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Abstract. Differential algebraic equations have wide applications in the field of
engineering and science where the mathematical models form the descriptor systems.
Analysis and modeling of the solutions of such systems need to handle with the different
equations related to the systems. A time-domain discretization, for example, finite
difference, finite volume, etc., may lead to DAEs of descriptor forms. Numerical
approaches for solving those differential-algebraic equations (DAEs) can be divided into
two classes: direct discretizations and reformulation method (e.g., index reduction),
combined with discretization. There are some limitations of direct discritization method.
In this paper, the numerical methods have been discussed for strangeness-free problems
with example.
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1. Introduction

Numerical approaches for the solution of differential-algebraic equations (DAEs) can be
divided roughly into two classes: (i) direct discretizations of the given system and (ii)
methods which involve a reformulation (e.g., index reduction), combined with
discretization. The advantage for a direct discretizations method is that it is relatively
cheaper than the reformulation method, it usually requires less input from the user, and it
involves less user intervention compared to the reformulation method. But the problem
with the direct discretizations methods is that, they are essentially limited in their utility
to index-1(strangeness-free) and semi-explicit index-2 DAE systems [4] and [6].
Fortunately, most DAEs encountered in practical applications either are index-
1(strangeness-free) or, if higher, can be expressed as a combination of more restrictive
structures of DAEs coupled with constraints and can be solved easily [4,6]. In this paper
we will discuss the numerical methods for strangeness-free problems.

2. Methodology
Let us consider the numerical solution of initial value problems of differential algebraic
system [4] of the form
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F(t,x,fc)zO, x(t0)=x0 (1)
in the interval [ = [tO,T] C R. We denote by ¢, <f, <t,...<t, =T grid points in the
interval 7 and by x;approximations to the solution x(tl. ) .We concentrate on a fixed step

size, i.e., we use t, =t,+ih, i=0,1,...,N and T —¢, = Nh.We here note that this N is

not the Nilpotent part of Weierstra 3 canonical form [5]. We can distinguish the two
meanings of N from the context.

A discretization method for the solution of (1) is given by the iteration

Nm =§(l‘i,Ni;h) ()
where they N are the elements in some R”, together with N(tl. ) € R" representing the
actual solution at #,.We are interested in the conditions that will make the methods

convergence in the sense that X, tends to N(Z N ) when / tends to zero.

Definition 2.1. The discretization method (2) is said to be consistent of order p if
| N - N | < 3)
with a constant C independent of /.

Definition 2.2. The discretization method (2) is said to be stable if there exist a vector

norm || || such that

[ &G, N =@ 850 | <A+ R[N -R, | (4)

In this vector norm, with a constant K independent of /.

Definition 2.3. The discretization method (2) is said to be convergent of order p  if

[N )-8, [<Ch? (5)
with a constant C independent of %, provided that
NN, |<Ch? (6)

with a constant C independent of 4.

Theorem 2.4. If the discretization method (2) is stable and consistent of order p, it is
convergent of order p.
Proof. We have

" N(t i+l ) - Nm

=[N = SN ) ) + (N0 ) ) =R,
SRR ORI R0/ Y HORN RO RN
SCh™ + 1+ hk)|R(,) =R, |.

It follows that
R =Ry | SCh + 1+ k)| N ) - N, |
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SCh"™ + 1+ hk)(Ch™ + 1+ hk) | R(ty_,) =Ny, |

SCh" +(+(A+hk)+(A+hk) +...+ A+ hk)" )+
A+ RV || R, =R, ||

(1+ hk)Y -1,

(1+ hk) -1

sh”(%)(l + hk)" —h”(%}t(l +hk)" Ch?

=h" (%)(HN.(%HW(W +...+(hk)NJ

<Ch" (1+ hk)" Ch?

—h? (%j+(1+hk)”éhﬂ

< (% + 5) exp(Nhk)h? (since, (T —1,)= Nh)
Therefore
C ~
BIGOEM| =(;+ Cjexp(k(T—tO )it o

3.The Kronecker product
When we study Runge-Kutta methods, it is convenient to describe the structure of
matrices via the Kronecker product of two matrices. The Kronecker product of

R =[rij]e C* with S eC™" is defined as the block matrix R ® S :[”i_/ S]eCkm’I".

Its main properties are given by the following lemma.

Lemma 3.1. The Kronecker product has the following properties:
i. Let matrices U, V and R, S such that the product UR, V'S exist. Then,

(URV)R®S)=UR®VS (7)
ii. Let R eC*' andS eC™". Considering R ® S as a block matrix consisting of blocks

of size mx n, we define so-called perfect shuffle matrices [, and [], with respect to

the rows and columns, respectively by the following process:

Take the first row/column of the first block, then the first row/column of the second
block, and so on until the first row/column of the last block; continue in the same way
with the second row/column of every block, until the last row/column of every block.

With the so obtained permutation matrices [[,and [1, , we get
[1[(R®S)[],=S®R (8)
If k=/and m=n,then [[,=[I, andthe S®R is similarto R® S .
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4. Solution methods
4.1. One-step methods

A one-step method for the computation of numerical approximation Xx; to the values

x(t l.) of a solution of x of an ordinary differential equation [1] x = f'(¢,x) has the form
Xy = X; +h¢(ti > X ;h) )

where ¢ is called the increment function. In the context of ordinary differential equations,
a one-step method is called consistent of order p, if under the assumption that x;, =x(tl. ),

the local descritization error x,,; — x(tl. +1) satisfies

< Ch? (10)

[ x(t:) =

with a constant C that is independent of h. Using (9), (10) is equivalent to
| (2, )= x(t,) = hple,, x(e, k)| < Ch (11)

Now we set X, = x,, N(z,)=x(t,),and (¢, ,N(2, ), 7) =x, + hep(¢, , x, ;) , the one-step
method (9) can be arranged as a general discretization method.
Since

[ &0 k) -0, 5h) = (8G) + hgle, 80 kR) - (8, + kel 8,5 0))
<(1+ k)N, )- N

where k is the Lipschitz condition of ¢ with respect to its second argument, these

methods are stable. Hence consistency implies convergence for one-step method.

4.2. Runge-Kutta methods for DAEs.
As we mention in our introduction, we will discuss the one-step methods using Runge-
Kutta methods [3]. The general form of an s-stage Runge-Kutta method for the solution

of X= f(t,x) , x(to)zxo is given by

X, =X+ thj )'(l,’j (12)
=
where X, = flt, +o,hx,,), i=12,..,s,  (13)

and so-called internal stages X, ; are given by

X, =x,+h) B, X, j=12,...,s. (14)
1=l

The coefficients o; 8, and y; determine the particular method and are conveniently

displayed in a Butcher tableau
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A |B
CT
with B = lﬂﬂ], A= [aj J, and C = |_yj J The coefficients are assumed to be satisfy the

condition

v, =2 By J=L2,...5s, (16)
=1

which implies that the RK method is consistence and invariant regarding autonomization.

Theorem 4.3. If the coefficients &, B, and y, of the RK method given by (12),
(13), and (14) satisfy the conditions

s Lo
B(p): Zyja;‘ '=— k=1,...p,
j=1 k
5 B 1
C(q): Zﬁﬂa,"‘=;af, j=les, k=l..gq (17)
I=1

-

: _ 1
D(r): Zyja;‘ lﬂﬂ =z71(1—051k)v I=1,...,s, k=1,...,r
j=1

with p<g+r+1 and p<2q+2,then the method is consistent and hence
convergent of order p.

Now using the RK methods we can generalize differential-algebraic equations of the
form (1) by defining x,,, as the solution of (12) and (14) together with

Flt,+a,nX, X, ,)=0, j=1,...,s. (18)
Of course, the above relations only define a method if we can show that they define a

unique Xx,,, with respect to x; at least for sufficiently small step size h. If this happens,

i+l
then we can analyze the convergence properties of the resulting methods. We will do this
by considering these methods as general discretization methods.

5. The general discretization methods on DAEs.
Let us consider the linear differential-algebraic equations with constant coefficients

Ex=Ax+ f(t), x(t,))=x,.
In this case, the RK method has the form (12), with X ;. obtained using the solution of

the linear system
EX, = AX, +flt, +a,h)

Together with equation (14) it becomes
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EX,, = A(xi 1> B X, j + (e, +o,m) =1,
=

or, (E 1Y B, X, Aj)‘(i,j — Ax, + f{t, +a 1)
I=1

_E—hﬂuA —hp,4 ... —hp, A
—hp,, A
or, | ... X, =Z (19)
—hpB,_, A
—hp, A v —hB. A4 E-hB A |
where
X, ] [ax,+ £ (1 +ah)]
Xz’,Z Ax, +f(ti +(x2h)
X =|... and Z, =

Ax, + f(ti + (xsh)

Using the Kronecker product as introduced at the beginning of the discussion, we can
rewrite (19) as

(I, RE-hB® A)X, = Z,. (20)

For non square coefficient matrix E, A this system is not uniquely solvable for arbitrary
right hand sides. But even in the square cases, if the pair (£, A) is not regular, the
coefficient matrix in (20) is singular. Therefore, the Pair (£, 4) should be regular for a
well-defined method. Since for (non singular) matrices P, Q of appropriate dimensions

(I, ® PYI, ® E—hB® A)I,®0)=(I, ® PEQ— hB® PAQ),

we may assume for the analysis that the pair (£, 4) is Weierstra # canonical form

ol 35 0)

with J, N in Jordan canonical form and N is nilpotent. We can now separate the system
into two subsystems, one a differential part and another is an algebraic part. The RK
methods are well studied for ordinary differential equations. For this reason we will
consider the algebraic part, i.e., the nilpotent part of the form

Nx=x+ f(t). 2n
Furthermore, since J is in Jordan canonical form, the system again can be separated.
Thus, for the analysis, we may assume that N in (21) consist of a single nilpotent Jordan
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v—1
block of size v. We know that the solution of x = —z N’ f () , independent of any
Jj=0
initial values.

In this case the linear system (20) has the form

(I, ON-hB®1,)X, =Z,. (22)
Using the perfect shuffle matrix [1 of Lemma 1, we find that
~hB 1,
[M"(I, ®N-hBRI )[I=N®I,~I, ®hB=|"" s (23)
1B

Hence, to obtain a reasonable method, it is necessary that B is nonsingular, which implies
that we are restricted to implicit Runge-Kutta methods. We now have the following
theorem for the local order condition.

Theorem 5.1. Consider the differential-algebraic equation (21) with v = ind(N, /).
Apply a RK method with coefficients 4, B, and C, and assume that B is invertible.
If k;eN, j=12,...,v, exist such that

y' B e=y"B o’ /(j—k)!, k=1,2,...,j-1, 24)
y' B ot =k!/ (k- j+1)!, k=j,j+1.. .k,

where e = [1,...,1]T of appropriate size and a’ = [a{,...,a{] , then the local error satisfies
x(t) =%y =O(K* )+ O (B )4+ O (B4 (25)

An important class of Runge-Kutta methods for differential-algebraic equations is so-
called stiffly accurate [2] Runge-Kutta methods. These are defined to satisfy y , = f,; for
all j=1,...,s. Writing this as y" = e/ Bwith e/ = [O ...0 1]T of appropriate size, we
then obtain from (16) that «, =e! Be=A"e. Since A’e=1 for consistent Runge-
Kutta methods, it follows that «, =1. Moreover, we get that ]/TB o= e_YT e=1,

implying that k, in (24) is infinite. Hence, the methods show that the regular linear

differential-algebraic equations with constants coefficients and the ordinary differential
equation have the same order of consistency.

Theorem 5.2. Consider a Runge-Kutta method consisting of (12), (14), and (19) with
invertible B applied to a linear differential-algebraic equation with constant coefficient

&9



M. Jamsher Ali, M. Shahjalal and M. Sahadet Hossain

[4] of the form Ex=Ax+ f(t), x(¢,)=x,with a regular pair (E, 4) and
v=ind(E, A).Furthermore, let, k, > j, j=1,...,v,according to Theorem 3, and let

1—7/TB_1e‘<1. (26)
Then the Runge-Kutta method is convergent of order
ggi,@—v+2£ (27)

where p is the order of the method when applied to ordinary differential equations.

Theorem 5.2. Shows that, even if the RK method satisfies (26) it is not stable in the
sense of definition of direct discretization method for higher index problems, i.e. for

problems withv >1. A related effect is that the RK method may lead to an unstable
recursion for the numerical solutions x ;. We will make this fact easier with the following

example.

6. Example
Consider the linear differential-algebraic equation

0 0 ]| x -1 —nt t
1 nt j| x, 0 _(1+77) Xy fz(t)
with a parameter 77 € R .
We solve the problem performing a change of basis via

x=TX (29)
where

Now from (29), we get
x=TXx+TX
Therefore, the differential-algebraic equation £ x = Ax + f(¢) has the form
E[f%+7%)= AT%)+ £(t)
or, (ET)¥ = (AT - ET)% + £ (1) (30)

0 o| . [-n 0
E= , T =
I e 0 O

A simple computation shows that
0 0 [-m 1 0 O
ET = . =
I ne ]| 0 0 1
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o) ol e
a5 ol et

[0 -1
AT - ET = .

Substituting these values in (30), we get an equivalent constant coefficient system

oS R

Obviously, (31) and thus (28) has the strangeness index ¢ =1 independent of 1. Now,

Hence,

from (31) we get
{gz_xi""fl(t) or, {xz = f,() . . (32)
X, =—x, + f,(?) X =L0-%=f,0)-f()
Therefore, the system (28) together with (29) and (32) gives
Fizﬁm 1{Am—ﬁm]{ﬁm}
5| |10 £@) L]
Solving the above system, we have
{maqz ﬁayqnoxn—ﬁan4{ﬁaq )
* () £HO= 1) )

without specifying any initial values
Now we will apply the Implicit Euler method on system (28).The system (28) can be
written as

0=x,()—ntx,()+ £, (D),
%, () +n k(1) =—=(1+7)x, (0) + /3 1). (34)

Applying the implicit Euler method gives
0= Xl — nt Xyt fl (ti+1 )
1 1
Z(xl,m - xl,i) + 77t1-+1 Z(xz,m _x2,1') = _(l + n)xz,m + fz (ti+1 )
We solve the first equation in two consecutive steps x, ;and x, ,,, as follows

My Xo i = Xt fi(t,) ,and X, =N X, + fi(@)
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Inserting these into the second equation and simplifying, we obtain
1 1 .
(L mhra g =00, 4 So(0) = i) + 5 fi(0); Sinees £y =t = h)

Therefore, the recursion for x, ;becomes

__n 1 _1 _
Xoin = (1+T])x2,i + (1+T])[f2(ti+l) 7 (f1 ) ﬁ(ti))jv

1
which is obviously divergent for 77 < 5 This finally shows that the RK method may

determine a unique numerical solution.

7. Conclusion

In this paper, the numerical methods have been reviewed for solving strangeness-free
DAE problems. These problems arise in many areas of science and engineering,
particularly in the areas where the periodic control is deserved, Electrical circuits and
networks, aerospace realm, control of industrial processes and communication systems,
modeling of filters and electrical networks, and many more [2, 4] and [7] . Specially, we
discuss the Runge-Kutta methods for DAEs. The method is based on discretization of
DAE:s in the time domain. There are other popular methods exist to solve such DAEs [2,
3, 4]. They remain as our future tasks to explore.
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