Interval-valued Fuzzy Ideals of Regular and Intraregular Semigroups

D.Singaram\(^1\) and PR. Kandasamy\(^2\)

\(^1\)Department of Mathematics, Karpagam University
Coimbatore - 641 021, Tamilnadu, India
\(^1\)Department of Mathematics, PSG college of Technology
Peelamedu, Coimbatore - 641 004, Tamilnadu, India
Email: dsingaram@yahoo.co.in

\(^2\)Department of Computer Applications, Hindustan Institute of Technology
Coimbatore - 641 032, Tamilnadu, India
Email: pr_kandasamy@yahoo.com

Received 12 December 2013; accepted 24 December 2013

Abstract. Let \(S\) be a semigroup. A mapping \(\tilde{A} : S \rightarrow D[0, 1]\) is called an interval-valued fuzzy subset of \(S\) where \(D[0, 1]\) denotes the family of all closed sub intervals of \([0, 1]\). A semigroup \(S\) is called an intraregular semigroup if for each element \(a \in S\) there exist \(x, y \in S\) such that \(a = xa^2y\). In this paper, intraregular semigroups are characterized by means of interval-valued fuzzy left ideals (resp. right ideals, bi-ideals, interior ideals).

Keywords: Semigroup, Interval-valued fuzzy subsemigroup, Interval-valued fuzzy ideal, Interval-valued fuzzy bi-ideal, Interval-valued fuzzy interior ideal

AMS Mathematics Subject Classification (2010): 20N25, 20M12, 03E72, 08A72

1. Introduction

Interval-valued Fuzzy Ideals of Regular and Intraregular Semigroups

2. Preliminaries
Let \(S \) be a semigroup.
A non-empty subset \(A \) of \(S \) is called a subsemigroup of \(S \) if \(AA \subseteq A \) and is called a left (resp. right) ideal of \(S \) if \(SA \subseteq A \) (resp. \(AS \subseteq A \)).

By two sided ideal or simply ideal, we mean a non-empty subset of \(S \) which is both a left and a right ideal of \(S \).
A subsemigroup \(A \) of \(S \) is called a bi-ideal of \(S \) if \(ASA \subseteq A \).
A non-empty subset \(A \) of \(S \) is called an interiorideal of \(S \) if \(SAS \subseteq A \).

Definition 2.1. A semigroup \(S \) is called regular if for each element \(a \in S \) there exists \(x \in S \) such that \(a = axa \). In other words \(S \) is regular if \(a \in Sa \) \(\forall a \in S \).

Definition 2.2. A semigroup \(S \) is called intraregular if for each element \(a \in S \) there exist \(x, y \in S \) such that \(a = xa^2y \). In other words \(S \) is intraregular if \(a \in Sa^2S \) \(\forall a \in S \).

We now review some fuzzy concepts.

A fuzzy subset \(A \) of a non-empty set \(X \) is a mapping from \(X \) to \([0, 1]\).

Let \(S \) be a semigroup. A fuzzy subset \(A \) of \(S \) is called a fuzzy subsemigroup of \(S \) if \(A(xy) \geq \min\{A(x), A(y)\} \) \(\forall x, y \in S \). A fuzzy subset \(A \) of \(S \) is called a fuzzy left (resp. right) ideal of \(S \) if \(A(xy) \geq A(x)(\text{resp. } A(xy) \geq A(y)) \) \(\forall x, y \in S \).

A fuzzy subset \(A \) of \(S \) is called a fuzzy two-sided ideal or simply fuzzy ideal of \(S \) if it is both a fuzzy left ideal and a fuzzy right ideal of \(S \).

A fuzzy subsemigroup \(A \) of \(S \) is called a fuzzy bi-ideal of \(S \) if \(A(xyz) \geq \min\{A(x), A(z)\} \) \(\forall x, y, z \in S \).

An interval number on \([0, 1]\), say \(\bar{a} \), is a closed subinterval of \([0, 1]\), that is \(\bar{a} = [a^-, a^+] \) where \(0 \leq a^- \leq a^+ \leq 1 \). Let \(D[0, 1] \) denote the family of all closed subintervals of \([0, 1]\), \(\bar{0} = [0, 0] \) and \(\bar{1} = [1, 1] \).

For any two elements \(\bar{a} = [a^-, a^+] \) and \(\bar{b} = [b^-, b^+] \) in \(D[0, 1] \), we define

(i) \(\bar{a} \leq \bar{b} \) if and only if \(a^- \leq b^- \) and \(a^+ \leq b^+ \),

(ii) \(\bar{a} = \bar{b} \) if and only if \(a^- = b^- \) and \(a^+ = b^+ \),

(iii) \(\text{Min} \{\bar{a}, \bar{b}\} = \{\min \{a^-, b^-\}, \min \{a^+, b^+\}\} \),

(iv) \(\text{Max} \{\bar{a}, \bar{b}\} = \{\max \{a^-, b^-\}, \max \{a^+, b^+\}\} \).

Similarly we can define \(\text{Inf} \) and \(\text{Sup} \) in case of family of elements in \(D[0, 1] \).

A mapping \(\tilde{A} : X \rightarrow D[0, 1] \) is called an interval-valued fuzzy subset (briefly, an i-v fuzzy subset) of \(X \), where \(\tilde{A}(x) = [A^-(x), A^+(x)] \) \(\forall x \in X \). \(A^- \) and \(A^+ \) are fuzzy subsets in \(X \) such that \(A^-(x) \leq A^+(x) \) \(\forall x \in X \).

Definition 2.3. Let \(\tilde{A}, \tilde{B} \) be i-v fuzzy subsets of \(X \). Then we have the following:

(i) \(\tilde{A} \leq \tilde{B} \) if and only if \(\tilde{A}(x) \leq \tilde{B}(x) \) \(\forall x \).

(ii) \(\tilde{A} = \tilde{B} \) if and only if \(\tilde{A}(x) = \tilde{B}(x) \) \(\forall x \).

(iii) \(\tilde{A} \cup \tilde{B} \)(\(x \)) = \text{Max} \{\tilde{A}(x), \tilde{B}(x)\}

(iv) \(\tilde{A} \cap \tilde{B} \)(\(x \)) = \text{Min} \{\tilde{A}(x), \tilde{B}(x)\}.
D. Singaram and PR. Kandasamy

Definition 2.4. Let \(\cdot \) be a binary composition in a set \(S \). The product \(\tilde{A} \circ \tilde{B} \) of any two i-v fuzzy subsets \(\tilde{A}, \tilde{B} \) of \(S \) is defined by

\[
(\tilde{A} \circ \tilde{B})(x) = \begin{cases}
\sup x = a \cdot b \{ \min x = a \cdot b \{ \tilde{A}(a), \tilde{B}(b) \} \} & \text{if } x \text{ is expressible as } x = a \cdot b \\
0 & \text{otherwise}
\end{cases}
\]

Since semigroup \(S \) is associative, the operation \(\circ \) is associative. We denote \(xy \) instead of \(x \cdot y \) and \(\tilde{A} \circ \tilde{B} \) for \(\tilde{A} \circ \tilde{B} \).

Let \(\tilde{B} \) be a subset of a set \(X \). Define a function \(\overline{\tilde{B}}: X \to D[0,1] \) by

\[
\overline{\tilde{B}}(x) = \begin{cases}
1 & \text{if } x \in \tilde{B} \\
0 & \text{otherwise}
\end{cases} \forall x \in X.
\]

Clearly \(\overline{\tilde{B}} \) is an i-v fuzzy subset of \(X \). Throughout this paper \(\overline{\tilde{A}} \) is denoted by \(\tilde{S} \) and \(S \) will denote a semigroup unless otherwise mentioned.

An i-v fuzzy subset \(\tilde{A} \) of \(S \) is called an interval–valued fuzzy subsemigroup (briefly, an i-v fuzzy subsemigroup) of \(S \) if \(\tilde{A}(ab) \geq \min \{ \tilde{A}(a), \tilde{A}(b) \} \forall a, b \in S \).

An i-v fuzzy subset \(\tilde{A} \) of \(S \) is called an interval-valued fuzzy left (resp. right) ideal (briefly, an i-v fuzzy left (resp. right) ideal) of \(S \) if \(\tilde{A}(ab) \geq \tilde{A}(b)(\text{resp. } \tilde{A}(ab) \geq \tilde{A}(a)) \) for all \(a, b \in S \).

Every i-v fuzzy right (left, two sided) ideal of \(S \) is an i-v fuzzy subsemigroup of \(S \). However the converse is not true.

An i-v fuzzy subset \(\overline{\tilde{A}} \) of \(S \) is called an interval-valued fuzzy two-sided ideal or simply i-v fuzzy ideal of \(S \) if it is both an i-v fuzzy left ideal and an i-v fuzzy right ideal of \(S \).

An i-v fuzzy subsemigroup \(\tilde{A} \) of \(S \) is called an i-v fuzzy bi-ideal of \(S \) if \(\tilde{A}(xyz) \geq \min \{ \tilde{A}(x), \tilde{A}(y) \} \forall x, y, z \in S \).

An i-v fuzzy subsemigroup \(\tilde{A} \) of \(S \) is called an i-v fuzzy interior ideal of \(S \) if \(\tilde{A}(xay) \geq \tilde{A}(a) \).

3. Results

In this section, we obtained the structure of i-v fuzzy interior ideal of an intraregular semigroup and obtained equivalent conditions for a semigroup to be intraregular and showed that in an intraregular semigroup the concept of an i-v fuzzy ideal and an i-v fuzzy interior ideal are identical.

Theorem 3.1. Let \(S \) be an intraregular semigroup. Then \(\tilde{A} = \tilde{S}\tilde{A}\tilde{S} \) for every i-v fuzzy interior ideal \(\tilde{A} \) of \(S \).

Proof: Let \(\tilde{A} \) be an i-v fuzzy interior ideal of an intraregular semigroup \(S \).

\[
\tilde{S}\tilde{A}\tilde{S}(a) = \sup_{a = xy} \left\{ \min_{x = a \cdot b} \{ \tilde{S}\tilde{A}(x), \tilde{S}(y) \} \right\} \\
= \sup_{a = xy} \{ \tilde{S}\tilde{A}(x) \} \\
= \sup_{a = xy} \left\{ \sup_{x = au} \{ \min_{x = au} \{ \tilde{S}(u), \tilde{A}(v) \} \} \right\} \\
= \sup_{a = xy} \left\{ \sup_{x = au} \{ \tilde{A}(v) \} \right\}
\]

52
Conversely, assume that

By Lemma 3.2, we have

Thus

Let

Therefore

Then

By our assumption,

Proof:

Now, let

Therefore

Therefore,

\[\bar{SA}S(a) = \sup_{a = pq} \left\{ \min_i \left(\bar{S}(p), (\bar{A}S)(q) \right) \right\} \]

\[\geq \min_i \left(\bar{S}(xa), (\bar{A}S)(ay) \right) \]

\[= (\bar{A}S)(ay) \]

\[= \sup_{ay = uv} \left\{ \min_i \left(\bar{A}(u), S(v) \right) \right\} \]

\[\geq \min_i \left(\bar{A}(xaa), S(y^2) \right) \]

\[= \bar{A}(xa) \]

\[= \bar{A}(a) \], since \(\bar{A} \) is an interior ideal.

Thus \(\bar{A} = \bar{SA}S \).

Lemma 3.2. [5] For a semigroup \(S \), the following conditions are equivalent:

(i) \(S \) is intraregular

(ii) \(A \cap B \subseteq AB \) holds for every left ideal \(A \) and every right ideal \(B \) of \(S \).

Theorem 3.3. For a semigroup \(S \), the following conditions are equivalent

(i) \(S \) is intraregular

(ii) \(A \cap B \subseteq A \ast B \) holds for every i-v fuzzy left ideal \(A \) and every i-v fuzzy right ideal \(B \) of \(S \).

Proof: Assume that \(S \) is intraregular. Therefore \(\forall a \in S, \exists x, y \in S \) such that \(a = xa^2y \).

Then we have \((A \ast B)(a) = \sup_{a = pq} \left\{ \min_i \left(\bar{A}(u), \bar{A}(v) \right) \right\} \)

\[\geq \min_i \left(\bar{A}(xa), \bar{B}(ay) \right) \]

\[\geq \min_i \left(\bar{A}(a), \bar{B}(a) \right) \]

\[= (\bar{A} \cap \bar{B})(a) \quad \forall a \in S \]

Hence by Definition 2.3(i) \(A \ast B \geq A \ast B \).

Conversely, assume that \(A \cap B \subseteq A \ast B \) for every left ideal \(A \) and every right ideal \(B \) of \(S \).

Let \(R \) be a right ideal and \(L \) be a left ideal of \(S \) respectively.

Then \(\bar{SLR} \) is an i-v fuzzy right ideal of \(S \) and \(\bar{SLR} \) is an i-v fuzzy left ideal of \(S \).

By our assumption, \(\bar{SL} \cap \bar{SR} \subseteq \bar{SL} \ast \bar{SR} \).

Since \(\bar{SL} \cap \bar{SR} = \bar{SLR} \) (lemma 2.3.12[2]) we have \(\bar{SLR} \subseteq \bar{SL} \ast \bar{SR} \).

Now, let \(a \in L \cap R \).

Therefore \(\bar{SLR}(a) = \bar{1} \) and by our assumption \(\bar{SL} \ast \bar{SR}(a) = \bar{1} \) that is

\[\sup_{a = uv} \left\{ \min_i \left(\bar{SL}(u), \bar{SR}(v) \right) \right\} = \bar{1} \].

Therefore \(\exists x \in L \) and \(\exists y \in R \) such that \(a = xy \) which implies that \(a \in LR \).

Therefore \(L \cap R \subseteq LR \) for every left ideal \(L \) and every right ideal \(R \) of \(S \).

By Lemma 3.2, we have \(S \) is intraregular.
D. Singaram and PR. Kandasamy

Theorem 3.4. A semigroup S is intraregular if and only if $(\forall a \in S)$ $\bar{A}(a) = \bar{A}(a^2)$ for every i-v fuzzy ideal \bar{A} of S.

Proof: \Rightarrow Let \bar{A} be an i-v fuzzy ideal of S. And $a \in S$.

Then by hypothesis, as S is intraregular $\exists x, y \in S$ such that $a = xa^2y$.

And $\bar{A}(a) = \bar{A}(xa^2y) \geq \bar{A}(a^2y) \geq \bar{A}(a^2) \geq \bar{A}(aa) \geq \bar{A}(a)$.

This implies that $\bar{A}(a) = \bar{A}(a^2)$.

\Leftarrow $l(a^2)$ is an ideal of S generated by a^2.

And $l(a^2) = \{a^2\} \cup \{Sa^2\} \cup \{a^2S\}$.

$\bar{x}(a^2)$ is an i-v fuzzy ideal of S.

By our assumption $\bar{x}(a^2)(a^2) = \bar{x}(a^2)(a)$.

We have $\bar{x}(a^2)(a) = 1$.

Hence $a \in l(a^2) = \{a^2\} \cup \{Sa^2\} \cup \{a^2S\}$.

Suppose $a \in \{a^2\}$

Then $a = a^2 = aa = a^2a^2 = aa^2a$.

Therefore $a \in Sa^2S$.

If $a \in \{Sa^2\}$, then $\exists x \in S$ such that $a = xa^2 = xaa = x(xa^2)a = x^2a^2a$.

Therefore $a \in Sa^2S$.

If $a \in \{a^2S\}$, then $\exists x \in S$ such that $a = a^2x = aax = a(a^2x)x = aa^2x^2$.

Therefore $a \in Sa^2S$.

Thus in all the cases, by Definition 2.2, S is intraregular.

This completes the proof.

Theorem 3.5. Let S be an intraregular semigroup. Then for any i-v fuzzy ideal \bar{A} of S, we have, $\bar{A}(ab) = \bar{A}(ba)$, $\forall a, b \in S$

Proof: Let \bar{A} be any i-v fuzzy ideal of S and $a, b \in S$.

Then by theorem 3.4 and hypothesis, we have

$\bar{A}(ab) = \bar{A}((ab)^2) = \bar{A}(a(ba)b) \geq \bar{A}(ba) = \bar{A}((ba)^2) = \bar{A}(b(ab)a) \geq \bar{A}(ab)$

Thus we have $\bar{A}(ab) = \bar{A}(ba)$.

Lemma 3.6. A semigroup S is regular and intraregular if and only if every bi-ideal of S is idempotent, that is $B = B^2$ for every bi-ideal B of S.

Proof: Let S be both regular and intraregular semigroup and B be a bi-ideal of S.

Since B is a bi-ideal, we have $BSB \subseteq B$ and since S is both regular and intraregular, we have $B \subseteq BSB$ and $B \subseteq SB^2S$.

Thus $B \subseteq BSB$

$\subseteq BS(SB^2S)SB$

$\subseteq BS^2B^2S^2B$

$\subseteq BSB^2SB$

$\subseteq BSBBSB$

$\subseteq BSB$

$= B^2$

That is $B \subseteq B^2$.

On the other hand, since B is a bi-ideal of S we have $B^2 \subseteq B$.

Hence we have $B = B^2$.

54
Interval-valued Fuzzy Ideals of Regular and Intraregular Semigroups

Conversely, let \(B = B^2 \) for every bi-ideal of \(S \) and let \(a \in S \).
But \(B(a) = \{ a \cup a^2 \cup aSa \} \) is a biideal.
Since \(a \in B(a) \), by our assumption \(B(a) = B^2(a) \), \(a \in B^2(a) = \{ a^2 \cup a^2Sa \cup aSa^2 \} \).
Therefore either \(a = a^2 \) or \(a \in a^2Sa \) or \(a \in aSa^2 \).
In all the cases it can easily seen that \(a \in aS\alpha \) and \(a \in S\alpha \).
This is true for any \(a \in S \).
Therefore \(S \) is both regular and intraregular.

Theorem 3.7. Let \(S \) be an intraregular semigroup. Then the following are equivalent.
(i) \(A \) is an i-v fuzzy ideal of \(S \).
(ii) \(A \) is an i-v fuzzy interior ideal of \(S \).
Proof: (i) \(\Rightarrow \) (ii). By Lemma 2.4.9 [2] every i-v fuzzy ideal of a semigroup \(S \) is an i-v fuzzy interior ideal of \(S \).
(ii) \(\Rightarrow \) (i). Assume that \(A \) is an i-v fuzzy interior ideal of a intraregular semigroup \(S \).
Let \(a, b \in S \). Then since \(S \) is intraregular \(\exists x, y, x', y' \in S \) such that \(a = xa^2y \) and \(b = xb^2y' \).
Thus \(A(ab) = A((xa)a(yb)) \geq A(a) \) and \(A(ab) = A(ax'b^2y') \geq A(b) \).
This implies that \(A \) is an i-v fuzzy ideal of \(S \).

Definition 3.8. An i-v fuzzy subset \(A \) of a semigroup \(S \) is called idempotent if \((A\bar{A})(x) = A(x) \ \forall x \in S \).

Theorem 3.9. Let \(S \) be a semigroup. Then the following are equivalent.
(i) \(S \) is both regular and intraregular semigroup
(ii) Every i-v fuzzy bi-ideal \(A \) is idempotent.
Proof: Let \(A \) be an i-v fuzzy bi-ideal of an regular and intraregular semigroup \(S \).
Since \(A \) is an i-v fuzzy bi-ideal \(A(xy) \geq \text{Min}^1\{A(x), A(y)\} \) and \(A(xyz) \geq \text{Min}^1\{A(x), A(y)\} \) ……..(1)
First we will prove that \(A \circ A \subseteq A \bar{A} \).
Let \(a \in S \). Since \(S \) is regular \(\exists x \in S \) such that \(a = axa \)
\[(A \circ A)(a) = \sup_{a = uv} \{ \text{Min}^1\{A(u), A(v)\} \} \]
\[\leq \sup_{a = uv} \{ A(uv) \} \]
\[= \text{Min}^1\{A(a)\} \]
\[= A(a) \]
That is \(A \circ A \subseteq A \).
Now we will prove that \(A \subseteq A \circ A \). Since \(S \) is regular \(\forall a \in S, \exists x \in S \) such that \(a = axa \).
And since \(S \) is intraregular \(\forall \alpha, \exists x', y' \in S \) such that \(a = x'a^2y' \).
Therefore \(a = axa \)
\[= (ax)(x'a^2y')(xa) \]
\[= (axxa)(ayxa). \]
D. Singaram and PR. Kandasamy

Now \((\bar{A} \circ \bar{A})(a) = \Sup_{a = uv} \{\Min_{i}(\bar{A}(u), \bar{A}(v))\}\)
\[\geq \Min_{i}\{\bar{A}(axx')a, \bar{A}(ay'xa)\}\]
\[\geq \Min_{i}\{\Min_{i}(\bar{A}(a), \bar{A}(a)), \Min_{i}(\bar{A}(a), \bar{A}(a))\}\quad \text{by (1)}\]
\[= \Min_{i}\{\bar{A}(a), \bar{A}(a)\}\]
\[= \bar{A}(a)\]
\[\bar{A} \circ \bar{A} \supseteq \bar{A}\]

Therefore \(\bar{A}\) is idempotent.

Conversely assume that any i-v fuzzy bi-ideal \(\bar{A}\) of \(S\) is idempotent. That is \(\bar{A} \circ \bar{A} = \bar{A}\).

Now let \(B\) be any bi-ideal of \(S\). Therefore \(B^2 \subseteq \bar{B}\) and \(\bar{B}\) is an i-v fuzzy bi-ideal of \(S\).

By our assumption \(\bar{B} \circ \bar{B} = \bar{B}\).

Let \(a \in B\). Therefore \(\bar{B}(a) = 1\) which implies \((\bar{B} \circ \bar{B})(a) = 1\) and therefore
\[\Sup_{a = uv} \{\Min_{i}(\bar{B}(u), \bar{B}(v))\} = 1\]

Thus there exist \(b, c \in B\) such that \(a = bc\). Therefore \(a \in B^2\)

Hence \(B \subseteq B^2\) and hence \(B = B^2\).

Then by lemma 3.6 \(S\) is both regular and intraregular.

Lemma 3.10. (Theorem 2.7.2 [2]) A semigroup is regular if and only if for every i-v fuzzy right ideal \(\bar{A}\) and every i-v fuzzy left ideal \(\bar{B}\) of \(S\), we have \(\bar{A} \circ \bar{B} = \bar{A} \cap \bar{B}\).

Theorem 3.11. Let \(S\) be an ordered semigroup. Then the following are equivalent.

(i) \(S\) is regular and intraregular

(ii) \(\bar{A} \cap \bar{B} \subseteq (\bar{A} \circ \bar{B}) \cap (\bar{B} \circ \bar{A})\) for any i-v fuzzy bi-ideals \(\bar{A}\) and \(\bar{B}\) of \(S\)

(iii) \(\bar{A} \cap \bar{B} \subseteq (\bar{A} \circ \bar{B}) \cap (\bar{B} \circ \bar{A})\) for every i-v fuzzy bi-ideal \(\bar{A}\) and every i-v fuzzy left ideal \(\bar{B}\) of \(S\).

(iv) \(\bar{A} \cap \bar{B} \subseteq (\bar{A} \circ \bar{B}) \cap (\bar{B} \circ \bar{A})\) for every i-v fuzzy right ideal \(\bar{A}\) and every i-v fuzzy bi-ideal \(\bar{B}\) of \(S\).

(v) \(\bar{A} \cap \bar{B} \subseteq (\bar{A} \circ \bar{B}) \cap (\bar{B} \circ \bar{A})\) for every i-v fuzzy right ideal \(\bar{A}\) and every i-v fuzzy left ideal \(\bar{B}\) of \(S\).

Proof: (i) \(\Rightarrow\) (ii). Let \(\bar{A}\) and \(\bar{B}\) be i-v fuzzy bi-ideals of \(S\). And \(a \in S\).

Then since \(S\) is both regular and intraregular, there exists \(x \in S\) such that \(a = axa = axaxa\)

And there exist \(y, z \in S\) such that \(a = ya^2z\).

Thus \(a = axa = axaxa = ax(ya^2z)xa = (axya)(axxa)\).

Since \(\bar{A}\) and \(\bar{B}\) are i-v fuzzy bi-ideals of \(S\), we have
\[\bar{A}(axya) \geq \Min_{i}\{\bar{A}(a), \bar{A}(a)\} = \bar{A}(a)\]
\[\text{and}\]
\[\bar{B}(axxa) \geq \Min_{i}\{\bar{B}(a), \bar{B}(a)\} = \bar{B}(a)\.

Then \((\bar{A} \circ \bar{B})(a) = \Sup_{a = uv} \{\Min_{i}(\bar{A}(u), \bar{B}(v))\}\)
\[\geq \Min_{i}\{\bar{A}(axya), \bar{B}(axxa)\}\]
\[\geq \Min_{i}\{\bar{A}(a), \bar{B}(a)\}\]
\[= (\bar{A} \cap \bar{B})(a)\]

which means that \(\bar{A} \cap \bar{B} \subseteq \bar{A} \circ \bar{B}\).
Interval-valued Fuzzy Ideals of Regular and Intraregular Semigroups

In the same way we can show that \(\bar{A} \cap \bar{B} \subseteq \bar{B} \circ \bar{A} \).

Hence \(\bar{A} \cap \bar{B} \subseteq (\bar{A} \circ \bar{B}) \cap (\bar{B} \circ \bar{A}) \).

Since every i-v fuzzy left (right) ideal of \(S \) is a i-v fuzzy bi-ideal of \(S \), we have

\[(ii) \Rightarrow (iii), (ii) \Rightarrow (iv), (ii) \Rightarrow (v), (iii) \Rightarrow (v) \text{ and } (iv) \Rightarrow (v) \text{ are clear.}

(v) \Rightarrow (i). \]

Let \(\bar{A} \) and \(\bar{B} \) be i-v fuzzy right ideal and a i-v fuzzy left ideal of \(S \) respectively.

By hypothesis, \(\bar{A} \cap \bar{B} \subseteq (\bar{A} \circ \bar{B}) \cap (\bar{B} \circ \bar{A}) \subseteq \bar{B} \circ \bar{A} \)

By Theorem 3.3 \(S \) is intraregular.

On the other hand, \(\bar{A} \cap \bar{B} \subseteq (\bar{A} \circ \bar{B}) \cap (\bar{B} \circ \bar{A}) \subseteq \bar{A} \circ \bar{B} \)

But \(\bar{A} \circ \bar{B} \subseteq \bar{A} \circ \bar{S} \subseteq \bar{A} \) and \(\bar{A} \circ \bar{B} \subseteq \bar{S} \circ \bar{B} \subseteq \bar{B} \) implies \(\bar{A} \circ \bar{B} \subseteq \bar{A} \cap \bar{B} \)

Thus \(\bar{A} \circ \bar{B} = \bar{A} \cap \bar{B} \)

By Lemma 3.10 \(S \) is regular.

Thus \(S \) is both regular and intraregular.

This completes the proof.

REFERENCES

2. V. Chinnadurai, Contributions to the study of some fuzzy algebraic structures Doctoral Thesis, Annamalai University, 2010