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Abstract. In this paper, pseudo degree, pseudo total degte@seudo degree of a vertex
and d,- pseudo total degree of a vertex in an intuitionistzzy graphs are defined. Also
(2,( ¢, &))-Pseudo regularity an@,( ¢, ¢,))-Pseudo total regularity of an intuitionistic
fuzzy graphs are defined. A relation betwé2i( ¢, c,))-Pseudo regularity an@,( c,
C))-Pseudo total regularity on an intuitionistic fuzmyaph is studied2,( ¢, ¢,))-Pseudo
regularity on Peterson graph, a Ladder grapti{n>1) and a cycleCn are studied with
some specific membership functions.
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1. Introduction

In 1965, Zadeh §] introduced the concept of fuzzy subset of a setn@ethod of
representing the Phenomena of uncertainty in rdal dituation. Attanassov 1]
introduced the concept of intuitionistic fuzzy satsa generalization of fuzzy sets. The
fuzzy sets give the degree of membership of an est¢rin a given set(and the non-
membership degree equals one minus the degree mbenship), while intuitionistic
fuzzy sets give both a degree of membership arefjeed of non- membership which are
more-or-less independent from each other, the mwdyirement is that the sum of these
two degrees is not greater than one Karunambigdi Rarvathi and Buvaneswari
introduced constant intuitionistic fuzzy grapld$ Narayanan and Maheswari introduced
(2, (a, &) —Regular intuitionistic fuzzy graph$][ These motivates us to introduce
pseudo degree, pseudo total degrde,pseudo degreeg,-pseudo degree of a vertex in
an intuitionistic fuzzy graph and discussed sonwperties. Throughout this paper, the
vertices take the membership values Az 1) and edges take the membership vaBies

= (u2, 72)-
2. Preliminaries

We present some known definitions related to fugegphs and intuitionistic fuzzy
graphs for ready reference to go through the woekgnted in this paper.

Definition 2.1. [3] A fuzzy graphG : (o, &) is a pair of functiongo, 1) , wheres : V
—[0,1] is a fuzzy subset of a non empty ¥eandu : V x V —[0, 1] is a symmetric
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fuzzy relation orr such that for all, vin V, the relationu(u, v)<o(u) /1 o(v) is satisfied.
A fuzzy graph G is called complete fuzzy graphhié¢ trelationu(u, v) = a(u) Ao(V) is
satisfied.

Definition 2.2. [7] Let G : (o, ) be a fuzzy graph o6 : (V,E). The 2- degree of a
vertexv in G is defined as the sum of degrees of thecgstadjacent to v and is denoted
by ts(v) . That is tg(v) =Y ds(u) , wheredg(u) is the degree of the vertakxwhich is
adjacent with the vertex.

Definition 2.3. [7] Let G : (o, 1) be a fuzzy graph o": (V,E). A pseudo (average)
degree of a vertex in a fuzzy graphG is denoted byd,(v) and is defined by,(v) =
ZGE—((VV)), whered (V) is the number of edges incidenwat

Definition 2.4. [2] An intuitionistic fuzzy graph with an underlyiragtV is defined to
be a pailG = (V,E)where

DV ={vy, Vo, Vs, . . ., ¥} such thajy: V — [0, 1] andy;: V — [0, 1] denote the degree
of membership and non membership of the elemeit, (i=1, 2, 3, ..., n), such that
0 <pua(v)+ y(v) <1

(i) ESVxV whereu,: V x V — [0, 1] andy,: V x V — [0, 1] are such that

#2(Vir M) < minfua(vi), 1a(vi)} andyz(vi, w) < max{ ys(vi) , y2(v)) } andO< oV, W)+ y2(Vi, V)
<1, foreveryv, v) €E,(i,j=1,2,...,n).

Definition 2.5. [2] If v, eV G, theu -strength of connectedness between two vertices
viand v is defined a3’ (v, V) = sudus(v, v) tk =1, 2, . .., n Jandy -strength of
connectedness between two vertigendy; is defined ags°(vi, v) = inf{yX (v, v) : k =
1,2,...,n}If uandv are connected by means of paths of lerigthenu%(u, v) is
defined as sufua(u, V) Aua(Vi, Vo) A -+ - Aua(Vies, V) & (U, M, Vo, ... M1, V) EV }andy £ (u,

v) is defined as iffy.(u, vi) Wa(Vi, Vo) V- Wo(Vie1, V) (U, M, Vo, ... M-, V) EV .

Definition 2.6. [4] Let G: (A,B) be an intuitionistic fuzzy graph o@ (V,E) .Then the
degree of a vertex €G is defined byd(v) = (dui(vi), dyi(vi)).where g(vi) =X ua(Vi, W)
and dy,(v)) = X7:(vi, V) , for (vi, ) €E anduuz(vi, ) = 0 andy(vi, ) = O for (v; ,v) €E.

Definition 2.7. [4] Let G :(A, B) be an intuitionistic fuzzy graph o@ (V,E). Then the
total degree of a vertex €G is defined bytd(v) = (tdus(v), tdyi(v)), wheretdus(v) =
dua(vi) + pa(vi) andtdys(vi) = dys(vi) + y2(vi) .

Definition 2.8. [6] Let G : (A,B)be an intuitionistic fuzzy graph. The d, - degree of a
vertexu €G is defined aslpyu(u) =Y ug,y(u, v) whereug, (U, v) = supfi(u, W) Auz(uy,
V) : U, u, vis the shortest path connectin@ndv of length 2)}. They d, - degree of a
vertexu €G is defined aslzy:(u) = Yvé)(u, v)whereydy)(u, v) =inf{yx(u, w) VyAu, v)

. U, U, Vis the shortest path connectingndv of length 2)}. Thed,- degree of a vertex
is defined aslz)(u) = (dpa(u), daya(u)) .

The minimumd,)- degree of5 is d»)(G) = A{dpy(u) 1 u eV }

The maximund,-degree of5 is 4)(G) = Ydp)(u) : UV }.
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3. d,- pseudo degree of avertex in an intuitionistic fuzzy graph
In this sectiong, - pseudo degree of a vertex in an intuitionistizzy graph is
introduced.

Definition 3.1. Let G : (A,B) be an intuitionistic fuzzy graph. The membershseuro
degree of a vertexeG is defined asdu(u) =% wheret, is the sum of membership
degrees of vertices incident with vertax. Thelnon-membership pseudo degree of a
vertexu €G is defined asluy(u) = ;—Viwheretyis the sum of non-membership degrees of

vertices incident with verted andd; is the total number of edges incident with theasert
u. The pseudo degree of a vertegG is defined aslg)(u) = (da(u), day(u)) .

Definition 3.2. Let G : (A,B)be an intuitionistic fuzzy graph. The pseudo tdidree of
a vertexu €G is defined asd)(u) = (tdau(u), tday(u)) wheretdg(u) = dau(u) + pa(u)
andtdgyy(u) = dyy(u) + y1(u) . It can also be defined s (u) = day(u) + A(u) .

Definition 3.3. Let G : (A,B) be an intuitionistic fuzzy graph. The membershd-
Ydymu(w)

pseudo degree of a vertaxeG is defined asla)eu(u) = =—_

. The non-membership

Xdyyi(w)

d,-pseudo degree of a vertex €G is defined aglyey(u) = whered; is the

number of edges incident with the vertex The d,- pseudo delgree of a vertexis
defined asd)(U) = (daew(u), daey(u)) -

The minimumd,- pseudo degree @ iSd)2(G) = Hd@e(Vv) : VEV }

The maximund, - pseudo degree @ iS4 )(G) = Yd@e(v) 1 VEV}

Example 3.4. Consider an intuitionistic fuzzy gra@e (A,B)onG : (V,E).

(0.40.5)  Vv(0.50.8.20.6) ,x(0.3,0.6)

v(0.5,0.5) y(0.4,0.6)

de)(u) = (0.6, 1.0), gy(v) = (0.8, 1.0), gy(w) = (0.2, 0.6), @)(x) = (0.7, 1.0),@y(y) =
(0.9, 1.6), @)(z) = (0.4, 1.2)
dee(U) = d(z) (V) +dz)(W)_ (08,1)+(0.20.6) _ (1,0. 7)_ (0.5, 0.35)

_d (w+d () 0.6,1)+(0.2,0.6 oso

similarly, da(w) = (0.75, 1. 15) Q)(a(x) (0 5 1. 1) @)(2)()/) (0.45, 0.8),
d @@Ww) = (0.7, 1).
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4. (2, (c1, C))-pseudo regular and (2, (cy, ¢2))-pseudo totally regular intuitionistic
fuzzy graphs

In this sectior(2,( G, ¢))- pseudo regular an@,( G, ¢))- pseudo totally regular
intuitionistic fuzzy graphs are introduced and ithiation between them is established.

Definition 4.1. LetG : (A,B)be an intuitionistic fuzzy graph. tfz(u) = (¢, ), for all
u €V thenG is said to bé€2,( ¢, ¢,)) —pseudo regular intuitionistic fuzzy graph.

Definition 4.2. Let G : (A,B) be an intuitionistic fuzzy graph. Then thdgpseudo total
degree of a vertex €V is defined asd) ) U) = (td@eu(v), tdaey(u)), where

tdiay2e(U) = diaype(u)+ra(u)andtde) 2y (u) = dayey(u) + y1(u). Also, it can be defined as
tda)@(U) = dae(U) + A(U) whereA(u) = (uy(u), y2(u)).

Definition 4.3. Let G : (A,B) be an intuitionistic fuzzy graph. If each vertex®fhas
same dy-pseudo total degree, théh is said to beg2,( ¢, ¢))-pseudo totally regular
intuitionistic fuzzy graph.

Remark 4.4. A (2, (g, &) -pseudo totally regular intuitionistic fuzzy grapbed not be
(2, (&, ©))-pseudo regular intuitionistic fuzzy graph.

Remark 4.5. A (2, (G, &) -pseudo regular intuitionistic fuzzy graph need m®(2, (G,
C,)) -pseudo totally regular intuitionistic fuzzy graph.

Remark 4.6. A (2, (G, ;) -pseudo regular intuitionistic fuzzy graph is&R, (¢, ¢)) -
pseudo totally regular intuitionistic fuzzy graph.

Theorem 4.7. LetG : (A,B)be an intuitionistic fuzzy graph @ (V,E) .

ThenA(u) = (k, k) , for allu eV if and only if the following conditions are equieat.
1.G: (AB)is (2, (¢ &) -pseudo regular intuitionistic fuzzy graph.

2.G: (AB)is (2, (et ky, &+ ko) -pseudo totally regular intuitionistic fuzzy graph.
Proof. Supposé\(u) = (k, k) , for allu €V

Assume thaG is a(2, (a, ¢)) -pseudo regular intuitionistic fuzzy graph.

Thend)e(u) = (¢, &) , for all u €V .Sotd)e)(u) = daye(u) + A(u) = (a, 6) + (K1, k) =
(ci+ ky, &+ ko). HenceGis a(2, (a+ ki, &+ ky)) -pseudo totally regular intuitionistic
fuzzy graph.

Thus (i) ) => (ii) is proved.

Now supposé&s is (2, (¢+ ki, &+ ko)) -pseudo totally regular intuitionistic fuzzy graph.
td@ay2)(U) = (Gt Ky, &+ ko), for allu V= dip(u) + A(u) = (a+ ky, &+ ko) , for allu

ev

daye(U) + (K, k) = (€1, &) + (Ky, ko) , for allu EV=2dpye(u) = (¢, &) , for allu V.
HenceG is (2, (c, ¢)) -pseudo regular intuitionistic fuzzy graph.Thusafid (ii) are
equivalent.

Conversely assume (i) and (ii) are equivialeet G be a(2,( ¢, ¢;)) —pseudo regular
intuitionistic fuzzy graph an@®,( g+k,, c+k»)) -pseudo totally regular intuitionistic
fuzzy graph. Sadg)(u) = ( Cit Ky, G+ ko) anddgy(u) = (¢, ) , for allu V..
daye(W)+A(U) = (ctky, Gtky) anddgp(u) = (¢, ) , forall u V.
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day(U)+A(U) = (€1, &)+(ky, ko) anddgye(u) = (¢, &) , forall u eV .
A(u) = (k, ko) , for allu €V . HenceA(u) = (ki ko) .

5. (2, (cy, cy))-pseudo regularity on peterson graph with specific membership
functions

In this section(2,( ¢, &))- pseudo regularity on peterson graph is discussdseme
specific membership function.

Theorem 5.1. LetG : (A,B)be an intuitionistic fuzzy graph such ti@&(V,E)is peterson
graph. If B is a constant function, th&his (2, (¢, ¢)) -pseudo regular intuitionistic
fuzzy graph.

Proof. Consider peterson graph én(V,E) .

Let ux(&) = Ky, y2(€) = ko. Thendy(u) = (6ki, 6k) , for allu V.

d(a)(z)(u) :Z d(z(;i(u) — (6k1,6k2)+(6k1é6k2)+(6k1,6k2)= (6k1, 6'(2)

daye(U) = (¢, &) wherec,= 6k;, C= 6k,

HenceG is (2, (¢, ¢)) -pseudo regular intuitionistic fuzzy graph.

Remark 5.2. The converse of above theorem 5.1 need not be true

Theorem 5.3. Let G : (A,B)be an intuitionistic fuzzy graph such ti@{V,E)is peterson
graph. If the edges on the cycle takes memberstliges(k;, k) and the line joining the
two cycle takes membership valués, r.), then G is (2, (@, ¢)) -pseudo regular
intuitionistic fuzzy graph.
Proof. Consider Peterson graph 6n(V,E). Let the edges on the cycle takes membership
values(ky, k) and the line joining the two cycle takes membershipes(ry, r,) .
Then,dp)(u) = (2k+ 4ry, 2kt 4r,)

_w )W) (2ky+411,2ky4+415)+ (2K +4711, 2K, +415) + (2K, +411, 2K, +415) _
daye(u) =X =

A S = (2ky+ 4ry,

2k2+ 4r2)

daye(U) = 2kt 4ry, 2kt 4ry) = (Cq, G)

wherec,= (2ki+ 4ry), &= (2kot 4r5) .

HenceG is (2, (¢, ¢)) -pseudo regular intuitionistic fuzzy graph.

6. (2, (cy, C2))-pseudo regularity on ladder graph with specific member ship functions
In this section(2,( ¢, ¢))- pseudo regularity on ladder graph is discusset adme
specific membership function.

Theorem 6.1. Let G : (A,B)be an intuitionistic fuzzy graph such ti@&iV,E)is a ladder
graph on 4 vertices. B is a constant function, thed is @2, (¢, ¢)) -pseudo regular
intuitionistic fuzzy graph.

Proof. Suppos8 is a constant function s&8(uv) = (k, ko) , for alluv €E . Then

dp)(u) = (2ki, 2k) for end vertices and;(u) = (3k,, 3k) for internal verticesdg(u) =
(ky, ko) , for allu eV HenceG is (2, (¢, ¢)) —pseudo regular intuitionistic fuzzy graph.

Remark 6.2. The converse of theorem 6.1 need not be true.
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Theorem 6.3. Let G : (A,B)be an intuitionistic fuzzy graph o@ (V,E), a ladder graph
L,(n >1) . If alternate edges have same membership valesGtis (2, (¢, ¢)) -pseudo
regular intuitionistic fuzzy graph wheog= min{u,(uv)} andc,= max{y,(uv)}.

Remark 6.4. If A is constant function, then the theorem 6.1 anch6l8 good for(2, (g,
C,)) -pseudo totally regular intuitionistic fuzzy graph.

7. (2, (cy, Co))-pseudo regularity on a cycle with specific member ship functions
In this section(2,( ¢, ¢,))- pseudo regularity on a cycle is discussed withesspecific
membership function.

Theorem 7.1. LetG : (A,B)be an intuitionistic fuzzy graph such ti@&iV,E)is the cycle
of length> 5 . If y,and y,are constant functions, théhis a(2, (¢, )) -pseudo regular
intuitionistic fuzzy graph wherge,, ¢) = (2us, 2y,) .

Remark 7.2. The converse of the theorem 7.1 need not be true.

Theorem 7.3. Let G : (A,B)be an intuitionistic fuzzy graph such tt@&i(V,E)is an even
cycle of length> 6. If alternate edges have same membership anemeonbership
values therG is a(2, (¢, ¢)) - pseudo regular intuitionistic fuzzy graph.
Proof. If alternate edges have same membership and membership values then
_(ky ifiisodd _ (ks ifiisodd
Ha(er) = {kz if iis even vale) = {k4 if iis even
Here we have 4 possible cases
1. k> ks, and k> ks 2. k> kyand k< ks 3. k< krand k> ks 4. k< k, and ks< k4
In all casesyz(u) is constant for alli €V .
HenceG is a(2,( G, ¢,)) -pseudo regular intuitionistic fuzzy graph whegg,(u) = (¢,
C2) .

Remark 7.4. If all the vertices take same membership and nomipeeship values then
the above theorem holds good for holds good(2or(c, ¢,)) -pseudo totally regular
intuitionistic fuzzy graph.

Remark 7.5. Let G : (A,B)be an intuitionistic fuzzy graph such th@at(V,E) is an odd
cycle of length >5. Even if the alternate edgesehsame membership and same non-
membership values, th&éhneed not be &, (G, ¢)) — pseudo regular intuitionistic fuzzy
graph.

Theorem 7.6. Let G : (A,B)be an intuitionistic fuzzy graph such that(V,E) is any
cycle of length >4. Lek,> k; andks> k,. Let
k, ifiisodd k; ifiisodd

Ha(er) = {kz if iiseven vale) = {k4 if iis even
thenG is a(2, (g, &)) - pseudo regular intuitionistic fuzzy graph.
Proof. Case (i)G be an even cycle.
d2y(Vi) = (Karkz, KsWKy) + (KiAKo, KsWKae)= (K1, ks) + (Ky, ks) = (2ka, 2ks)
deye(Vi) = (2ki, 2k)
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day2(Vi) = (C1, G) Wherec;= 2ky,C= 2ks

HenceG is (2, (¢, ©)) -pseudo regular intuitionistic fuzzy graph.

Case (i)G'be an odd cycle. L%, e, . . ., en.1be edges of

dey(V1) = (ua(e)/ ua(€2), yo(e) V 72 (€)) + pa(€n) A pa(€n+1), 72 (€20) V 2(€2n41))

= (ki Ky, ks k) + (Kin ko, ksV Ke)= (Ka, ko) + (Ky, ks) = (2ka, 2k)

day@(Va) = (2ki, 2ks)

d(a)(z)(V]_) = (C]_, Cz) WhereC1= 2k1, G= 2k3

doy(V2) = (ua(€) /1 ua(€3), yo(€) V p2(€3)) + (1a(€1) N pia(€2ne1), 72(€1) V p2(€2n41))

= (ki ko, kg Ky) + (Ka/1 Ko, ks V' Kg)= (K1, ka) + (K1, ks) = (2ka, 2ko)

Aay2) (Vo) = (2ky, 2ko)

Proceeding like this we gé, (Vi) = (C1, &) wherec,= 2k;, = 2ks. Henced (Vi) =
(cy, &) foralli . SoGis(2,( ¢, ) -pseudo regular intuitionistic fuzzy graph.

Remark 7.7. The above theorem 7.6 holds good (@ (G, ¢)) -pseudo totally regular
intuitionistic fuzzy graph if all the vertices taleame membership and same non-
membership values.

Acknowledgement: The authors welcome valuable comments and suggssfiom the
referees for the improvement of the paper.
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