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Abstract. The evolution of a public emergency situation is often dynamic, random and 
multi-stage, requiring multiple decisions and dynamic updates to the emergency response 
plan according to the event situation until the best outcome is achieved. This research 
proposes a data-driven approach to dynamic emergency decision-making for public 
emergencies based on lens model and prospect theory, which in details are: 1)using lens 
model foe reference, the state in the next stage is predicted through the proximal 
information in current stage; 2) considering the uncertainty of the public emergencies 
decision-making environment, using the fuzzy number to describe the information cues 
obtained by the decision-maker; 3) to simulate the real decision-maker better, the method 
is proposed in the framework of prospect theory. Based on the above ideas, two key 
parameters are invented for the dynamic emergencies decision-making method: predict 
prospect value and predict performance. At last, a case in public emergencies is applied to 
illustrate the performance of the proposed method. 

Keywords: emergency decision-making; data-driven; lens model; prospect theory  

1. Introduction 
The complex and volatile nature of public emergencies and the dramatic increase in the 
amount of information and data related to them place a heavy burden on emergency 
decision makers, who can more easily formulate the ideal emergency response plan if they 
have timely and accurate access to scenario information and other relevant decision 
information. Data can provide a clear picture of the evolution of a public emergency from 
a dynamic, multi-dimensional perspective, and decision makers can take full advantage of 
the continuous stream of real-time data coming into the emergency decision-making 
system to develop an accurate perception of what is happening and how it is developing, 
and to gain a warm, tangible sense of what is happening [1]. The data generated and 
dynamically changed in real time provides a powerful basis for predicting the state of an 
event, and decision makers can use the constantly updated data to make judgements about 
the state of the event and form reliable preference information [2]. Generally speaking, the 
closer the preference information is to the actual situation, the more accurate the decision 
outcome will be. Some scholars have explored the issue of emergency decision-making 
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based on event status updates, but there are still some shortcomings in the existing research: 
(1) Traditional emergency decision-making is usually based on a static historical database, 
and as the dynamics of public emergencies evolve, the available event data information 
increases, making the decision information available for reference clearer, more 
accumulated and more complete. However, in the actual emergency decision-making 
process, the deeper value of data updating in the emergency decision-making process is 
overlooked due to the constraints of the level of data mining technology, data thinking and 
awareness of decision-makers, etc. (2) Existing emergency decision-making methods 
usually focus only on the impact of each emergency plan on the current emergency 
response, ignoring the impact of the implementation of the emergency plan on the state of 
the event in the next period. (3) Past research has shown that decision makers need to 
predict the next state of a public emergency at each decision point, and adjust the 
emergency response plan based on the prediction results, and activate the emergency 
response plan that matches the current state of the public emergency to obtain the final 
emergency response decision result. However, the effectiveness of this decision-making 
method is affected by the level of decision-makers' predicting ability, which has not been 
explored in depth in previous studies. 

Given the complexity and uncertainty of public emergencies, higher requirements are 
placed on the flexibility and timeliness of emergency decision-making. In the big data 
environment, the data-driven emergency decision-making model presents dynamic and 
predictive characteristics, which has significant application advantages and becomes an 
effective path to improve the quality of emergency decision-making [3]. This study 
proposes a data-driven dynamic emergency decision-making approach, the essence of 
which is to continuously collect real-time updated event status data, and comprehensively 
consider the dynamic changes of contextual elements related to the evolutionary trend of 
public emergencies, and then make adjustments and updates to the current decision. At the 
same time, considering the limited rationality of decision makers in actual decision-making 
situations, this study embeds prospect theory into a data-driven dynamic emergency 
decision-making approach to characterise the risk preferences of decision makers in the 
face of gains and losses. In addition, the lens model depicts the process of exploring the 
state of distant variables through proximal observable cues, which fits the decision making 
context of dynamic contingency decision making in which decision makers predict the next 
state of an event by observing current data cues, and therefore this study uses the lens 
model to portray the decision makers' prediction process of the next state of an event in 
dynamic contingency decision making. 

In summary, this study introduces foreground theory and the lens model, and proposes 
a data-driven dynamic emergency decision-making method for public emergencies. The 
decision-making basis of this method mainly includes: (1) predicting "prospect" values: 
first, decision-makers assign current clues based on real-time data and generate predicted 
values for the next state of the event by drawing on the idea of the lens model; then, the 
predicted values are converted into predicted "prospect" values by applying prospect theory. 
(2) Predict performance: The predict value may have subjective bias due to the level of 
predicting ability of the decision maker, so the historical predict value of the decision maker 
and the historical true value of the event state are collected, and the correlation coefficient 
between them is the predict performance. 
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2. Reviews of the Literature 
2.1. Emergency decision-making 
Emergency decision-making for public emergencies refers to a special management 
activity that makes full use of decision-making theories and methods to carry out dynamic 
planning of emergency disposal plans or emergency response measures in order to 
effectively respond to the casualties, property losses and social hazards caused by public 
emergencies after the emergence of signs or the occurrence of public emergencies [4]. On 
the one hand, scientific and reasonable emergency decision-making can effectively control 
the evolution of public emergencies in a timely manner and prevent the deterioration of the 
situation from bringing about greater losses; on the other hand, it can make efficient use of 
the available emergency rescue resources, maximise the effectiveness of resources and 
provide solid human and material security for carrying out emergency rescue work. 
Emergency decision-making in public emergencies is a complex multi-objective dynamic 
optimisation problem. 

The problem of emergency decision-making in public emergencies is multi-stage in 
nature, as evidenced by the following: 

(1) The initial phase is the scenario when the precursors of a public emergency are 
visible or just about to occur; 

(2) The intermediate stage is the state in which a public emergency has occurred and 
has developed to a certain point in time, either through natural laws or human intervention. 
This stage is a collection of scenarios consisting of multiple sub-stages, depending on the 
development of the emergency and the emergency response that has been taken; 

(3) The final stage is when a public emergency is effectively controlled as the event 
state evolves and updates, and eventually reaches a state of extinction or termination [5]. 

In addition, emergency decision-making in public emergencies is dynamic in nature, 
mainly because the effective handling of public emergencies is based on the continuous 
coupling and overlapping implementation of multiple single-stage emergency response 
plans [6]. At each stage, decision-makers need to assess the effectiveness of the emergency 
response plan in controlling the situation based on real-time information about the 
emergency, and to predict the evolution of the situation, so as to make a scientific and 
reasonable emergency response decision. This means that the decision-making process is 
not a one-off decision, but a process of dynamically adjusting the emergency plan based 
on scenario updates until the emergency is effectively managed. 

From an analysis of the evolution of events, the development of public emergencies 
is a continuous process in time, and the corresponding emergency decision-making 
activities are also a continuous process in time, and the whole process is full of uncertainty 
[7]. However, decision-makers are often faced with uncertainties such as difficulties in 
obtaining information about deterministic events, internal differences in perceptions of 
events, and conflicting decision-making preferences, so the emergency decision-making 
process for public emergencies is also characterised by significant uncertainties [8]. 

From the above analysis, the characteristics of emergency decision-making in public 
emergencies are mainly reflected in three aspects: firstly, the multi-stage nature of the 
emergency decision-making process, and the importance of each stage is different; 
secondly, as the situation of public emergencies evolves, taking full advantage of 
information technology, the information available on the event scenario is constantly clear 
and complete; thirdly, as the decision information available for reference is constantly 
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updated, the subjective emotions and Third, as the information available for decision 
making is constantly updated, the subjective emotions and preferences of decision makers 
are adjusted and updated by the influence of uncertain information, and gradually converge. 

 
2.2. Prospect theory 
Decision experts are usually finitely rational rather than fully rational in the emergency 
decision-making process [9]. Prospect theory was proposed in 1979 by Kahneman and 
Tversky, two scholars who designed various behavioural experiments in their study of 
decision-making behaviour based on expected utility theory and found that expected utility 
theory ignored the irrational factors of decision-making subjects. The basic idea of prospect 
theory is that under risky decision-making conditions, subjects exhibit heterogeneous 
psychological preferences and limited rational behavioural tendencies when faced with 
losses and gains, including certainty effects, reflexive effects, reference dependence and 
loss aversion [10]. The behavioral tendencies described by prospect theory are more in line 
with the objective reality and are widely used in the study of decision problems. For 
example, Bharsakade et al. considering the influence of limited rationality on the subject's 
decision making behavior, a multi-attribute decision making method is proposed in the 
intuitionistic fuzzy language environment by combining prospect theory and evidence-
based reasoning methods [11]. Xu et al. considered the heterogeneous preference problem 
of group decision making and designed an emergency decision framework based on 
cumulative prospect theory, which can effectively improve the consistency level of group 
decision-making [12]. Liu and Li used prospect theory in a probabilistic linguistic setting 
to construct a prospect decision matrix, combined with decision indicator weights to 
calculate the combined prospect values of alternatives, and proposed a new emergency 
response decision method [13]. 

This study makes full use of the advantages of prospect theory in effectively 
portraying the heterogeneous psychological preference behaviour of decision-making 
subjects and introduces it into the process of contingency decision analysis to describe the 
limited rational behaviour of subjects in dynamic decision-making situations. According 
to the basic principle of prospect theory, decision subjects are more sensitive to "loss" than 
"gain", they are often risk-averse when faced with loss, and risk-averse when faced with 
gain. Applying prospect theory to the real world of decision-making, the prospect of an 
alternative a  is calculated as 

( ) ( ) ( )
1

n

i i
i

V a v y w p
=

=  

The greater the prospect value( )V a  of the solutiona , the better the decision 

subject's expected prospect for the solution. The value functionv  reflects the subjective 
feeling of the decision subject about the gain or loss and is expressed as 
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where y  represents the objective gain and0y the gain reference point 0y y− . This 

represents the deviation of the actual return of the scenarioa  from the reference point0y , 
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with a gain at 0 0y y− ≥  and a loss at 0 0y y− < . α andβ  are the risk sensitivity 

coefficients of the decision maker to gains and losses respectively , which take values in 
the range0 1α< < and0 1β< < .λ is the loss aversion coefficient and 1λ > indicates that 
the decision maker is more sensitive to losses. 
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                    (2-1) 

(2-1) is the subjective probability weight of the decision maker, the weight that the 
decision maker subjectively assigns to the probability of the expected outcome occurring. 
Where p is the probability of the expected outcome,γ andδ are the risk attitude 
coefficients of the decision maker when the psychological expected outcome is a gain and 
a loss, respectively. 

 
2.3. The lens model 
The lens model, proposed by cognitive psychologist Brunswick (1956), is based on an 
'organism-environment' structural model that uses a series of directly proximal observable 
cues to explore and gain insight into the reality of distal variables [14]. The lens model has 
been widely used in decision making as it can resolve the internal processes and 
mechanisms by which decision makers generate decision information. 
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Figure 2.1: Lens model 

As can be seen in Figure 2.1, the lens model is a symmetrical model consisting of a 
task system and a cognitive system, connected by a series of information cues, which are 
the reference elements that the subject relies on when making decisions. The task system 
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reflects the association between the true outcome of the observed target eY  and the 

information cues; the cognitive system reflects the association between the decision 

subject's predicted outcome of the observed target sY  and the information cues. 

In a task system, the correlation between the true outcome of the observed targeteY  

and a set of information cues can be fitted with a linear model of 

,1 1 ,2 2 ,e e e e n n eY r x r x r x ε= + + + +L  

where 1 2, , , nx x xL  is the cue associated with the true result eY  and the predicted 

result sY , ,1 ,2 ,, , ,e e e nr r rL corresponds to the weight of each cue and reflects how closely 

each cue is associated with the true resulteY , and eε is the residual, which represents the 

random error between the fitted result calculated from the cue values and weights and the 

true result eY . 

In a cognitive systemsY represents a decision subject's judgement and prediction of 

the developmental state of an observed target based on a series of information cues, and its 
association with the cues can be fitted by another linear model: 

,1 1 ,2 2 ,s s s s n n sY r x r x r x ε= + + + +L  

where ,1 ,2 ,, , ,s s s nr r rL  corresponds to the weight of each cue in the cognitive system and 

reflects the extent to which the decision maker refers to and uses each cue in making the 

predicted outcomesY , and sε is the residual, which represents the random error between the 

fitting result calculated from the cue values and weights and the decision maker's predicted 

outcome sY . 

After a decision subject has made a prediction, its prediction performance is measured 

by ar , ( ),a e sr corr Y Y= , which represents the correlation coefficient between the true 

outcome eY and the predicted outcomesY , generally calculated using the Pearson 

correlation coefficient. The correlation coefficient ar  reflects the correlation between the 

prediction made by the decision subject and the true state of the observed target and 
portrays the degree of accuracy of the prediction made by the decision maker. 

 
3. Emergency decision-making methods 
3.1. Problem description and analysis 
Decision makers rely on a series of information clues to form their perceptions of the 
current real state of public emergencies and their predictions of the future state of 
development, and event data is the concrete expression of these information clues. In the 
big data environment, decision makers make decisions through the mining and analysis of 
event data, forming a data-driven emergency decision-making model. The main 
characteristic of dynamic emergency decision-making problems is that the state of a public 
emergency evolves dynamically over time, and decisions made by decision-makers at each 
decision point are based on predictions of the state of events at the next point in time. The 
lens model can be used to analyse and present the process by which decision makers 
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combine cues to form predictions. This chapter will draw on the ideas of the lens model to 
design a data-driven approach to dynamic emergency decision-making. 

The core of the approach lies in the decision maker's prediction of the next state of a 
public emergency through the following process: The emergency decision maker is faced 

with a set of options ( )1 2, , jA a a a= L . At any given decision pointt , the decision maker 

collects and analyses a range of real-time data to form a judgement about the cues

1 2, , nx x xL  that are associated with the state of the event at the next point in time. 

Considering that the contingency plan( )1,2, ,ja j m= L  implemented by decision 

makers in the current period also has an impact on the next state of a public emergency, 

this study uses the contingency plan( )1,2, ,ja j m= L  implemented in the current period 

as one of the cues to predict the next state of the event. Thus, at any decision pointt , 

decision makers form an analysis of the cues1 2, , nx x xL  and scenario cuesja  based on a 

series of real-time data to obtain a prediction of the next state of the event ( )
, 1j s t

Y a
+

. 

2,tx

1,tx

,n tx

ja

, 1( )j s tY a +

.

.

.

Data

Preformce ,a tr
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Figure 3.1: Prediction process 

Traditional lensing models generally use a single term to describe cues, but emergency 
decision-making situations for public emergencies are often highly uncertain, and decision-
makers have difficulty evaluating a cue with precision, preferring instead to give fuzzy 
evaluations. Pythagorean fuzzy sets are more expressive in dealing with uncertainty and 
fuzzy information [15]. When using the lensing model to predict the state of an event, the 
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advantage of Pythagorean fuzzy numbers in portraying uncertain information can fully 
express the fuzzy nature of the decision maker's evaluation of a cue. Therefore, this study 
applies Pythagorean fuzzy numbers to assign cue evaluations, while assembling cue 
information based on the Pythagorean fuzzy numbers' algorithm to form the decision 
maker's prediction of event states. 

In emergency decision-making situations where information is uncertain and time 
pressure is high, decision makers tend to be limitedly rational and have subjective 
distortions in their perception of benefits and risks, such as pursuing the "certainty effect", 
given the same expected benefits, decision makers tend to choose certain benefits over 
risky ones [16]. The decision maker's attitude towards risk in the face of gain and loss 
affects the outcome of his or her decision, and prospect theory better portrays the limited 
rationality of decision makers. Therefore, this study embeds prospect theory into a data-
driven dynamic contingency decision-making approach as a way to simulate real decision-
making situations and portray the limited rationality of decision makers. 

 
3.2. Methodological analysis 
In dynamic emergency decision-making problems, decision makers predict the next state 
of a public emergency based on real-time data and current cues. If the decision maker is 
fully rational, then the predicted value can be used directly as the basis for the decision 
maker's choice of scenario. In reality, however, due to the limited rationality of the decision 
maker, the predicted 'prospect' value can better reflect the decision maker's subjective 
perception of gains and losses, and better match the actual decision-making situation. 
Therefore, this study uses the predicted 'prospect' value as the basis for decision makers to 
choose the current contingency plan. As the calculation of the predicted 'prospect' value is 
based on the decision maker's prediction of the next state of the event, there is subjectivity 
in the decision maker's weighting and assignment of cues when solving for the predicted 
value, which means that the accuracy of the predicted outcome is affected by the decision 
maker's own factors. In this case, the predicted 'prospect' value should not be used as the 
only basis for decision making, so this study refers to the judgmental performance in the 
lens model and introduces the prediction performance indicator, which is obtained by 
calculating the correlation coefficient between the decision maker's predicted value and the 
true value of the event. Predict performance reflects the degree of accuracy of the decision 
maker's subjective predict and is one of the bases for decision making. 

Based on the above analysis, this study improves the decision-making method 
proposed by Jing Gu et al. [17] and introduces it into the field of emergency decision-
making for public emergencies: 

1. Predict "prospect" values 
Based on the task system in the lens model, the prediction process of the decision 

maker in Figure 3.1 is used as the basis for the analysis and the calculation method for 
predicting the "prospect value" is proposed. 

(1) Cue selection and weighting. A number of variables with the highest relevance to 
the public emergency situation were selected as clues, and the weights of each clue were 
calculated using the DEMATEL method. 

(2) Collect real-time data and calculate predictive values. Based on the cue weights 
solved in the previous step, the decision maker assigns a value to the cue based on the real-
time data to predict the next state of the event. 
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( ) , , , 1, 1
1

n

j s i i t s n js t
i

Y a r x r a++
=

= +                       (3.1) 

In the equation (3-1), ( ), 1,2,i tx i n= L represents thei cues for decision makers at the 

point in time t ; ( )1,2, ,ja j m= L  is the j option from the set of options

{ }1 2, , , mA a a a= L  as an additional lead for predicting the 'prospect' value, , 1s nr +  is the 

weight of the option 'cues' ( )1,2, ,ja j m= L , s.t.
1

,
1

1
n

s i
i

r
+

=

= ; ( )
, 1j s t

Y a
+

represents the 

decision maker's prediction of the state of a public emergency at the 1t + point in time 

following the adoption of the contingency( )1,2, ,ja j m= L . 

(3) Inscription of uncertain decision information. Assigning value cues and solution 
cues in the form of Pythagorean fuzzy numbers, we get 

( ) ,1 1, ,2 2, , , , 1, 1j s t s t s n n t s n js t
Y a r x r x r x r a++

= ⊕ ⊕ ⊕ ⊕L  

where ( )( ), , ,, 1,2, ,i t i t i tx i nµ ν= = L  is the Pythagorean fuzzy number,,i tµ  indicates the 

extent to which the decision maker believes that the state of ,i tx  meets the "ideal" level, 

and ,i tν indicates the extent to which the decision maker believes that the state of,i tx  does 

not meet the "ideal" level. The above equation is based on the Pythagorean fuzzy number 
algorithm and the Pythagorean fuzzy weighted average operator. 

(4) Calculating the predicted "prospect" value. Based on the predicted state of the next 
public emergency, decision makers have a sense of the value and weight of each cue and 
further calculate the predicted "prospect" value. 

First, choose the reference point. Choose the reference point ( )0 0.5,0.5x =  

according to the definition of the Pythagorean fuzzy number and the score function; 

Second, based on prospect theory, the value function of the clue ( ), 1,2,i tx i n= L  is 

obtained as 

( ) ( )
( )

, 0 , 0
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, 0 , 0

,    
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D x x x x
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Of which. ( ) ( ) ( )( ), 0 , , , ,, 1 max , ,min ,i t i t i t i t i tD x x L H L H= −  
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µ
µ

= , 
( )
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i t
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−
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The value function ( ),i tv x  is a Pythagorean fuzzy number, that is the predicted "prospect" 

value of the lead is a fuzzy number,( ) ( ) ( )( )
, ,

, ,
i t i t

i t v x v x
v x µ ν= . 

The weights of the leads ( ), 1,2, ,i tx i n= L  are then calculated as 
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Finally, the decision maker's predicted "prospect" of adopting a particular contingency 
option is obtained as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )
( )( ) ( )

( )
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2. Predict performance 

(1) Historical data collation. At each time point( )1,2, , 1k k t= −L  before the time 

point t , the decision maker gives the predicted value of the next state of the event

( )
, 1j s k

Y a
+

. When the decision process advances to the time point 1k +  , the true value of 

the event state ( )
, 1j e k

Y a
+

 is displayed and is in the form of a Pythagorean fuzzy number. 

( ){ }, 1
1,2, , 1s j s k

Y Y a k t
+

= = −L Collate historical data of predicted and true values 

at each point in time withsY  representing the set of predicted values before the decision 

maker's point in time t  for each element of the set

( ) ( ) ( )( )( ), ,, 1
, 1,2, ,j s j s js k

Y a Y Y j tµ ν
+

= = L  and eY  representing the set of true state 

values before the decision maker's point in timet  for each element of the set

( ){ }, 1
1,2, , 1e j e k

Y Y a k t
+

= = −L  for each element of the set 

( ) ( ) ( )( ), ,,
,j e k e ke k

Y a Y Yµ ν=  . 

(2) Predictive performance calculation 
According to the solution of the Pythagorean fuzzy set correlation coefficient, the 

decision maker's predicted performance at the point in timet  is 

( ) ( )
( ) ( ),

,
, e s

a t t e s

e s

COV Y Y
r Y Y

D Y D Y
ρ= =  

where for ( ),e sCOV Y Y  are the covariances of the Pythagorean fuzzy setseY  and sY ,

( )eD Y  and ( )sD Y  are the variances of the Pythagorean fuzzy setseY  and respectively

sY . 
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where( ) ( ), , , ,
, , ,

e j e j s j s jY Y Y Yµ ν µ ν  is the mean of the actualeY  set and the predictedsY  set, 

respectively. 
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the calculation of predicted performance can be simplified as 
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4. Case studies 
4.1. Case background 
At the end of 2019, a sudden outbreak and rapid spread of novel coronavirus to several 
provinces and cities in China caused huge casualties and economic losses, and seriously 
disrupted the normal social order. A study by Ge Honglei and Liu Nan [18] pointed out that 
the evolutionary status of the new coronavirus pneumonia epidemic could be judged from 
four dimensions: spatial distribution, transmission dynamics, scale of infection, and 
epidemic information characteristics, as shown in the table. Based on this, this study 
conducted emergency decision-making research and analysis by collecting historical and 
real-time data of these 4 dimensions. Data sources include data released by the Chinese 
Centre for Disease Control and Prevention, the Epidemic Prevention and Control Office, 
and the New Coronary Pneumonia Epidemic Query Platform. 
 
 
 
 

Table 4.1: Evolutionary status of the new crown pneumonia outbreak 

Status 
Features 

S1:Uncontrolled 
and rapid spread 

S2:Multi-city 
outbreak under 
traffic control 

S3:National 
peak under 
community 
control 

S4: 
Resumption 
of work and 
production 
and 
concurrent 
management 
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of the 
epidemic 
period 

Spatial 
distribution 

Concentrated in 
a single city, 
distributed with 
neighbouring 
cities 

Outbreak in 
multiple regions 
and cities 

Serious 
outbreaks in 
multiple 
regions and 
cities 

Outbreaks 
exist in a few 
cities 

Propagation 
Dynamics 

Population 
mobility 
transmission 

Aggregate 
communication, 
community 
communication 

Aggregate 
transmission 

Aggregate 
transmission 

Scale of 
infection 

Smaller overall 
The overall 
scale is large 

Very large 
overall 

Dwindling 
numbers 

Outbreak 
information 
characteristics 

Height 
uncertainty 

High level of 
uncertainty 

Decreasing 
uncertainty 

Low 
uncertainty 

 

This study addresses the sixth round of( )6t =  control options for decision making 

after the initial control phase of the outbreak, with three options { }1 2 3, ,a a a a=  as follows 

1a : normal inter-urban movement, quarantine gates and immediate isolation of those 

in abnormal health conditions; 

2a : Zone closure for key areas of the epidemic, normal access to the rest of the area, 

quarantine gates and immediate isolation of those in abnormal health conditions; 

3a : The city is closed to traffic. 

 
4.2. Decision-making process 
(1) Preparation 

Step 1: Clue selection and assignment. Through reviewing literature and field 
research, and combining the results of Ge Honglei and Liu Nan (2020), a total of five clues 

indicators were selected for this study, including four clues 1x =  "spatial distribution" ,

2x =  "transmission dynamics",3x =  " Infection size", 4x =  "Epidemic information 

characteristics", and one programme cue( )1,2,3ja j =  . The weight of each cue was 

obtained using the DEMATEL method at 

( )0.204,0.196,0.218,0.189,0.193Tr =  . 

Step 2: Collation of historical data. Collect and collate the predicted values for the 
next period of the event state and the corresponding true values of the event made by 
decision makers at the point in time1, 2,3,4,5t = , the results are shown in Table 4-2. 

Step 3: Preset thresholds. Based on interviews with a number of emergency 

management experts, the threshold conditions for,a tr  are: , 0.75a tr ≥  and for ( )
1j t

V a
+
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are: 1 1 0t tµ ν+ +− ≥  . 

Step 4: Determining the parameters. In this study, the values taken for each parameter 
in Kahneman and Tversky's study were used to represent the decision maker's finite 
rational decision situation and the results were taken as 0.88α β= = , 2.25λ = ,

0.69δ = , 0.61γ = . 
(2) Actual decision-making process 
The sixth round of decision-making for the Newcastle Pneumonia outbreak is 

currently underway, the fifth round of decision-making has been completed. Based on the 
definition of the decision point, the emergency decision-making process for the Newcastle 
pneumonia outbreak has reached point 6. 

Step 1: Collect real-time data. Collect information on the spatial distribution, 
transmission dynamics, scale of infection, and epidemic information characteristics of the 
new crown pneumonia outbreak in immediate data. 

Step 2: Lead assignment. The decision maker assesses the situation of each lead based 
on the real-time data and assigns a value to it. The results of the assignment are: 

( )1,5 0.76,0.13x = , ( )2,5 0.73,0.11x = , ( )3,5 0.82,0.17x = , ( )4,5 0.69,0.08x =  ,  

( )1 0.23,0.04a = , ( )2 0.38,0.07a = , ( )3 0.19,0.09a = . 

Step 3: Calculate the predicted 'prospect' values. The predicted "prospect" values for 

each scenario ( )1,2,3ja j = are calculated as( ) ( )1 6
0.77,0.14V a = , 

( ) ( )2 6
0.83,0.08V a =  and ( ) ( )3 6

0.75,0.11V a = respectively. 

Step 4: Calculate the predicted performance. Calculate the predict performance of the 
decision-maker, ,5 0.8716ar = . Combined with Step2 in the preparatory work, the decision 

maker's predicted value,s tY , the corresponding true value,e tY  and predicted performance

,a tr  for each point in time up to time point 6 are collated and the results are shown in Table 

4.2. 

Table 4.2: Predicted, true and predicted performance for the state of the event next period 
before time point 6 

t  ,s tY  ,e tY  ,a tr  

1 (0.75,0.20) (0.74,0.24) - 
2 (0.73,0.15) (0.71,0.09) 0.8250 
3 (0.70,0.10) (0.69,0.10) 0.8423 
4 (0.76,0.06) (0.75,0.02) 0.9763 
5 (0.70,0.14) (0.72,0.06) 0.8716 

Step 5: Tests whether the predicted 'outlook' value of ( )
1j t

V a
+

 and the predicted 

performance of ,a tr  reach the 'satisfactory' level. The predicted "prospect" values of

( ) ( )1 6
0.77,0.14V a = , ( ) ( )2 6

0.83,0.08V a =  and ( ) ( )3 6
0.75,0.11V a =  meet the 

threshold conditions of6 6 0µ ν− ≥ and the predicted performance of,5 0.8716 0.75ar = ≥  

meets the threshold conditions. 
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Step 6: Compare the ranking of ( )1 6
V a , ( )2 6

V a  and ( )3 6
V a . According to the 

Pythagorean rule of comparison between fuzzy numbers, the score functions of the 

solutions ( )1,2,3ja j =  are ( )1 0.65S a =  , ( )2 0.76S a =  , ( )3 0.62S a = , then there 

are ( ) ( ) ( )2 1 3S a S a S a> > , ( ) ( ) ( )2 1 36 6 6
V a V a V a> > , so the optimal solution2a  is 

chosen and the decision process is finished. 
 

5 Conclusion 
In the big data environment, the methodological process of emergency decision-making 
has been transformed, and decision-makers can acquire, research and judge dynamic data 
instantly and respond in real time, and adjust the emergency response plan through the 
latest interactive feedback back from the results of emergency decision-making and the 
state of public emergencies, improving the flexibility and accuracy of emergency decision-
making. Based on this, this chapter proposes a data-driven dynamic emergency decision-
making approach: firstly, based on the idea of the lens model, decision-makers assign 
current clues to predict the next state of public emergencies based on real-time data, while 
converting the predicted values into predicted 'prospect' values under the framework of 
prospect theory. Secondly, the historical predicted values of decision makers and the 
historical true values of event states are collected and the correlation coefficients between 
them are calculated to derive the prediction performance; then, the predicted "prospect" 
values and the prediction performance are analysed as the basis for emergency decision-
making and specific decision-making steps are given. Finally, the validity and applicability 
of the data-driven dynamic emergency decision-making approach proposed in this chapter 
are further verified through the analysis and robustness testing of the cases. 
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