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Abstract. Sentiment or Emotion analysis of social networking data involves a lot of data 
pre-processing. Due to the huge volume, the highly unstructured nature of the data and 
the enormous rate at which it is being generated, parallel implementations of pre-
processing algorithms becomes important. Pre-processing includes string to vector 
conversion, elimination of trivial words and symbols if any, frequency mapping etc. In 
this work we implement and compare parallel algorithms for pre-processing of social 
networking data (Twitter feeds) based on GPGPU (NVidia CUDA C) and Hadoop Map 
Reduce Architectures. The effectiveness of various tools from the Unix Command Line 
to the GPGPUs and Hadoop Map-Reduce has been discussed in detail. This work 
compare and contrast the benefits and drawbacks of GPGPU and Hadoop Map-Reduce 
and conclude by projecting the effectiveness and drawbacks of using parallel algorithms 
for effective and timely pre-processing of data. 

Keywords: Sentiment analysis, opinion mining, text preprocessing, twitter dataset, map-reduce, 
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1. Introduction 
With the increasing importance of social media information in every domain of today’s 
digital age from algorithmic trading and product recommendations to politics, there is a 
tremendous amount of research work going on in the field of sentiment analysis and 
opinion mining which is taking us leaps and bounds with the advent of Big Data 
platforms and tools. The amount of data that could be gathered, processed and stored 
cheaply and effectively is increasing at an exponential rate with the advent of Hadoop 
and other related massively parallel platforms and tools. Our work aims at studying the 
importance of pre-processing in the age of big data where storage and processing of 
unstructured data is as simple as processing structured data. So why do we have to pre-
process the data if Hadoop and other big data tools support handling unstructured data 
effectively? If required what kind of pre-processing are we talking about and how 
different it is from the pre-processing that we do in a regular KDD process? What kind of 
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tools work well in such a scenario and how it is done effectively on such a huge volume 
of data? Since most of the tools in the Hadoop Ecosystem fundamentally works on the 
basis of the Map Reduce paradigm (which is a batch processing model), how well do they 
handle the pre-processing of data that is arriving at a faster rate, like Twitter feeds or 
posts from Facebook users? How do we handle the velocity part of the Big Data 
problem? Are the tools of the past no longer valid for these purposes due to the huge 
volume, variety and velocity of data? These are some of the questions that we are trying 
to answer. The objective of this work is to identify the best framework or set of tools to 
pre-process the data from a social networking site like twitter. Even though most of the 
algorithms for mining big data are found to be supporting unstructured data and also 
found to be robust to variations in data formats and structure, we stress the importance of 
pre-processing data as its advantages are found to be many-folded. First it lets us 
understand the unstructured data that we are dealing with in a better way. Second it helps 
in dimensionality reduction thereby eliminating a lot of unnecessary features from being 
handled and in some cases making In-Memory processing of data possible resulting in a 
huge reduction of I/O overhead. Third it allows to answer the Value and Veracity part of 
the Big Data paradigm. Finally it allows us to fine tune the data model according to the 
processing requirements making it much more reliable and accurate. The research paper 
is organized as follows. The second section (Section 2) deals with the review of literature 
analyzing the existing techniques for pre-processing of social networking data especially, 
twitter feeds. The next section (Section 3) discusses the various pre-processing 
techniques and the requirements for processing social media data and what kind of output 
is being expected from such a pre-processing framework and also discusses the 
importance of stop words and emoticons as a special case with respect to twitter data.  
Section 4 discusses about the Stanford Twitter Dataset, the Twitter API and provides an 
overview of obtaining feeds using the Twitter API.  Section 5 explains in detail the 
various parts of the pre-processing framework architecture and about the tools and 
techniques that are found to be suitable for the same. Section 6 deals with the various 
platforms and tools that could be employed to handle the pre-processing of twitter data 
and a discussion about their possible effectiveness from a theoretical standpoint. It also 
deals about the experimental setup and the various parameters considered during the pre-
processing phase. Section 7 deals with results and discussion. Section 8 concludes the 
paper providing a summary of the work and highlighting some future research directions. 
 
2. Literature review 
Three common approaches to sentiment classification exists in literature, namely, 
machine learning, lexicon based methods and linguistic analysis. Each method has its 
own pros and cons. This section discusses literature that discusses each of these methods 
and some combination methods that claim better efficiency. Further, here we also discuss 
methods that provide efficiency using hardware architectures rather than the software 
counterparts. A GPU (Graphics Processing Unit) based string matching mechanism is 
presented by Kouzinopoulos et al [1]. This method exploits the processing power and 
memory bandwidth of GPUs that have recently emerged into the processing market. It 
uses CUDA (Compute Unified Device Architecture) to perform the computations. A 
comparative analysis of Naive, Knuth-Morris-Pratt, Boyer-Moore-Horspool and Quick-
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Search string matching algorithms were performed on Y.pestis, B.anthracis and BAC 
reference sequences for different pattern sizes. A stream based active learning method is 
proposed by Jasmina et al [2], which utilizes sentiment analysis for the financial domain. 
This method has its basis on the Twitter feeds. It uses these feeds for financial forecasting 
by performing sentiment analysis. The best text pre-processing setting for training the 
SVM (Support Vector Machine) is proposed here. This labels entities, by replacing the 
actual words with certain labels as the pre-processing phase. Other pre-processing 
techniques such as tokenization, N-gram construction and TF-IDF were used for the 
construction of the feature vector. F-Measure is used to determine the best pre-processing 
setting. A similar method analyzing the political scenario of the region analyzing the 
tweets generated from the region is presented by Rill et al. [22]. Data collection was 
performed in Germany during the period of parliamentary election 2013. This method 
works on the basis of twitter hashtags also known as sentiment hashtags. An N-gram 
based feature selection mechanism, that uses emoticons for lexical analysis is proposed 
by Read et al. [3]. Similar methods have been found throughout various literatures and 
uses SVM as its base Classifier [4-11]. Speriosu et al. [8] uses the maximum entropy as 
its classification technique. Ensemble based techniques [12-16] are also prevalent. These 
methods use a combination technique to determine the feature vector. An active learning 
method for sentiment analysis on data streams is presented by Janez, et al. [17]. The 
workflow implementation for this method was performed in Cloud Flows platform. In 
general, the sentiment analysis methods do not work on streams, they usually perform 
batch processing. But in some instances, processing data on the go might be necessary. 
Cloud Flows is one such platform that supports streaming. Janez, et al. [17] used SVM 
for the process of pre-processing. The active learning here is enforced by the introduction 
of a labelling strategy. The initial step is to manually request for the Oracle 
(administrator/user) to provide labels to a set of samples. These samples are then used for 
performing the future decisions. Every time the system encounters a new set of data; the 
Oracle is requested for labelling it. The model is then updated and performs accordingly. 
The process of sentiment analysis is not only carried out with English as the language. It 
has also been experimented with other languages. The variation here is to use a different 
ontology for creating the model. The sentiment mining model that uses Czech language 
for performing sentiment analysis on Czech social media is presented by Ivan et al[18]. A 
similar method that uses the Facebook data of the Spanish to determine the sentiment 
polarity is presented in Alvaro et al, [19]. A similar research for classification of text 
according to polarity was performed in Japanese language. Due to the unavailability of a 
standard corpus in Japanese, they have used the largest available text corpus. Testing was 
carried out using text from random participants and the results were evaluated. A 
mechanism that classifies tweets according to the emoticons in them is presented by 
Arturo et al. [20]. It classifies the tweets according to the polarity of the emoticons. 
Moreover, the polarity is based on real values from -1 to 1 rather than classifying them 
into two or three broad categories. A positive value represents a positive polarity, while 
negative values indicate negative polarity, and 0 indicates that the tweet is neutral. 
 
3. Pre-processing twitter data 
Pre-processing of Twitter data is completely different from the pre-processing done for 
KDD process in regular text datasets. Tweets are very small by themselves (atmost 140 
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characters) and because of this users tend to use a different slang or acronyms for almost 
every common word in English. Usually we eliminate words that are less than 3 
characters and greater than 16 characters, but that will not be applicable to tweets. Also 
most words that are available as part of stop words list may have more importance in a 
tweet than in a standard text. Say for example the word “but” is very common in English 
and could be removed as a stop word but for a product review the appearance of this 
word differentiates between a 4 star and 5 star rating (Say I am satisfied with the product 
but …). So we will have to determine the uncommonly common words and then only the 
list of stop words could be decided.  

 
Positive Emoticons Negative Emoticons 
*o* n n  *-* *O* * *   
:P :D :d :p  :( ;( :’( ;’(  
;P ;D ;d ;p  =( ={ ): ); 
:-) ;-) :-) ;-) )’: )’; )= }=  
:<) :>) ;>) =)  ;-{{ ; -{ : -{{ : -{  
=} :) (: ;)  :-( ;-( :-( ;-( 
(; :} {: ;}  :,( :’{  
{; :]  [: ;]  
[; :’) ;’) : -3  
;-3 :-x ;-x :-X  
;-X :-} ; -} : -]  
;-] :-.)   
^_^ -̂^  

Table 1: List of common positive and negative emoticons used in Twitter 
Regular text mining approaches eliminates punctuations and symbols but in the 

case of tweets we have to consider Emoticons, which express sentiment polarity more 
effectively than words. So this approach cannot remove all the symbols instead it must 
search for an emoticon based on an In-Memory Dictionary or Hash Table and then decide 
about removal of symbols if they are not a part of an Emoticon. Emoticons may contain 2 
characters, 3 characters or 4 characters as shown in Table 1. So this approach had to 
concentrate on writing regular expressions to filter them out from a bunch of regular 
symbols. It also embeds the Word Net corpus to find the Synonyms and Antonyms to 
effectively identify the words with positive and negative polarity.  

 
3.1. The stanford twitter dataset and twitter api 
The dataset that we have used is the Stanford Twitter Corpus which contains 1.6 million 
tweets. It is part of the Sentiment 140 project [23]. The dataset contains tweets that are 
classified as positive, negative and neutral based on the presence of emoticons rather than 
doing it manually. The format of the dataset is as follows [23]: It contains 6 fields as 
follows. 
0 - the polarity of the tweet  
1 - the id of the tweet  
2 - the date of the tweet  
3 - the query. If there is no query, then this value is NO_QUERY. 
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4 - the user that tweeted  
5 - the text of the tweet  

The dataset was collected using the previous generation Twitter Search API 
based on keyword search. The dataset, though classifies tweets based on emoticons, is 
clear of all the emoticons and unwanted text and is hence preprocessed to a certain extent. 
So in order to get raw Twitter data we have to depend on the Twitter API. 

Twitter provides access to its data by means of three different services. GNIP 
[24] which provides access to the full archive and also the current generation Twitter data 
for a cost. The REST API provides a low latency access to current Twitter data but with 
severe limitations on the data access controlled by the Twitter authentication process. 
Twitter Streaming API is another option to access the data. Though it is slow, it doesn’t 
have the limitations of the REST API [24]. Streaming APIs are available in three 
different type as follows: Public Streams that provides access to the public data flowing 
through Twitter. Suitable for following specific users or topics, and data mining. User 
Streams or Single-user streams, containing roughly all of the data corresponding with a 
single user’s view of Twitter. Site Streams or The multi-user version of user streams. Site 
streams are intended for servers which must connect to twitter on behalf of many users. 
This approach uses the Streaming APIs Public Streams for accessing the tweets. [24]. 

 
3.2. Architecture of the proposed pre-processing framework 
The proposed a framework for effective pre-processing of Twitter Feeds is as shown in 
Figure 1. The framework consists of four major subdivisions from Acquisition of data, 
followed by two phases of Pre-processing and then Evaluation.  
 
3.2.1. Obtaining twitter data  
We have used the Streaming Twitter API and the public Streams version of it. All the 
public data flowing through Twitter currently could be collected using this Public 
Streams API. Though it is a low latency process it provides considerable amount of data 
to work on when run continuously for several hours. Twitter Feeds are accessed using the 
Streaming API and then tweets related to the query passed is obtained and the content is 
piped in to the next phase of the pre-processing framework.  
 
3.2.2. Pre-processing Phase 1  
In this phase, the tweets are available as text data and each line contains a tweet. Initially 
we clean up or remove retweets as that will induce a bias in the classification process.  
Also we remove the links followed by Hashtags which represents the users. We then 
process tweets that contains positive emoticons and those that contain negative 
emoticons. Also there is a possibility of a tweet being neutral. We need to remove the 
punctuations and other symbols that doesn’t make any sense as it may result in 
inefficiencies and may affect the accuracy of the overall process. Also we need to remove 
tweets that contain both a positive and negative emoticons as it may cause a lot of 
confusion as far as automatic classification is considered. This results in a clean Twitter 
Text Corpus which is then sent to the second phase of pre-processing. 
 
 
 



Parallel Implementation of Big Data Pre-Processing Algorithms for Sentiment Analysis 
of Social Networking Data  

154 
 

3.2.3. Pre-processing Phase 2  
In this phase, we tokenize the tweets (split them into individual words of importance). 
Once tokenized, we perform one of the most important part of the text pre-processing 
process, which is normalization. Here we eliminate repeat letters from words that are put 
in to provide stress or a better context to the tweet. Also we normalize the expressions 
usually  

 
Figure 1: Architecture of the proposed pre-processing framework 

 
used to express laugh, sorrow etc. which may contain a series of repetitive characters. 
Then comes the process called lemmatization where the core part of the word alone is 
considered. It is different from stemming where stemming is just structural, 
lemmatization is contextual and also takes into account the synonyms and antonyms of a 
given word. After this process, we remove the stop words as provided by standard stop 
word corpus. Now the data is ready for evaluation and is sent to the next phase.  
 



V. Jude Nirmal and D.I. George Amalarethinam 

155 
 

 

3.2.4. Evaluation  
In this phase we perform the word count followed by calculation of TF/IDF. This phase 
involves too much of computation and could be considered as a number crunching phase 
in addition to being Memory or I/O bound like the previous phases. Here we analyze the 
list of Emoticons and their polarity, TF/IDF and also the list of positive and negative 
words. 
 
3.3. Experimental setup 
Experimental setup includes three totally different configurations to test the suitability of 
various tools ranging from Linux/Unix command line tools to GPGPUs and Hadoop 
Map-Reduce based tools. A High End Apple MacBook Pro running Mac OSX Mavericks 
with a Quad-Core i7 Processor running at 2.5 GHz, 16 GB DDR3 RAM @ 1600MHz and 
6 MB L3 Cache followed by a 128 MB L4 Cache and a 512 GB SSD Drive. A High End 
Dell Precision T7600 Workstation with dual Intel Xeon Octa-Core Processors each 
running at 2.7GHz, 32GB DDR3 RAM, 20MB L3 Cache Memory with 4 * 600GB 
7200RPM HDD. Finally a Hadoop cluster containing 10 High End PCs and a two High 
End Servers acting as Master Nodes. Master Nodes are Dell R910 Servers with Four Intel 
Xeon Octa-Core Processors running at 3.5 GHz, 64GB DDR3 RAM, 30 MB L3 Cache 
Memory per Processor and 6 * 600GB SAS 10K RPM Drives in RAID0 configuration. 
Data Nodes are Dell OptiPlex 9020 PCs with Quad-Core i7 processors running at 2.7 
GHz, 8 GB DDR3 RAM and 1TB 7200 RPM HDD. It is obvious that for almost 90% of 
the first two phases and for a considerable part of the third phase, using a high end laptop 
is found to be much more flexible and effective than going in for a workstation or a 
cluster. This is due to the fact that the data handled during these phases is found to fit In-
Memory in such a laptop and hence very effective and fast compared to the GPGPU 
based approach where the data has to be transferred from the CPU HDD to the CPU 
memory and then from the CPU memory to the Device memory and the results must be 
copied back to the CPU memory from the Device memory before being persisted to the 
hard disk. The cluster on the other hand is basically used for Map-Reduce based batch 
processing and the overhead with the cluster is that all the intermediate data needs to be 
persisted to the HDD and then retrieved back for the next phase. Since the first two 
phases involves a lot of process being performed on the same data again and again just 
doing a small amount of processing each time, it is very difficult to run the jobs on a 
GPU or on a cluster as it will involve a lot of Memory or Disk I/O overhead. 

Laptops running on Unix/Linux systems provides the flexibility to have the data 
In-Memory as opposed to persisting them to the HDD each time. We can use the pipe 
option and pass the data through various text and regular expression processing tools 
available natively as part of the operating system making it simple and effective. With 
GNU parallel, we can make use of the inherent parallelism to the maximum extent 
possible. The pipes and regular expression tools allows us to manage the workflow 
effectively and is possible to automate the tasks with simple scripts rather than worrying 
about learning and writing complex Map-Reduce jobs using Java or one of the Hadoop 
Ecosystem tools. 

But as we can clearly see a part of the third phase and the complete final phase 
involves a lot of number crunching work and is found to be suitable to make use of the 
CUDA GPGPU programming model. The calculation of TF/IDF based on word 
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frequencies could be done in the massively parallel architecture with much ease in a 
fraction of the overall time taken by a single CPU based system. The importance of 
Hadoop Map-Reduce based cluster and the Hadoop Ecosystem tools could not be 
undermined at these phases. They prove to be effective and is also massively parallel in 
comparison to the simple CPU level multi-threading which we obtain from an individual 
laptop. 

3.4. Results and discussion 
It could be clearly seen from Table 2 and Figure 2 that the importance of the Hadoop 
Map-Reduce framework and the need for a distributed cluster could be appreciated only 
when huge amount of data is handled. As far as a million tweets are concerned, the 
performance of a Laptop is considerably acceptable considering the cost difference and 
the overhead of maintaining a cluster. Also in the final phase involving TF/IDF 
calculations we found that the Memory and I/O overhead is still huge on a GPU as we 
need to handle the words as such or we need to encode them using an id increasing the 
overhead. So the actual time taken is too high and is not comparable to what we obtain 
from the command line tools. Also we have limitations on memory size on the GPU in 
comparison to the CPU memory. Even high end GPUs have a DRAM size limit of 5 GBs 
and along with this limitation we have one more problem that, no data-structure like a 
dictionary or list is available on the GPU programming model and hence limits us in the 
TF/IDF calculation requiring too much of data transfer overhead. 

 
Dataset Time (Laptop) in Seconds Time (Hadoop) in Seconds 
1 Book 0.101 11 

10 Books 0.723 12 

25 Books 4.486 12 

50 Books 9.685 13 

100 Books 21.95 15 

200 Books 52.334 24 

400 Books 106.756 36 

1.6 Million Tweets 61.792 29 
Table 2: Performance of Word Count 

 

 
Figure 2: Word count performance comparison 
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It is found that the problem of TF/IDF calculation is not so much of a divide and conquer 
nature and hence not suitable for the Map-Reduce Paradigm. Since we need the total 
number of documents and the number of documents in which a word is occurring in order 
to calculate the IDF and the word count done on each document separately for the term 
frequency part, we find that the GPGPU and the Hadoop Map-Reduce cluster not so very 
suitable as they both lack in memory data structures and due to that it requires several 
runs of Map-Reduce to calculate all of those elements individually and then running them 
on a single reducer to calculate the final output. We performed the TF/IDF calculations 
on the command line using a Laptop in 58.056 Seconds.  

 

 
Figure 3: Sample scatter plot for IDF values 

Figure 3 shows the sample scatter plot for IDF values of the first 500 words (sorted in 
ascending order) out of the 785687 words obtained from the 1.6 million tweets in our 
dataset. The scatter plot shows TF/IDF values for words that occur frequently and those 
that occur in-frequently and how TF/IDF eliminates the bias.  
 

8. Conclusion and future research directions 
Considering the data volume and velocity that we handled including the data feeds from 
the Twitter API, the Stanford Twitter Dataset and the Books from Gutenberg project, we 
find that Linux/Unix command line processing tools (usually ignored due to their 
simplicity) are much suitable for the first two phases of the pre-processing process as 
opposed to GPUs or Hadoop Big Data environment and that is attributed to the fact that 
the data fits perfectly In-Memory (mostly fits in the RAM of the System 16GB to 32GB) 
and due to the flexibility of the tools in handling data streams. We need to verify the 
same on huge text corpus including Project Gutenberg (containing 45000 Books, we used 
only 400 books) and Wikipedia text corpus (35 GB+) and New York Times Articles 
through their API in which case the command line utilities may fail requiring 
GPUs/Hadoop Map-Reduce architecture due to the sheer volume of data that wouldn’t fit 
In-Memory. For the third and final phases which involves a lot of number crunching in 
terms of TF/IDF calculations we still do find that a GPGPU based massively parallel 
approach or the Hadoop Map-Reduce approach not very suitable as we need in memory 
data-structures to carry out the process effectively. Also the Hadoop Map-Reduce based 
approach, though not suitable for streaming due to its batch processing nature, is found to 
be delivering stable performance when huge data is involved. Also we find that using a 
search engine based approach would be much suitable as it would provide us with the 
necessary tools to identify the importance of emoticons and certain stop words in the 
Twitter Text Corpus. With the Apache Lucene Project and the release of Apache Solr 
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Enterprise Search Engine, it is possible for a common man to utilize the effectiveness of a 
search engine which is previously too costly involving millions of dollars. We are also 
considering the ELK (Elasticsearch based on Lucene, LogStash and Kibanna) stack for 
search and for visualization of the results during the Sentiment Analysis process. 
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