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Abstract. In this paper, we introduce the concept of antu@zf R-closed KU-ideals of
KU-algebras, lower level cuts of a fuzzy set, lowarel R-closed KU-ideals and prove
some results . We show that a Q-fuzzy set of a Klgfaa is a R- closed KU-ideal if and
only if the complement of this Q-fuzzy set is ahi &fuzzy R-closed KU-ideal. Also we
discussed few results of R-closed KU-ideals of &gebras under homomorphism and
anti homomorphism. Cartesian Product of Anti Q-fukdJ-ideals of KU-algebras are
also discussed.
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1. Introduction

Imai and Iseki [6,7] introduced two classes of edigtalgebras: BCK-algebras and BCI-
algebras. It is known that the class of BCK-algehsaa proper subclass of the class of
BCl-algebras. Hu and Li [4,5] introduced a widesslaf abstract BCH-algebras. They
have shown that the class of BCl-algebras. Negdérg, [1] and Kim introduced Q-
algebras which is a generalization of BCK/BCI algsband obtained several results.
Fuzzification of ideals in BCC algebras are studiefB]. Recently, Senapathi et al. [12]
have studied on Fuzzy closed ideals of B-algebrdl imterval valued membership
function. Prabpayak and Leerawat [8] introducedesav ralgebraic structure which is
called KU-algebras and investigated some properSasny Mostafa and Abdel Naby
[13] introduced fuzzy KU-ideals in KU-algebras. Ba&s [2] introduced the concept of
Anti fuzzy subgroups of groups. Modifying his ideéa,this paper we apply the idea in
KU-algebras. We introduce the notion of anti QzfwAR-closed KU-ideals of KU-
algebras and investigate some of its properties.
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2. Preliminaries
In this section we site the fundamental definititmet will be used in the sequel.

Definition 2.1. [13] A non empty set X with a constant O and a binargragion * is
called a KU-algebra if it satisfies the followingiams.

Lx*y)*y*2)*(x*2)]=0

2.0*x=x

3.x*0 =0

4. x*y=0=y*ximpliesx =y, forall x, yzO X.

* ok %

In X we can define a binary operatigrby x<y if and only if y* x = 0. Then
(X,*,0) is a KU-algebra if and only if it satisfi¢hat
L (y*2z)*(x*2z) <(x*y)
i.0< x
iii. x <y, y<ximplies x =y.
iv.x<y ifandonlyif y*x=0, forall x,y, & X.
In a KU-algebra, the following identities are t{ua]:
1.z*z=0.
2.2*(x*2)=0
3. XSy = y*z<x*z
4.z (y*x)=y*(z*x)
5.y*[(y*x)*x]=0, forall x,y, zO X.

Example 2.1.Let X={0, a, b, c,d } be a set with a binaryepation * defined by the
following table

O 0|0 (O] *
(ellellolleolle}lle]
OOl (Ol |®
O |T|O|T|T|T
o oooO|o|o
o|Tg|oO|(aja|la

Then clearly (X, *,0)is a KU-algebra.

Definition 2.2. [13] Let (X,*, 0) be a KU-algebra. A non empty set IXfis called an
ideal of X if it satisfies

i) Oel

i) x*yelandye limplyx e |, for all x, yeX.

Definition 2.3. [13]Let ( X, *, 0) be a KU-algebra. A non empty subisef X is called
KU ideal of X if it satisfies the following conditns

(1) o0l

2) x*(y*z) Ol and yOI =>x*z0OI forallx,y, zOX.
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Definition 2.4. [15] Let X be a non-empty setA fuzzy subsey of the set X is a
mappingu : X - [0, 1].

Definition 2.5. [10] Let Q and G be any two sets.A mappfhds x Q — [0, 1] is called a
Q —fuzzy set in G.

Definition 2.6. [10] A Q- fuzzy selu in X is called a Q-fuzzy KU- ideal of X if
(i) n(0,a)= K(x,a)
(i) uex* z ,q) = min{pu(x *(y * 2),9), K(y,a)}.for all x, y, 27 X and ge Q.

Definition 2.7. [10] A Q-fuzzy setu of a KU-algebra X is called an anti Q-fuzzy KU-
ideal of X, if

(i) 1(0,a)= u(x.a)

(i) p(x*z,q)<max{p((x*(y*2),q)u(y,q)} forallxy2l X and ge Q.

Example 2.2.Let X ={0, 1, 2, 3,4 } be a set with a binargesation * defined by the
following table

* 0 1 2 3 4
0 0 1 2 3 4
1 0 0 2 2 4
2 0 0 0 1 4
3 0 0 0 0 4
4 0 0 0 1 0

Then Clearly (X, *,0)is a KU-algebra. Lgtt, t, €[ 0, 1] be such thapk t; <t,.

Define a Q-fuzzy set p : X x Q [0, 1] by u(0,q) =4, p(1,9) = £ = u(2,9), K(3,q) =t=
K(4,q) , By routine calculations p is an anti QziuKU- ideal of X and gQ.

Definition 2.8. [10] If u is a Q-fuzzy set in set X then the complendanoted by fiis
the Q-fuzzy subset of X given by (x,q) = 1 - p(x,q), for all x,yi X and ge Q.

3. Anti Q-fuzzy R-closed KU- ideal

Definition 3.1. An ideal A of a KU-algebra X is said to be R-closkxl* 0 € A for all x
€ A.

Definition 3.2. Let ( X, *, 0) be a KU-algebra. A non empty subisef X is called R-
closed KU ideal of X if

1)y x*o0Ol

2)x*(y*z) Ol and yOI = x*z0OI forallx,y, zOX.

Remark: From Example 2.1, It is clear that A {0,a} and A = {0,a,b} are R- closed
KU-ideals of X.

Definition 3.3. A Q- fuzzy seu in X is called a Q-fuzzy R-closed KU- ideal of X i
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(i) u(x*0,q) = u(x,q)
(i) pix* z ,q) = min{p(x *(y * 2),9), K(y,a)}.for all x, y, 21 X and ge Q.

Definition 3.4. A Q-fuzzy setpy of a KU-algebra X is called an anti Q-fuzzy R-@ds
KU-ideal of X, if

() H(x *0,0) < H(x,0)

(it) u(x *z,aq) < max {p ((x*(y * 2)), q),u(y, q)} for all x,y,21 X and ge Q.

Theorem 3.1.Every Anti Q-fuzzy R-closed KU- ideal of a KU-algebra X is order
preserving.
Proof: Let 4 be an anti Q-fuzzy R-closed KU- ideal of a KU-dlge X and let x , y1 X
and ge Q.
Them(x,q) =p (0 * x, q)
smax{u (0*(y*x),q),u(y.a}

=xfap (0* 0, q) ,u(v,0) }

=max {u (0*(y*0), a) ,u (v,9) }

=xfap (y * 0, q) ,u(v,0) }

7 (y,9)

H(X,a) < 1 (y,0).

Theorem 3.2.u is a Q-fuzzy R-closed KU-ideal of a KU-algebrafXind only if (f is an
anti Q-fuzzy R-closed KU-ideal of X.
Proof: Let 4 be a Q-fuzzy closed KU- ideal of X and lety, z[0 X and g€ Q.
(i) H(x*0,9)%> p(x,q)
1-fi(x*0,0)=1-(x0)
H (x*0,0) < ° ( x,0)
That is |f(x *0,q) < L°( x,9).

(i) B (x*z,0q)=1-p(x*zq)
<l-min{p(x*(y*2),q),u(y.q}
=1-min{1-f(x*(y*2),q).1-0(y,q}
_ =max{fA(x*(y*z),q),H(y,a)}
Thatis £ (x*z, q)<max { i (x*(y*2),a), £y, q)}
Thus [f is an anti Q-fuzzy R-closed KU-ideal of X. The werse also can be proved
similarly.

Theorem 3.3.Let p be an anti Q-fuzzy R-closed KU-ideal of KUalgebra X.If the
inequality x* y< z, then p (y,qg max {u(x,q),u(z,q)} for all x,y,Z1 X and ge Q.
Proof: Assume that the inequality x * z for all x,y,z00 X and g€ Q.
Thenz*(x*y)=0.
Now, p(y.,q)=pn(0*y,q]
< max{p (0*(x*y),q) uxa)}
= max {p (x*y,qn, (x,a)}
< max{max{u (x*(z*y),q),K(z,q)}, ux,a}
=max{max{(z*(x*y),d)u(z,q)}, uxay}
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=max {max{(0,q).u(z,q)}, uxaq)}
=max {max{(z*0,q),u(z,q)}, uxa)}
=max{(z,q)}, ux,q)}

O u (y,q) < max {u(x,q),1(z,9)}-

Theorem 3.4. If 4 is an anti Q-fuzzy R-closed KU-ideal of Kladgebra X, then for all

x,yXandge Q, p (x*(x*y),q)< p(y,q).

Proof: Let x,y€ X and ge Q.

H(x*(x*y), q)< max{p (x*(y*(x* V), q) uy a}
=max {H (X*(y*Vy)), d) uy, a)}
=max{{ (x*00), q), u(y, a)}
=max{p(x*q), u(y, a)}
=max{H (0, gy, a}
=max {{ (y*0, (Y, a) }
= u(v.q)

Op(x*x*y),q)<pn(y.q)

4. Lower level cuts in anti Q-fuzzy R-closed KU-idals of KU-algebra

Definition 4.1.[10] Let u be a Q-fuzzy set of X. For a fixedt[0, 1], the sept' ={x O X|
H(x,q) <t for all ge Q} is called the lower level subset of

Clearlyp' O p = X for t[0,1] if t; < t, , thenu™ O p*2.

Theorem 4.1.1f u is an anti Q-fuzzy R-closed KU-ideal of KU-algra X,then [iis a R-
closed KU-ideal of X for evenyt [0,1].
Proof: Let 4 be an anti Q-fuzzy R-closed KU-ideal of Klgiglbra X.
() Letye ' = p(y, q) t.
H(X*0, gk max{u (x*(y*0),q), uy.a}
max {p (y* x*pn), uy.a)}
max {p (y*0),9), u(y.#)
My, Q< t

= x*0e .

(i) Letx * (y * z) € g'and ye W', for all x,y,z0 X and g€ Q.
=>HKx*(y*2z),q)< tandp (y,qF t.
H((x*2),aF max {p(x*(y*2),q)u(y,q)}<smax{tt=t.
=x*z€e
Hence, J1is an R-closed KU- ideal of X for everiy {0,1].

Theorem 4.2.Let 4 be a Q-fuzzy set of KU- algebra X.If for edch [0,1], the lower
level cut s a R-closed KU-ideal of X, then p is an antif@zy R-closed KU-ideal of
X.

Proof: Let i be a R-closed KU-ideal of X.

If u(x* 0,q) > u(x,q) for some ¥ X and ge Q.Then u(x*0,q) >¢> u(x,q) by takingd

=3 {u(x*0,q) + u(x,q) }.Hence x*0z p°and xe p°, which is a contradiction.

Therefore, p(x*0,gx K(x,q).
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Let x,y,z€ X and ge Q be such that pu((x*z), q) > max{u (x * (¥, q), u(y,q)}
Taking t=Z {p((x*z),q)+ max{u (x*(y*2z),q),um} and
H((x*z),a)>t>max{u (x*(y*2),q), uy.q)}.

It follows that (x * (y * z)),ye u and x* z¢ p" This is a contradiction.

Hence p((x*z), gr max{p (x*(y*2), ), u(y,a)}
Therefore p is an anti Q-fuzzy R-closed KU-ideaKof

Definition 4.2.[11] Let X be an KU- algebra and agbX.We can define an set A(a,b) by
A(a,b)={xeX/a*(b*x)=0}
It is easy to see that 0,a5bA(a,b) for all a,ke X.

Theorem 4.3.Let 4 be a Q-fuzzy set in KU-algebra X.Then u isaami Q-fuzzy R-
closed KU- ideal of X iff u satisfies the followingpndition:
(for all (Oa, b0 X),(d tO[0,1]) (a O = AahOu.
Proof: Assume that p is an anti Q-fuzzy R-closed KU-idgaX.
Let a,be u'. Thenp (a,q% tand p (b,g¥ t.
Letxe A(a,b). Thena*(b*x)=0.
Now,
Hxa=u0*x,q)
< max{p(0=*(b*x),0q),n(baq)}
=max{p ((b*x),0q),H(baq)}
<max{max{p (b*(@x*x),q),u(aaq)}, ub.4d)
=max{max{u (@a*(b*x),q), @}, ub,a)}
=max { max {u (0,q) , 4 (a,q)}, H(BH
= max{max {1 (a*0,q) , 4 (a,q)} (lpa) }
=max{u (a,q)}, u(b,q)}
<max{t,t}=t
= M (X0)<t.
= x€ .
Therefore, A(a,bE L.
Conversely, suppose that A(ad)' .
Obviously x*0 = 0 A(a,b)< ' for all a,be X.
Let x,y,z€ X be such that x * (y * z& p' and ye |'.
Since (x * (y*z))*(y*(x*z))=(x*(y*z))*(x*(y*z))=0.
Wehave x*Z A ( x*(y*z),y)c .
0 p'is a R-closed KU- ideal of X.
Hence, by Theorem 4.2, u is an anti Q-fuzzy ReddsU-ideal of X.

Theorem 4.4.Let 4 be a Q-fuzzy set in KU-algebra X.If W isami Q-fuzzy R-closed
KU-ideal of X then

(OO i 2= ' = | A(ab).

a,biut
Proof: Let te [0,1] be such thay/' # @. Since x*0 = 0= W', we have
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40 AR0D0 | Aab.

aly! a, byt
Now, let xO | J A(a b.
a, bt
Then there exists (u,M W' such that x€ A (u,v) € ' by theorem 3.3. Thus
U Aa b0,
a, byt

0 4= J Aab.

a, byt

5. Homomorphism and anti Homomorphism on anti Q-fuzy R-closed KU-algebras
In this section, we discussed about ideals in Kg&lta under homomorphism and anti
homomorphism and some of its properties.

Definition 5.1.[10] Let (X,*,0) and (Y /A ,0" ) be KU- algebras. A mapping f: X Y is
said to be a homomorphism if
f(x *y) = f(x) A f(y) for all x,y O X.

Definition 5.2. [10] Let (X,*,0) and (YA ,0°) be KU-algebras. A mapping f: X Y is
said to be an anti homomorphism if f(x *y) = ¢y f(x) for all x,y O X.

Definition 5.3. [10] Let f: X - X be an endomorphism and y be a fuzzy set in X. We
define a new fuzzy set in X by [in X as 4 (x) = u (f(x)) for all x in X.

Definition 5.4. [10] For any homomorphism f: X, Y, the set {XIX / f(x) = 0} is
called the kernel of f, denoted by Ker(f) and tbe{df(x) / x(OX} is called the image of f,
denoted by Im(f).

Theorem 5.1.Let f be an endomorphism of a KU- algebra X. Ifspan anti Q- fuzzy R-
closed KU-ideal of X, then so is p
Proof: Let u be an anti Q-fuzzy R-closed KU-ideal of X.
Now, Hi(x*0,0) =p (f(x*0,9))
< u (f(x,q)) = pr(x,q), for all x,yd X and 1Q.

Let x,y,z00 X and qJ Q.
Then H(x*z,q) = W (f(x* 2,0))

=u (f(x, ) f(z.0))

smax { 1 (f(x, a) * (f(y, a) *f(z, 9) ) ), u(fy, ) }

=max{ p (f(ar) *f(y*z,q)), pu(f (y, 9))}

=max{p (X *(y*z),q),n{y a}

=max{p( x *(y*z),q),u(y, a)}
O (x*z,0)< max {p ( x *(y*z),aq), Ky, a)}
Hence W is an anti Q -fuzzy R-closed KU-ideal of X.
Theorem 5.2.Let f: X - Y be an epimorphism of KU- algebra. If ig an anti Q-fuzzy
R-closed KU-ideal of X, then p is an anti Q-fuzzyclRsed KU-ideal of Y.
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Proof: Let ys be an anti Q-fuzzy R-closed KU-ideal of X.
Let yOY and 4 Q. Then there existsiX X such that f(x, q) = (y, Q).
Now,
My *0,09) = ((y,a)A (0,q))
= (f(x)nf(0,0))
=u (fF((x,d)(0,0)))
=M (x,9)* (0,0) )
S (x0)= pf(xq))=u(y.q)
Ou(y*0,0) < u(y.a)
Let v,y OY and dJ Q.
(L) A (y29) =1 (F(x0)A f(x2q))
= (f(eR)* (%))
= ((X1,9) * (%29))
< max { e ((x1a) * ((X2,0)* (X2,0)), ks ( X3,9 )}
= max { lf (x0.9) * ( (X2,9)* X2,0)))], 1 (f( %,9))}
= max { uff (xo.0) A f( (x3,09)* (X2,0))] , 1 (f( %,9))}
=max { uff (x,a) A (f (x3,0) Af (x2,0))], 1 (f( %,9))}
=max { uy1a) A ((ysa) & (Y2D))], 1 (¥.0)}

O u (@) (2a) < max {u[(y,a)A ((ysa) A (2a))] . 1 (¥%.9)}
= W is an anti Q-fuzzy R-closed KU-ideal of Y.

Theorem 5.3.Let f: X - Y be a homomorphism of KU- algebra. If p is an &fuzzy
R-closed KU-ideal of Y then;pis an anti Q-fuzzy R-closed KU-ideal of X.
Proof: Let u be an anti Q-fuzzy R-closed KU-ideal of Y.
Let x,yd X and 1 Q.
Hr (x*0,0) =u [f(x*0,q)]
< [f(x,9)]= ke (x,9)
= M (0,9)< e (x,0).
e (x*z,q)=p(f((x*z)q)
=u (f(x0df(zq))
< max{ u [f(x,q) A (f(y.q) Af(z,0) )], 1 (F(y,0)) }
=max{ p [f(x,a)A (f((y * 2).q)], p (F (v,)) }
=max{ p [f(x*(y*2),a)], 1 (fy.a)}
=max{ |(x*(y*2),0), k (.a)}

O (x*z, )< max{ ik (x*(y*2)0), k(y.q)}
Hence, | is an anti Q-fuzzy R-closed KU-ideal of X.

6. Cartesian product of anti Q-fuzzy KU-ideals of KU—algebras
In this section, we introduce the concept of Caateproduct of anti Q-fuzzy R-closed
KU-ideals of KU-algebra.

Definition 6.1. [9] Let p andd be the fuzzy sets in X. The Cartesian producidu X x
X - [0,1] is defined by (p &) (%, y) = min {u(x),0(y)}, forallx,yO X.
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Definition 6.2. [9] Let p andd be the anti fuzzy sets in X. The Cartesian progdux® :
XxX - [0,1]is defined by (uB) (X, y) = max {i(x), 6(y)}, forall x, yO X.

Definition 6.3. [9] Let p andd be the anti Q-fuzzy sets in X. The Cartesian pcoduxd
: XXX - [0,1]is defined by ( L ®) (( X, ¥),q) = max fu(x, q),d(y, q)}, for all x, yO
X and dJQ.

Theorem 6.1.1f p andd are anti Q-fuzzy R-closed KU-ideals in a KU — &lge X, then
M xdis an anti Q-fuzzy R-closed KU-ideal in X x X.
Proof: Let ( X, X)) O X x X and dJ Q.
(1 ®)((x:* 0,%2* 0),0) = max { u (% *0,0),6 (x2 * 0,0) }
smax{p (xa),0(x,q)}
(7 x0) ((x1X20)

O (1 x9)((x* 0,%2* 0),9) < (1 X3) (X1 X29)
Let (X, X2) , (W1.Y2) , (2,22) O X x X and dJQ.
Now,

(1x3) (((x,%).a) * (2,22).9)) = (HX) ((%*Z10), (X2+2,0))

=max { M (XZ10), 0 (X *Z2,9)}

< max {max {H(% *(y1* 21),0), u( Y@} max {8 (X2 * (Y2 * 72),0), 0 ( ¥2:0)}}
= max {max {H(% *(y1* 21),0)0 (% * (Y2 * z2),a)}, max { pu( y, ), d(y2,a)}}
=max {( 1 X0 )((( %1, %2),0) * ((Y2* Y2).9) * ((z2,22),9))), (K Xd) ((Y1,Y2),q)}-
O (Uxd) (X1, %2),0)*((z1, 22),@)) < max {( 1 X8 )((( X2, %2 ),a) * ((( y2* ¥2),0) * ((z,
2),9))), (1 x3) ((y1,Y2).a)}-
Hence, p x0 is an anti Q-fuzzy R-closed KU- ideal in X x X.

Theorem 6.2.Let pandd be fuzzy sets in a KU-algebra X such thatd is an Anti Q-
fuzzy R-closed KU-ideal of X x X. Then
() Eitherp(x * 0,g) < u(x, q) (or)d(x * 0,q) < &(x,q) for all x X and dJ1Q.
(i) If p(x*0,q)< u(x,q) for all xOO X and 4JQ, then eithed(x * 0,q) < u(x, q) (or)
o(x *0,9) < d(x, Q)
(iii) If &(x *0,q) < &(x,q) for all XJ X and d1Q, then eithep(x * 0,9) < u(x,q) (or)
H(x * 0,0) < &(x,0).
Proof: Letu x & be an anti Q- fuzzy R-closed KU-ideal of X x X .
(i) Suppose thai(x *0,q) > u(x,q) andd(x*0,q) > d(x,q) for some x, Y1 X and d1Q.
Then (ux0) ((x,y),q) =max{u(x,q),0 (y,q) }
< max{(x *0,q) ,8(y*0,q) }
g &k 0) ((x*0,y*0),q) , Which is a contradiction.
Therefore u(x*0,q) < p(x,q) ord(x*0,q) < 8(x,q) for all XxJ X and qJQ.
(i) Assume that there exists x[¥X and dJQ such that
3(x*0,q) > H(x,q) and &(x*0,q) >d(x,q).
Then @ x d) ((x*0,y*0),q) = max {u(x*0,q), d(y*0,q) } = d(y*0,q) and hence

@ x9) ((x,y),a) = max {ux,q)0(y,q) } < dy*0,q) = (K xd) ((x*0,y*0),q)
which is a contradictian
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Hence, ifju(x*0,q) < u(x,q) for all xO X and d1Q, then eithe®d(x*0,q) < u(x,q) (or)
o(x*0,q) < 8(x,q).
Similarly, we can prove thatdfx*0,q) < &(x,q) for all x(O X and dJQ ,then either
H(x*0,q) < u(x,q) (or)p(x*0,q) < 8(y,q), which yields (iii).
Theorem 6.3.Let pandd be fuzzy sets in a KU-algebra X such thatd is an Anti Q-
fuzzy R-closed KU-ideal of X x X. Then eithgror d is an anti Q-fuzzy R-closed KU-
ideal of X.
Proof: First we prove thad is an anti Q- fuzzy R-closed KU-ideal of X.
Since by 6.2(i) eithen(x*0,q) < u(x,q) ord(x*0,q) < &(x,q) for all X1 X and d1Q.
Assume thad(x*0,q) < d(x,q) for all XJ X and dJQ. It follows from 6.2(jii) that either
H(x*0,0) < p(x,q) (or)u(x*0,q) < d(x,q).
If u(x*0,q) < &(x,q), for any X1 X and d1Q ,thend(x,q) = max {u(x*0,q), (x,q)}= max
{1(0,0),3(x,a)}= (1 x 9) ((0, x),q)
O((x * 2),0) = max §1(0,0) ,&((x * 2),q) }-
=H X 9) ((0, x*2),q)
=H x9) (((0*0),0).((x*2),a1))
=H x9) (((0,x),q) * ((0,2),a))
< max {(1 x9)[((0, x),a) * (((0.,y),a) * ((0,2),a))]. & x 3) ((0, y).a)}
= max {(1 B)[((0, x),a) * ((0*0,y*2),a)], (1 x 0) ((O, y),a)}
= max {(1 &)[(0* (0*0),x *(y*2)),a)l. (L x3) ((O, y),a)}
= max {(1 B)[((0,x *(y*2)).a)], (1 x ) ((O, y),a)}

= max §(x *(y*z),q), d(y,q)}
Henced is an anti Q- fuzzy R-closed KU-ideal of X.

Next we will prove thajt is an anti Q- fuzzy R-closed KU-ideal of X.
Let pu(x*0,q) < p(x, ).
Since by theorem 6.2(ii), eith&(x*0,q) < p(x, q) ord(x*0,q) < &(X, q).
Assume thad(x*0,q) < u(x,q),then
H(x,q) = max {p(x, q) ,6(x*0,q)} = max { p(x, a) ,8(0,a)} = (K x 9) ((x,0),q)
H(x*Zz,q) =max{i(x*z4q),50,q) }
=i x9) ((x * 2,0), q)
tux9) ((x*z,q),(0*0,q))
= (1x9) (((x,0).a) * ((z0),9)
< max {(1 x9)[((x,0),q) * (((y,0),a) * ((z,0),a))], 1 x 3) ((y.0),a)}
= max {(1 [((x,0),0) * ((y*z,0*0),a)], (1 x 8) ((y.0).0)}
= max {(1 [((x *(y*2),0%(0*0)).a)l. (1 x3) ((y.0),a)}
= max {(1 [((x *(y*2),0).a)], (1 xd) ((v.0).9)}
= max{(x *(y*z),d), H(y,a)}
Hencey is an anti Q- fuzzy R-closed KU-ideal of X.

7. Conclusion

In this article we have discussed anti Q-fuzzy &ell KU- ideal of KU-algebras and its
lower level cuts in detail. In our aspect this Rsgd definition and main results can be
similarly extended to some other algebraic systemeh as BG-algebras, TM-algebras etc.
We hope that this work would other foundations ffather study of the theory of KU-
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algebras. In our future study of fuzzy structure Kifl-algebra, may be the topics,
Intuitionistic fuzzy set, interval valued fuzzy seshould be considered .
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