \delta(0,q) \} = (\mu x \delta) ((x,0),q)$ $\mu(x * z, q) = \max \{\mu(x * z, q), \delta(0, q)\}$ = $(\mu x \delta) ((x * z, 0), q)$ = $(\mu x \delta) ((x * z,q),(0 * 0,q))$ $= (\mu x \delta) (((x,0),q) * ((z,0),q))$ $\leq \max \{(\mu \times \delta)[((x,0),q) * (((y,0),q) * ((z,0),q))], (\mu \times \delta) ((y,0),q)\}$

= max {($\mu \times \delta$)[((x,0),q) * ((y*z,0*0),q)], ($\mu \times \delta$) ((y,0),q)}

= max {($\mu \times \delta$)[((x *(y*z),0*(0*0)),q)], ($\mu \times \delta$) ((y,0),q)}

= max {($\mu x \delta$)[((x *(y*z),0),q)], ($\mu x \delta$) ((y,0),q)}

= max {
$$\mu(x * (y*z),q), \mu(y,q)$$
 }

Hence μ is an anti Q- fuzzy R-closed KU-ideal of X.

7. Conclusion

In this article we have discussed anti Q-fuzzy R-closed KU- ideal of KU-algebras and its lower level cuts in detail. In our aspect this R-closed definition and main results can be similarly extended to some other algebraic systems such as BG-algebras,TM-algebras etc. We hope that this work would other foundations for further study of the theory of KU-

algebras. In our future study of fuzzy structure of KU-algebra, may be the topics, Intuitionistic fuzzy set, interval valued fuzzy sets, should be considered .

Acknowledgement

Authors wish to thank the editor-in-chief, the reviewers, all their friends, family members for their help to make this paper as successful one.

REFERENCES

- 1. S.S.Ahn, Y.H.Kim and K.S. So, Fuzzy BE-algebras, *Journal of Applied Mathematics and Informatics*, 29 (2011) 1049-1057.
- 2. R.Biswas, Fuzzy subgroups and anti fuzzy subgroups, *Fuzzy Sets and Systems*, 35 (1990) 121-124.
- 3. W.A.Dudek and Y.B.Jun, Fuzzification of ideals in BCC-algebras, *Glasnik Matematicki*, 36 (2001) 127-138.
- 4. Q.P.Hu and X.Li, On BCH-algebras, *Mathematics Seminar Notes*, 11 (1983), 313-320.
- 5. Q.P.Hu and X.Li, On proper BCH-algebras, Math. Japonica, 30 (1985) 659 661.
- 6. K.Iseki and S.Tanaka, An introduction to the theory of BCK-algebras, *Math. Japonica*, 23 (1978) 1- 20.
- 7. K.Iseki, On BCI-algebras, Math. Seminar Notes, 8 (1980) 125-130.
- 8. C.Prabpayak and U.Leerawat, On ideals and congurences in KU-algebras, *Scientia Magna J.*, 5(1) (2009) 54-57.
- 9. P.M.Sithar Selvam, T.Priya, K.T.Nagalakshmi and T.Ramachandran, A note on anti Q-fuzzy KU-sub algebras and Homomorphism of KU-algebras, *Bulletin of Mathematics and Statistics Research*, 1(1) (2013) 42-49.
- 10. P.M.Sithar Selvam, T.Priya and T.Ramachandran, Anti Q-fuzzy KU–ideals in KUalgebras and its lower level cuts, *International Journal of Engineering Research & Applications*, 2(4) (2012) 1286-1289.
- 11. T.Priya and T.Ramachandran, Anti fuzzy ideals of CI- algebras and its lower level cuts, *International Journal of Mathematical Archive*, 3(5) (2012) 2524-2529.
- 12. T.Senapati, M.Bhowmik and M. Pal, Fuzzy closed ideals of B-algebras with intervalvalued membership function, *Intern. J. Fuzzy Mathematical Archive*, 1(1) (2013) 79-91.
- 13. S.M.Mostafa, M.A.Abd-Elnaby and M.M.M.Yousef, Fuzzy ideals of KU-algebras, *Int. Math. Forum*, 6(63) (2011) 3139-3149.
- 14. Y.B.Jun, M.A.O"ztu"rk and E.H. Roh, N-structures applied to closed ideals in BCHalgebras, *Intern. J. Mathematics and Mathematical Sciences*, Volume 2010,1-9.
- 15. L.A.Zadeh, Fuzzy sets, Information and Control, 8 (1965) 338-353.
- 16. T.Priya and T.Ramachandran, Some characterization of anti fuzzy ps-ideals of psalgebras in homomorphism and cartesian product, *International Journal of Fuzzy Mathematical Archive*, 4(2) (2014) 72-79.
- 17. T.Priya and T.Ramachandran, Some properties of fuzzy dot PS-subalgebras of PSalgebras, *Annals of Pure and Applied Mathematics*, 6(1) (2014) 11-18.