Secondary κ-Kernel Symmetric Fuzzy Matrices

D. Jaya Shree
Department of Mathematics, Amrita Vishwa Vidyapeetham, Amrita University
Bangalore – 560035, India. E-mail: jayashreekce@gmail.com

Abstract. In this paper, characterizations of secondary κ- kernel symmetric fuzzy matrices are obtained. Relation between s- κ- kernel symmetric, s- kernel symmetric, κ- kernel symmetric and kernel symmetric matrices are discussed. Necessary and sufficient conditions are determined for a matrix to be s- κ- kernel symmetric.

Keywords: Fuzzy matrices, kernel symmetric, s-κ- kernel symmetric

AMS Mathematics Subject Classification (2010): 15B15, 15B57

1. Introduction
All matrices considered in this paper are fuzzy matrices, that is, matrices over a fuzzy algebra \mathcal{F} with support $[0, 1]$ under max-min operations. A fuzzy matrix A is range symmetric if $R(A) = R(A^T)$ and kernel symmetric if $N(A) = N(A^T)$. It is well known that for complex matrix, the concept of range and kernel symmetric are same. However this fails for fuzzy matrices. This motivated us to study on s- κ- kernel symmetric matrices. Lee [1] has initiated the study of secondary symmetric matrices, that is matrices whose entries are symmetric about the secondary diagonal. Cantoni and Paul [2] have studied persymmetric matrices, that is matrices which are symmetric about both the diagonals and their applications to communication theory. Hill and Waters [3] have developed a theory of κ-real and κ-hermitian matrices as a generalization of s-real and s-hermitian matrices. A development of κ- kernel symmetric fuzzy matrices is made by Meenakshi and Jayashree [5] analogous to that of k-real and k-hermitian of a complex matrix [3].

Throughout let κ-be a fixed product of disjoint transpositions in $S_n = \{1, 2, ..., n\}$ and K be the associated permutation matrix. A matrix $A=\left(a_{ij} \right) \in \mathcal{F}_n$ is κ-symmetric if $a_{ij} = a_{k(i)k(j)}$ for $i, j = 1$ to n. Meenakshi and krishnamoorthy[6] have introduced the concept of s-k hermitian matrices as a generalization of secondary hermitian and hermitian matrices. In this paper, we extend the concept of s- κ- kernel symmetric fuzzy matrices as a particular case of the results on complex matrices found in [7].

2. Preliminaries
Throughout let \mathcal{F} be the permutation matrix with units in its secondary diagonal and let ‘κ’ be a fixed product of disjoint transpositions in $S_n = \{1, 2, ..., n\}$ and K be the
associated permutation matrix. For \(x = (x_1, x_2, \ldots, x_n)^T \in \mathcal{F}_n \) let us define the function
\[
\mathcal{R}(x) = (x_{\kappa(1)}, x_{\kappa(2)}, \ldots, x_{\kappa(n)})^T \in \mathcal{F}_n.
\]
Since \(K \) is involutory, it can be verified that the associated permutation matrix satisfy the following properties.

(P.2.1) \(KK^T = K^TK = I_n, K = K^T, K^2 = I \) and \(\mathcal{R}(x) = Kx \)

By the definition of \(V \),
(P.2.2) \(V = V^T, VV^T = V^TV = I_n \) and \(V^2 = I \)
(P.2.3) \(N(A) = N(AV), N(A) = N(AK) \)
(P.2.4) \((AV)^T = VA^T, (VA)^T = A^T V \)

If \(A^* \) exists, then
(P.2.5) \((AV)^+ = VA^+, (VA)^+ = A^+ V \)

Definition 2.1. [4] \(A \in \mathcal{F}_n \) is kernel symmetric if and only if \(N(A) = N(A^T) \).

Lemma 2.1. [[4] P. 119] For \(A \in \mathcal{F}_n \) and a permutation matrix \(P \), \(N(A) = N(B) \) if and only if \(N(PAP^T) = N(PBP^T) \).

Lemma 2.2. [5] A matrix \(A \in \mathcal{F}_n \) is \(\kappa \)-kernel symmetric \(\iff \) \(KA \) is kernel symmetric \(\iff \) \(AK \) is kernel symmetric.

3. Secondary \(\kappa \)-kernel symmetric fuzzy matrices

Definition 3.1. A matrix \(A \in \mathcal{F}_n \) is s-symmetric if and only if \(A = VA^TV \).

Definition 3.2. A matrix \(A \in \mathcal{F}_n \) is s-kernel symmetric if \(N(A) = N(VA^TV) \).

Definition 3.3. A matrix \(A \in \mathcal{F}_n \) is s- \(\kappa \)-kernel symmetric if \(N(A) = N(KVA^TK) \).

Lemma 3.1. A matrix \(A \in \mathcal{F}_n \) is s-kernel symmetric \(\iff \) \(VA \) is kernel symmetric \(\iff \) \(AV \) is kernel symmetric.

Proof.

\(A \) is s-kernel symmetric
\[
\iff N(A) = N(VA^TV) \quad \text{[By Definition 3.2]}
\]
\[
\iff N(AV) = N((AV)^T) \quad \text{[By P.2.2]}
\]
\[
\iff AV \text{ is kernel symmetric}
\]
\[
\iff N(VA^TV) = N(VA^TV) \quad \text{[By Lemma 2.1]}
\]
\[
\iff N(VA) = N((VA)^T) \quad \text{[By P.2.2]}
\]
\[
\iff VA \text{ is kernel symmetric.}
\]

Remark 3.1. In particular when \(\kappa(i) = i \) for \(i = 1, 2, \ldots, n \) then the associated permutation matrix \(K \) reduces to the identity matrix and Definition (3.3) reduces to \(N(A) = N(VA^TV) \) which implies that \(A \) is s-kernel symmetric matrices.

90
Remark 3.2. For \(\kappa(i) = n - i + 1 \), the corresponding permutation matrix \(K \) reduces to \(V \) and Definition (3.3) reduces to \(N(A) = N(A^T) \) which implies that \(A \) is kernel symmetric.

Remark 3.3. We note that s- \(\kappa \)-symmetric matrix is s-\(\kappa \)-symmetric for if \(A \) is s-\(\kappa \)-symmetric then \(A = KVA^TVK \) Hence \(N(A) = N(KVA^TVK) \) which implies that \(A \) is s-\(\kappa \)-kernel symmetric. However the converse need not be true. This is illustrated in the following example.

Example 3.1. For \(\kappa = (1,2) \), \(A = \begin{bmatrix} 1 & 0.6 \\ 0.6 & 0.5 \end{bmatrix} \) is symmetric

\[
KVA^TVK = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0.6 \\ 0.6 & 0.5 \end{bmatrix} \begin{bmatrix} 1 & 0.6 \\ 0.6 & 1 \end{bmatrix} = \begin{bmatrix} 0.5 & 0.6 \\ 0.6 & 1 \end{bmatrix} \neq A
\]

Here \(A = KVA^T K \) therefore \(A \) is symmetric, \(\kappa \)-symmetric, s-\(\kappa \)-kernel symmetric but not s-\(\kappa \)-symmetric.

Example 3.2. For \(\kappa = (1,2) \), \(V = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)

\(A = \begin{bmatrix} 0.4 & 0.5 \\ 0.5 & 0.4 \end{bmatrix} \) is symmetric, s-\(\kappa \)-symmetric and hence therefore s-\(\kappa \)-kernel symmetric.

Example 3.3. For \(\kappa = (1,2)(3) \) \(K = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \) and \(V = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \) here \(K \neq V, K \neq I \) and \(KV \neq VK \).

Now \(A = \begin{bmatrix} 0.5 & 1 & 0 \\ 0.5 & 0.3 & 0 \end{bmatrix} \) is s-\(\kappa \)-kernel symmetric but not s-\(\kappa \)-symmetric.

\[
KVA^TVK = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.5 & 0.3 \\ 0.5 & 0.3 \\ 0.5 & 0.3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \neq A
\]
Hence A is not s-κ-symmetric. But $N(A) = N(KVA^TKVA) = \{0\}$.

Theorem 3.1. For $A \in F_n$ the following are equivalent

1. A is s- κ-kernel Symmetric
2. KVA is kernel symmetric
3. AKV is kernel symmetric
4. AVK is kernel symmetric
5. VKA is kernel symmetric
6. VKA is κ-kernel symmetric
7. AV is κ-kernel symmetric
8. AK is s-kernel symmetric
9. KA is s-kernel symmetric
10. $N(AV) = N(KVA^T)$
11. $N(A) = N(KVA^T)$

Proof:

$(1) \iff (4) \iff (5) \iff (9)$

A is s-κ-kernel symmetric

$\iff N(A) = N(KVA^TVK)$

$\iff N(A) = N(KVA^T)$

$\iff N(A) = N((AVK)^T)$

$\iff AVK$ is kernel symmetric

$\iff VKA$ is kernel symmetric

$\iff KA$ is s-kernel symmetric

Thus $(1) \iff (4) \iff (5) \iff (9)$ hold.

$(2) \iff (6)$

KVA is kernel symmetric

$\iff VAK$ is κ-kernel symmetric

Thus $(2) \iff (6)$ hold.

$(2) \iff (10)$

KVA is kernel symmetric

$\iff N(KVA) = N((KVA)^T)$

$\iff N(KVA) = N(A^T)$

$\iff N(A) = N((AVK)^T)$

Thus $(2) \iff (10)$ hold.

$(4) \iff (11)$

AVK is kernel symmetric

$\iff N(AV) = N((AVK)^T)$

$\iff N(A) = N(KVA^T)$

Thus $(4) \iff (11)$ hold.

$(1) \iff (4) \iff (7)$

A is s-κ-kernel symmetric

$\iff N(A) = N(KVA^TVK)$

$\iff N(A) = N((AVK)^T)$

$\iff N(AV) = N((AVK)^T)$
Secondary κ-kernel Symmetric Fuzzy Matrices

$\iff \mathbf{AVK}$ is kernel symmetric
$\iff \mathbf{AV}$ is κ-kernel symmetric. Thus (1) \iff (4) \iff (7) hold.

(3) \iff (8)

\mathbf{AV} is kernel symmetric $\iff \mathbf{AK}$ is s- κ-kernel symmetric.

Hence the Theorem.

In Particular for $\mathbf{K} = \mathbf{I}$, the above Theorem reduces to the equivalent condition for a matrix to be secondary kernel symmetric.

Corollary 3.1. For $\mathbf{A} \in \mathcal{F}_n$, the following are equivalent

1. \mathbf{A} is s-kernel symmetric
2. \mathbf{VA} is kernel symmetric
3. \mathbf{AV} is kernel symmetric
4. $\mathbf{N}(\mathbf{A}^T) = \mathbf{N}(\mathbf{VA})$
5. $\mathbf{N}(\mathbf{A}) = \mathbf{N}(\mathbf{VA}^T)$

Lemma 3.2. Let $\mathbf{A} \in \mathcal{F}_n$, if \mathbf{A}^+ exists $\iff (\mathbf{KA})^+$ exists $\iff (\mathbf{VKA})^+$ exists.

Proof:

\mathbf{A}^+ exists $\iff (\mathbf{KA})^+$ exists $\iff \mathbf{KA} = (\mathbf{KA})(\mathbf{KA})^T(\mathbf{KA})$

$\iff \mathbf{VKA} = (\mathbf{VKA})(\mathbf{VKA})^T(\mathbf{VKA})$

$\iff (\mathbf{VKA})^T = (\mathbf{VKA})$ [1]

$\iff (\mathbf{VKA})^+$ exists.

Lemma 3.2. Let $\mathbf{A} \in \mathcal{F}_n$, if \mathbf{A}^+ exists $\iff (\mathbf{KA})^+$ exists $\iff (\mathbf{VKA})^+$ exists.

Proof:

\mathbf{A}^+ exists $\iff (\mathbf{KA})^+$ exists $\iff \mathbf{KA} = (\mathbf{KA})(\mathbf{KA})^T(\mathbf{KA})$

$\iff \mathbf{VKA} = (\mathbf{VKA})(\mathbf{VKA})^T(\mathbf{VKA})$

$\iff (\mathbf{VKA})^T = (\mathbf{VKA})[1]$

$\iff (\mathbf{VKA})^+$ exists.

Remark 3.4. For $\mathbf{A} \in \mathcal{F}_n$, \mathbf{A}^+ exists $\iff (\mathbf{KVA})^+$ exists.

Theorem 3.2. Let $\mathbf{A} \in \mathcal{F}_n$. Then any two of the following conditions imply the other one.

1. \mathbf{A} is κ-kernel symmetric
2. \mathbf{A} is s- κ-kernel symmetric
3. $\mathbf{N}(\mathbf{A}^T) = \mathbf{N}(\mathbf{KAV})$

Proof:

(1) and (2) \Rightarrow (3)

\mathbf{A} is s- κ-kernel symmetric $\Rightarrow \mathbf{N}(\mathbf{A}) = \mathbf{N}(\mathbf{AVK}^T)$ [By Theorem 3.1]
Jaya Shree

\[A \text{ is } \kappa \text{-kernel symmetric} \Rightarrow N(KAK) = N(VAV^T) \quad \text{[By Lemma 2.1]} \]

Hence (1) and (2) hold.

\[(1) \text{ and (3)} \Rightarrow (2) \]

\[A \text{ is } \kappa \text{-kernel symmetric} \Rightarrow N(KAK) = N(A^T) \]

Thus (2) hold.

(2) and (3) \Rightarrow (1)

\[A \text{ is } s \text{- } \kappa \text{-kernel symmetric} \Rightarrow N(KAK) = N(KAV^T) \quad \text{[By Lemma 2.1]} \]

Thus (1) hold. Hence the theorem.

REFERENCES