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Abstract. Differential algebraic equations have wide applications in the field of 
engineering and science where the mathematical models form the descriptor systems. 
Analysis and modeling of the solutions of such systems need to handle with the different 
equations related to the systems. A time-domain discretization, for example, finite 
difference, finite volume, etc., may lead to DAEs of descriptor forms. Numerical 
approaches for solving those differential-algebraic equations (DAEs) can be divided into 
two classes: direct discretizations and reformulation method (e.g., index reduction), 
combined with discretization. There are some limitations of direct discritization method. 
In this paper, the numerical methods have been discussed for strangeness-free problems 
with example. 
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1. Introduction 
Numerical approaches for the solution of differential-algebraic equations (DAEs) can be 
divided roughly into two classes: (i) direct discretizations of the given system and (ii) 
methods which involve a reformulation (e.g., index reduction), combined with 
discretization. The advantage for a direct discretizations method is that it is relatively 
cheaper than the reformulation method, it usually requires less input from the user, and it 
involves less user intervention compared to the reformulation method. But the problem 
with the direct discretizations methods is that, they are essentially limited in their utility 
to index-1(strangeness-free) and semi-explicit index-2 DAE systems [4] and [6]. 
Fortunately, most DAEs encountered in practical applications either are index-
1(strangeness-free) or, if higher, can be expressed as a combination of more restrictive 
structures of DAEs coupled with constraints and can be solved easily  [4,6]. In this paper 
we will discuss the numerical methods for strangeness-free problems. 

2. Methodology 
Let us consider the numerical solution of initial value problems of differential algebraic 
system [4] of the form 
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  0,, xxtF  ,                                          (1)  

in the interval   RTtI  ,0 . We denote by 0 1 2 Nt t t t T     grid points in the 

interval I and by ix approximations to the solution  itx .We concentrate on a fixed step 

size, i.e., we use 0 , 0,1, ,it t ih i N     and NhtT  0 .We here note that this N is 
not the Nilpotent part of Weierstra ß canonical form [5]. We can distinguish the two 
meanings of N from the context. 
 
A discretization method for the solution of (1) is given by the iteration  

 1 , ;i i it h                                                             (2) 

where they i are the elements in some nR , together with   n
i Rt   representing the 

actual solution at it .We are interested in the conditions that will make the methods 

convergence in the sense that N tends to  Nt  when h tends to zero. 
 
Definition 2.1.  The discretization method (2) is said to be consistent of order p if  

1
1( ) ( , ( ); ) p

i i it t t h Ch 
                                     (3) 

with a constant C independent of h. 
 
Definition 2.2. The discretization method (2) is said to be stable if there exist a vector 
norm  .   such that  

iiiiii thkhthtt  )()1();,());(,( 
 
                (4) 

In this vector norm, with a constant K independent of h. 
 
Definition 2.3. The discretization method (2) is said to be convergent of order p    if  

( ) p
N Nt Ch                                                              (5) 

with a constant C independent of h, provided that  

0 0( ) pt Ch                                                                (6) 

with a constant C~  independent of h. 
 
Theorem 2.4. If the discretization method (2) is stable and consistent of order p, it is 
convergent of order p. 
Proof. We have  

1111 ));(,());(,()()(   iiiiiiii htthtttt   

                             11 ));(,());(,()(   iiiiii htthttt   

  ii
p thkhC   )()1(1 . 

It follows that         

        11
1 )()1()( 
  NN

p
NN thkhCt  

  00 xtx 
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22
11 )()1()(1( 
  NN

pp thkhChkhC  
1 2 1

0 0

(1 (1 ) (1 ) (1 ) )
(1 ) ( )

p N

N

C h hk hk hk
hk t

          

  


 

                           

pN
N

p hChk
hk

hkhC ~)1(
1)1(
1)1(1 




   

                           
    pNpNp hChk

k
Chhk

k
Ch ~11 













  

2( 1)1 .( ) ( ) ( )
2!

(1 )

p N

p N p

C N Nh N hk hk hk
k

Ch hk Ch
k

        
  

    
 




 

                            (since,   )0 NhtT   

Therefore  

                           
   p

NN htTkC
k
Ct 0exp~)( 






  .             □ 

3.The Kronecker product 
When we study Runge-Kutta methods, it is convenient to describe the structure of 
matrices via the Kronecker product of two matrices. The Kronecker product of 

  lk
jirR ,C  with nmS ,C  is defined as the block matrix   ln,km

ji SrSR C . 
Its main properties are given by the following lemma. 
 
Lemma 3.1. The Kronecker  product has the following properties: 
i. Let matrices U, V and R, S such that the product UR, VS exist. Then, 

   VSURSRVU                                                       (7) 

ii. Let lkR ,C and nmS ,C . Considering SR  as a block matrix consisting of blocks 
of size nm , we define so-called perfect shuffle matrices 1 and 2  with respect to 
the rows and columns, respectively by the following process: 
Take the first row/column of the first block, then the first row/column of the second 
block, and so on until the first row/column of the last block; continue in the same way 
with the second row/column of every block, until the last row/column of every block. 
With the so obtained permutation matrices 1 and 2  , we get 

  RSSRT  21                                                            (8) 
 If lk  and nm  , then 1 = 2    and the RS   is similar to SR . 
 
 

  phNhkC
k
C exp~







 
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4. Solution methods 
4.1. One-step methods  
A one-step method for the computation of numerical approximation ix  to the values 

 itx  of a solution of x of an ordinary differential equation [1] ),( xtfx   has the form  
 

 hxthxx iiii ;,1                                                                 (9) 
 

where  is called the increment function. In the context of ordinary differential equations, 
a one-step method is called consistent of order p, if under the assumption that  ii txx  , 

the local descritization error  11   ii txx  satisfies  
 

  1
11


  p

ii Chxtx                                                        (10) 
 

with a constant C that is independent of h. Using (9), (10) is equivalent to  
 

       1
1 ;, 
  p

iiii Chhtxthtxtx                                           (11) 
 

Now we set    ,, iiii txtx  and    );,(;, hxthxhtt iiiii   , the one-step 
method (9) can be arranged as a general discretization method. 
Since 

             hthhtthththtt iiiiiiiiii ;,;,;,;,    

                                                     iithk  1  
where k is the Lipschitz condition of   with respect to its second argument, these 
methods are stable. Hence consistency implies convergence for one-step method. 
 
 4.2. Runge-Kutta methods for DAEs. 
As we mention in our introduction, we will discuss the one-step methods using Runge-
Kutta methods [3]. The general form of an s-stage Runge-Kutta method for the solution 
of ),( xtfx   ,   00 xtx   is given by  




 
s

j
jijii Xhxx

1
,1
                                                    (12) 

where                                      jijiji XhtfX ,, , ,              1, 2, , ,j s            (13) 

and so-called internal stages jiX ,  are given by  





s

l
liljiji XhxX

1
,,
 ,             1,2, , .j s              (14) 

The coefficients jlj  ,   and j  determine the particular method and are conveniently 
displayed  in a Butcher tableau  
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A B 
 CT 

with    jlj AB   , , and  jγC . The coefficients are assumed to be satisfy the 
condition  





s

l
jlj

1
 ,     1, 2, , ,j s                                    (16) 

which implies that the RK method is consistence and invariant regarding autonomization. 
 
Theorem 4.3. If the coefficients jlj  ,   and j  of the RK method given by (12), 
(13), and (14) satisfy the conditions 

                      
  



 
s

j

k
jj k

pB
1

1 ,1:  1, , ,k p   




 
s

l

k
j

k
ljl k

qC
1

1 1:)(  ,             1, , , 1, ,j s k q              (17) 

               
   



 
s

j

k
lljl

k
jj k

rD
1

1 11:  ,    1, , , 1, , ,l s k r    

with 1 rqp    and 22  qp , then the method is consistent and hence 
convergent of order p.  
 
Now using the RK methods we can generalize differential-algebraic equations of the 
form (1) by defining 1ix  as the solution of (12) and (14) together with 
 

  ,0,, ,,  jijiji XXhtF  1, , .j s                                        (18) 
 

Of course, the above relations only define a method if we can show that they define a 
unique 1ix  with respect to ix  at least for sufficiently small step size h. If this happens, 
then we can analyze the convergence properties of the resulting methods. We will do this 
by considering these methods as general discretization methods. 
 
5. The general discretization methods on DAEs. 
Let us consider the linear differential-algebraic equations with constant coefficients 

.)(),( 00 xtxtfAxxE   

In this case, the RK method has the form (12), with liX ,
  obtained using the solution of 

the linear system 
 .,, htfXAXE jijiji 

 
 
Together with equation (14) it becomes 
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 ,
1

,, htfXhxAXE ji

s

l
lijliji  







 



 1, , .j s   

Or,  htfAxXAXhE jiiji

s

l
lijl  








 


,

1
,

  

or,  

1,1 1,2 1,

2,1

1,

,1 , 1 ,

s

i i

s s

s s s s s

E h A h A h A
h A

X Z
h A

h A h A E h A

  





  




   
  
  
 

 
    

 
   

    
   

 

(19) 

where 

,1

,2

,

i

i

i

i s

X

X
X

X

 
 
 
   
 
 
  




 




     and 

 
 

 

1

2

i i

i i

i

i i s

Ax f t h

Ax f t h
Z

Ax f t h







  
 

  
   
 
 

   




. 

Using the Kronecker product as introduced at the beginning of the discussion, we can 
rewrite (19) as  

  iis ZXAhBEI   .                                                   (20) 
 

For non square coefficient matrix E, A this system is not uniquely solvable for arbitrary 
right hand sides. But even in the square cases, if the pair (E, A) is not regular, the 
coefficient matrix in (20) is singular. Therefore, the Pair (E, A) should be regular for a 
well-defined method. Since for (non singular) matrices P, Q of appropriate dimensions 
 

     PAQhBPEQIQIAhBEIPI ssss  , 
we may assume for the analysis that the pair (E , A) is Weierstra   canonical form 
 

  

























I
J

N
I

AE
0

0
,

0
0

, , 

with J, N  in Jordan canonical form and N is nilpotent. We can now separate the system 
into two subsystems, one a differential part and another is an algebraic part. The RK 
methods are well studied for ordinary differential equations. For this reason we will 
consider the algebraic part, i.e., the nilpotent part of the form 

)(tfxxN  .                                                                  (21) 
Furthermore, since J is in Jordan canonical form, the system again can be separated. 
Thus, for the analysis, we may assume that  N  in (21) consist of a single nilpotent Jordan 
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block of size ν. We know that the solution of  





1

0

v

j

jj fNx , independent of any 

initial values.  
 
In this case the linear system (20) has the form 

  iivs ZXIhBNI   .                                           (22) 
 
Using the perfect shuffle matrix Π of Lemma 1, we find that 

  hBIINIhBNI vsvs
T  =

s

s

hB I

I
hB

 
 
 
 
 

 



 
 

.                (23) 

Hence, to obtain a reasonable method, it is necessary that B is nonsingular, which implies 
that we are restricted to implicit Runge-Kutta methods. We now have the following 
theorem for the local order condition. 
 
Theorem 5.1. Consider the differential-algebraic equation (21) with ν = ind(N, I). 
Apply a RK method with coefficients A, B, and C, and assume that B is invertible. 
If   Nk j  , 1, 2, , ,j v   exist such that  

/ ( )!, 1, 2, , 1,
!/ ( 1)!, , 1, , ,

T k T j j k

T j k
j

B e B j k k j
B k k j k j j k

  

 

  



   

    




                      (24) 

where  1, ,1 Te    of appropriate size and 1 , ,j j j
s       , then the local error satisfies 

       1 12 3 1
1 1

v vk v k v k
i ix t x O h O h O h    
                         (25) 

 
An important class of Runge-Kutta methods for differential-algebraic equations is so-
called stiffly accurate [2] Runge-Kutta methods. These are defined to satisfy sjj    for 

all 1, , .j s   Writing this as BeT
s

T  with  0 0 1 TT
se   of appropriate size, we 

then obtain from (16) that   .eBee TT
ss    Since  1eT  for consistent Runge-

Kutta methods, it follows that  1s . Moreover, we get that  11  eeeB T
s

T  , 

implying that 1k  in (24) is infinite. Hence, the methods show that the regular linear 
differential-algebraic equations with constants coefficients and the ordinary differential 
equation have the same order of consistency. 
 
Theorem 5.2. Consider a Runge-Kutta method consisting of (12), (14), and (19) with 
invertible B applied to a linear differential-algebraic equation with constant coefficient 
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[4] of the form 00 )(),( xtxtfAxxE  with a regular pair (E, A) and 
),( AEindv  . Furthermore, let, , 1, ,jk j j v   , according to Theorem 3,  and let  

11 1   eBT .                                                         (26) 
Then the Runge-Kutta method is convergent of order 

 ,2,min
1




vkp jvj
                                                         (27) 

where p is the order of the method when applied to ordinary differential equations. 
 
Theorem 5.2. Shows that, even if the RK method satisfies (26) it is not stable in the 
sense of definition of direct discretization method for higher index problems, i.e. for 
problems with 1v . A related effect is that the RK method may lead to an unstable 
recursion for the numerical solutions jx . We will make this fact easier with the following 
example. 
 
6. Example  
Consider the linear differential-algebraic equation  

 
 
 











































tf
tf

x
xt

x
x

t 2

1

2

1

2

1

10
1

1
00




 


                   (28) 

with a parameter  . 
We solve the problem performing a change of basis via 
 

xTx ~                                                                             (29) 
where 











2

1

x
x

x , 









01
1t

T


, and 









2

1
~
~

~
x
x

x  , for  . 

Now from (29), we get 
xTxTx  ~~   

Therefore, the differential-algebraic equation )(tfAxxE   has the form 

                                           )(~~~ tfxTAxTxTE    

Or,      )(~~ tfxTEATxET                                                  (30) 
 
Here, we have 











t
E

1
00

,   






 


00
0

T  

A simple computation shows that 

ET .
1

00








t 

















10
00

01
1t
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TE  = .
1

00








t 








01
1

= 







 0

00


, and 

AT .
)1(0

1












t









01
1t

=   










01
10


 

Hence, 














01
10

TEAT  . 

Substituting these values in (30), we get an equivalent constant coefficient system 
 









10
00













2

1

~

~

x

x



= 











01
10










2

1
~
~

x
x

+
 
 






tf
tf

2

1 .                                         (31) 

Obviously, (31) and thus (28) has the strangeness index 1  independent of η. Now, 
from (31) we get 

                   







)(~~
)(~0

212

12

tfxx

tfx
 Or, 









)()(~)(~
)(~

12221

12

tftfxtfx

tfx


                        
(32) 

 
Therefore, the system (28) together with (29) and (32) gives 










2

1

x
x

= 







01
1t

. 

 
Solving the above system, we have 









)(
)(

2

1

tx
tx  1 2 1 1

22 1

( ) ( ) ( ) ( )
( )( ) ( )

f t t f t f t f t
f tf t f t

    
    
    




                      (33) 

without specifying any initial values 
Now we will apply the Implicit Euler method on system (28).The system (28) can be 
written as 

)()()(0 121 tftxttx   , 
  ).()(1)()( 2221 tftxtxttx                                       (34) 

 
Applying the implicit Euler method gives 

)(0 111,211,1   iiii tfxtx  , 

  ).(1)(1)(1
121,2,21,21,11,1   iiiiiii tfxxx

h
txx

h
  

We solve the first equation in two consecutive steps ix ,1 and 1,1 ix  as follows 

)( 111,11,21   iiii tfxxt  , and )(1,2,1 iiii tfxtx    

















 
)(
)(

)(
)()(

2

1

1

12

tf
tf

tf
tftf 
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Inserting these into the second equation and simplifying, we obtain 

  );(1)(1)(1 11112,21,2 iiiii tf
h

tf
h

tfxx     (Since, htt ii 1 ) 

Therefore, the recursion for ix ,2 becomes 

    





 





  ))()((1)(

1
1

1 11112,21,2 iiiii tftf
h

tfxx



, 

which is obviously divergent for 
2
1

 . This finally shows that the RK method may 

determine a unique numerical solution.  
 
7. Conclusion  
In this paper, the numerical methods have been reviewed for solving strangeness-free 
DAE problems. These problems arise in many areas of  science and engineering, 
particularly in the areas where the periodic control is deserved, Electrical circuits and 
networks, aerospace realm, control of industrial processes and communication systems, 
modeling of filters and electrical networks, and many more  [2, 4] and [7] . Specially, we 
discuss the Runge-Kutta methods for DAEs. The method is based on discretization of 
DAEs in the time domain. There are other popular methods exist to solve such DAEs [2, 
3, 4]. They remain as our future tasks to explore.  
 

REFERENCES 

1. E.Hairer and S.P.Norsett, Solving Ordinary Differential Equations II, Springer Ser. in 
Comp. Math., Springer, 2002.  

2. E.Hairer, S.P.Nørsett and G.Wanner, Solving ordinary differential equations I. 
Nonstiff problems (1987). 

3. L.Jay, Specialized Runge-Kutta methods for index 2 differential-algebraic equations, 
Mathematics of Computation, 75(254) (2006) 641-654. 

4. P. Kunkel and V. L.Mehrmann, Differential-algebraic equations: analysis and 
numerical solution. European Mathematical Society (2006). 

5. D.Liberzon and S.Trenn, On stability of linear switched differential algebraic 
equations. In Decision and Control, 2009 held jointly with the 2009 28th Chinese 
Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference 
on (pp. 2156-2161).  

6. L.R.Petzold, Computer methods for ordinary differential equations and differential-
algebraic equations (Vol. 61), U.M.Ascher (Ed.). SIAM (1998). 

7. U.M.Ascher and L.R.Petzold, Computer Methods for Ordinary Differential and 
Differential-Algebraic Equations,  SIAM Publications, Philadelphia, PA (1998). 
 

 
 

 


