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Abstract. The evolution of a public emergency situation ienfdynamic, random and
multi-stage, requiring multiple decisions and dyimanpdates to the emergency response
plan according to the event situation until thethlmgcome is achieved. This research
proposes a data-driven approach to dynamic emeyrgdacision-making for public
emergencies based on lens model and prospect theltich in details are: 1)using lens
model foe reference, the state in the next stagpreslicted through the proximal
information in current stage; 2) considering theartminty of the public emergencies
decision-making environment, using the fuzzy numbedescribe the information cues
obtained by the decision-maker; 3) to simulateré@ decision-maker better, the method
is proposed in the framework of prospect theorysdglaon the above ideas, two key
parameters are invented for the dynamic emergenlgesion-making method: predict
prospect value and predict performance. At lasgse in public emergencies is applied to
illustrate the performance of the proposed method.

Keywords: emergency decision-making; data-driven; lens maatelspect theory

1. Introduction

The complex and volatile nature of public emergesn@nd the dramatic increase in the
amount of information and data related to them glacheavy burden on emergency
decision makers, who can more easily formulatédéal emergency response plan if they
have timely and accurate access to scenario infmand other relevant decision
information. Data can provide a clear picture @ évolution of a public emergency from
a dynamic, multi-dimensional perspective, and deaimakers can take full advantage of
the continuous stream of real-time data coming ih® emergency decision-making
system to develop an accurate perception of whadpgening and how it is developing,
and to gain a warm, tangible sense of what is h@pge[1l]. The data generated and
dynamically changed in real time provides a powdrasis for predicting the state of an
event, and decision makers can use the constgmiigted data to make judgements about
the state of the event and form reliable preferémfoemation [2]. Generally speaking, the
closer the preference information is to the acsitahtion, the more accurate the decision
outcome will be. Some scholars have explored thgeiof emergency decision-making
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based on event status updates, but there argosti#é shortcomings in the existing research:
(2) Traditional emergency decision-making is ugubfised on a static historical database,
and as the dynamics of public emergencies evoheavailable event data information
increases, making the decision information avadalidr reference clearer, more
accumulated and more complete. However, in theahamergency decision-making
process, the deeper value of data updating inrnfergency decision-making process is
overlooked due to the constraints of the levelatbdnining technology, data thinking and
awareness of decision-makers, etc. (2) Existingrgemey decision-making methods
usually focus only on the impact of each emergepleyn on the current emergency
response, ignoring the impact of the implementatibtihe emergency plan on the state of
the event in the next period. (3) Past researchshawn that decision makers need to
predict the next state of a public emergency ahedecision point, and adjust the
emergency response plan based on the predictioigieand activate the emergency
response plan that matches the current state gfuihlkc emergency to obtain the final
emergency response decision result. However, fieetizeness of this decision-making
method is affected by the level of decision-makersticting ability, which has not been
explored in depth in previous studies.

Given the complexity and uncertainty of public egegrcies, higher requirements are
placed on the flexibility and timeliness of emerggmecision-making. In the big data
environment, the data-driven emergency decisionimgaknodel presents dynamic and
predictive characteristics, which has significapplecation advantages and becomes an
effective path to improve the quality of emergemiscision-making [3]. This study
proposes a data-driven dynamic emergency decisaking approach, the essence of
which is to continuously collect real-time updagent status data, and comprehensively
consider the dynamic changes of contextual elenretdted to the evolutionary trend of
public emergencies, and then make adjustments gaates to the current decision. At the
same time, considering the limited rationality etiion makers in actual decision-making
situations, this study embeds prospect theory atdata-driven dynamic emergency
decision-making approach to characterise the niskepences of decision makers in the
face of gains and losses. In addition, the lensahddpicts the process of exploring the
state of distant variables through proximal obdeleraues, which fits the decision making
context of dynamic contingency decision making hick decision makers predict the next
state of an event by observing current data cuss,tlzerefore this study uses the lens
model to portray the decision makers' predictioocpss of the next state of an event in
dynamic contingency decision making.

In summary, this study introduces foreground theay the lens model, and proposes
a data-driven dynamic emergency decision-makinchatefor public emergencies. The
decision-making basis of this method mainly includg) predicting "prospect” values:
first, decision-makers assign current clues basectal-time data and generate predicted
values for the next state of the event by drawindhe idea of the lens model; then, the
predicted values are converted into predicted 'fpgot values by applying prospect theory.
(2) Predict performance: The predict value may hewaective bias due to the level of
predicting ability of the decision maker, so th&tbiical predict value of the decision maker
and the historical true value of the event statecatlected, and the correlation coefficient
between them is the predict performance.
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2. Reviewsof theLiterature

2.1. Emergency decision-making

Emergency decision-making for public emergenciderseto a special management
activity that makes full use of decision-makingdhies and methods to carry out dynamic
planning of emergency disposal plans or emergeespanse measures in order to
effectively respond to the casualties, propertgéssand social hazards caused by public
emergencies after the emergence of signs or therecce of public emergencies [4]. On
the one hand, scientific and reasonable emergesigidn-making can effectively control
the evolution of public emergencies in a timely mamand prevent the deterioration of the
situation from bringing about greater losses; @ndtier hand, it can make efficient use of
the available emergency rescue resources, maxtmiseffectiveness of resources and
provide solid human and material security for cagyout emergency rescue work.
Emergency decision-making in public emergenciesdemplex multi-objective dynamic
optimisation problem.

The problem of emergency decision-making in publitergencies is multi-stage in
nature, as evidenced by the following:

(1) The initial phase is the scenario when the ymsars of a public emergency are
visible or just about to occur;

(2) The intermediate stage is the state in whiphlaic emergency has occurred and
has developed to a certain point in time, eitherigh natural laws or human intervention.
This stage is a collection of scenarios consisbfhgultiple sub-stages, depending on the
development of the emergency and the emergencgmssghat has been taken;

(3) The final stage is when a public emergencyfectvely controlled as the event
state evolves and updates, and eventually reactasesof extinction or termination [5].

In addition, emergency decision-making in publiceegencies is dynamic in nature,
mainly because the effective handling of public eyaecies is based on the continuous
coupling and overlapping implementation of multigi@gle-stage emergency response
plans [6]. At each stage, decision-makers needdess the effectiveness of the emergency
response plan in controlling the situation basedreal-time information about the
emergency, and to predict the evolution of theasitun, so as to make a scientific and
reasonable emergency response decision. This nigatnthe decision-making process is
not a one-off decision, but a process of dynamicadljusting the emergency plan based
on scenario updates until the emergency is effelstimanaged.

From an analysis of the evolution of events, theettgpment of public emergencies
is a continuous process in time, and the correspgndmergency decision-making
activities are also a continuous process in timd,the whole process is full of uncertainty
[7]. However, decision-makers are often faced witltertainties such as difficulties in
obtaining information about deterministic eventdginal differences in perceptions of
events, and conflicting decision-making preferensesthe emergency decision-making
process for public emergencies is also charactehigesignificant uncertainties [8].

From the above analysis, the characteristics ofgamey decision-making in public
emergencies are mainly reflected in three aspéicstly, the multi-stage nature of the
emergency decision-making process, and the impmetasf each stage is different;
secondly, as the situation of public emergencieslveg, taking full advantage of
information technology, the information availabletbe event scenario is constantly clear
and complete; thirdly, as the decision informatamilable for reference is constantly
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updated, the subjective emotions and Third, asirtfmation available for decision

making is constantly updated, the subjective emstend preferences of decision makers
are adjusted and updated by the influence of uaicartformation, and gradually converge.

2.2. Prospect theory

Decision experts are usually finitely rational eatthan fully rational in the emergency
decision-making process [9]. Prospect theory wapgsed in 1979 by Kahneman and
Tversky, two scholars who designed various behaslogxperiments in their study of
decision-making behaviour based on expected utiliepry and found that expected utility
theory ignored the irrational factors of decisioakimg subjects. The basic idea of prospect
theory is that under risky decision-making condisip subjects exhibit heterogeneous
psychological preferences and limited rational b@haal tendencies when faced with
losses and gains, including certainty effectseséfle effects, reference dependence and
loss aversion [10]. The behavioral tendencies destiby prospect theory are more in line
with the objective reality and are widely used lwe tstudy of decision problems. For
example, Bharsakade et al. considering the inflaefidimited rationality on the subject's
decision making behavior, a multi-attribute dedisinaking method is proposed in the
intuitionistic fuzzy language environment by comb prospect theory and evidence-
based reasoning methods [11]. Xu et al. considéxetieterogeneous preference problem
of group decision making and designed an emergelecysion framework based on
cumulative prospect theory, which can effectivehprove the consistency level of group
decision-making [12]. Liu and Li used prospect tlyga a probabilistic linguistic setting
to construct a prospect decision matrix, combinéth wecision indicator weights to
calculate the combined prospect values of alterestiand proposed a new emergency
response decision method [13].

This study makes full use of the advantages of gaaistheory in effectively
portraying the heterogeneous psychological preterdmehaviour of decision-making
subjects and introduces it into the process ofiogahcy decision analysis to describe the
limited rational behaviour of subjects in dynamacision-making situations. According
to the basic principle of prospect theory, decisiobjects are more sensitive to "loss" than
"gain", they are often risk-averse when faced Wots, and risk-averse when faced with
gain. Applying prospect theory to the real worlddeftision-making, the prospect of an
alternative a is calculated as

V(a)=2v(yw(p)

The greater the prospect vaMx{a) of the solutiora, the better the decision

subject's expected prospect for the solution. Tddeevfunctiorv reflects the subjective
feeling of the decision subject about the gairoesland is expressed as

B

(y_yo)a Y=Y 2 C
wherey represents the objective gain ayjthe gain reference poityt—Y,. This
represents the deviation of the actual return @ttenari@ from the reference poiry,
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with a gain aty—Y,20 and a loss &y—-Y,<0. aandf are the risk sensitivity

coefficients of the decision maker to gains anddssrespectively , which take values in
the rang® <a <land0 < S <1.A is the loss aversion coefficient add> lindicates that
the decision maker is more sensitive to losses.

pc)'
75 Y~ Y <0
o+ (1)’
w(p)= o (2-1)
, y 1y y_yOZO
-y

(2-1) is the subjective probability weight of thecision maker, the weight that the
decision maker subjectively assigns to the proliglf the expected outcome occurring.

Where p is the probability of the expected outcomeandd are the risk attitude

coefficients of the decision maker when the psyobichl expected outcome is a gain and
a loss, respectively.

2.3. Thelens model

The lens model, proposed by cognitive psycholoBrsinswick (1956), is based on an
‘organism-environment' structural model that usssries of directly proximal observable
cues to explore and gain insight into the realftgtistal variables [14]. The lens model has
been widely used in decision making as it can wesdhe internal processes and
mechanisms by which decision makers generate dadisiormation.

Mission
System

Cognitive
System

. Performanc
Figure2.1: Lens model

As can be seen in Figure 2.1, the lens model isranetrical model consisting of a
task system and a cognitive system, connecteddayies of information cues, which are
the reference elements that the subject reliesf@nwnaking decisions. The task system
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reflects the association between the true outcofntheo observed targel, and the

information cues; the cognitive system reflects #ssociation between the decision
subject's predicted outcome of the observed taljetind the information cues.

In a task system, the correlation between theduteome of the observed tardgt
and a set of information cues can be fitted wilim@ar model of
Ye = e,1X1+ re,2X2+'“ +renxn t&

wherex;, X,,-+, X, is the cue associated with the true resyjlt and the predicted

resulty;, r,,,r,,,--,f,,corresponds to the weight of each cue and reftemts closely

each cue is associated with the true ré§ulandg, is the residual, which represents the
random error between the fitted result calculatechfthe cue values and weights and the
true result Y,.

In a cognitive systeM represents a decision subject's judgement andgpieediof
the developmental state of an observed target lmasaderies of information cues, and its
association with the cues can be fitted by andthear model:

Y = rs,lxl-i- rs,2X2+”' + rsnxn +£s

S

where r,,, T, ,, .l corresponds to the weight of each cue in the tvgnsystem and

reflects the extent to which the decision makeenefo and uses each cue in making the
predicted outcom¥,, ands, is the residual, which represents the random eetween the
fitting result calculated from the cue values amighits and the decision maker's predicted
outcome Y.

After a decision subject has made a predictiomprisliction performance is measured
byr,, r, =corr (Ye,YS), which represents the correlation coefficient leetw the true

outcomeY, and the predicted outcom® , generally calculated using the Pearson

correlation coefficient. The correlation coeffici€p reflects the correlation between the

prediction made by the decision subject and the state of the observed target and
portrays the degree of accuracy of the predictiaderby the decision maker.

3. Emergency decision-making methods

3.1. Problem description and analysis

Decision makers rely on a series of informationeslto form their perceptions of the
current real state of public emergencies and theidictions of the future state of
development, and event data is the concrete expreséthese information clues. In the
big data environment, decision makers make deadiomough the mining and analysis of
event data, forming a data-driven emergency detisiaking model. The main
characteristic of dynamic emergency decision-makimdplems is that the state of a public
emergency evolves dynamically over time, and dexsimade by decision-makers at each
decision point are based on predictions of theesthevents at the next point in time. The
lens model can be used to analyse and presentrélcess by which decision makers
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combine cues to form predictions. This chapter éridlw on the ideas of the lens model to
design a data-driven approach to dynamic emergdecigion-making.

The core of the approach lies in the decision malgediction of the next state of a
public emergency through the following process: €heergency decision maker is faced

with a set of option& = (ai,az,u-aj ) . At any given decision poibht the decision maker
collects and analyses a range of real-time datfotm a judgement about the cues
X, X, X, that are associated with the state of the everthatext point in time.
Considering that the contingency plap(j =12, ,m) implemented by decision
makers in the current period also has an impad¢hemext state of a public emergency,
this study uses the contingency pﬁrﬁ j=12;-- ,m) implemented in the current period
as one of the cues to predict the next state oktlemt. Thus, at any decision pdint
decision makers form an analysis of the c4eX,, -+ X, and scenario cues based on a

series of real-time data to obtain a predictiothefnext state of the evert (aj)

st+1 '

Data

Analyze Predict

Decision-
maker

Y(a)

s,t+1

Preformcel,;

Figure 3.1: Prediction process
Traditional lensing models generally use a singimtto describe cues, but emergency
decision-making situations for public emergenciesadten highly uncertain, and decision-
makers have difficulty evaluating a cue with pramgis preferring instead to give fuzzy
evaluations. Pythagorean fuzzy sets are more esipees dealing with uncertainty and
fuzzy information [15]. When using the lensing mioaepredict the state of an event, the
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advantage of Pythagorean fuzzy numbers in portgayimcertain information can fully
express the fuzzy nature of the decision makegtuation of a cue. Therefore, this study
applies Pythagorean fuzzy numbers to assign cukuaians, while assembling cue
information based on the Pythagorean fuzzy numiagerithm to form the decision
maker's prediction of event states.

In emergency decision-making situations where mfation is uncertain and time
pressure is high, decision makers tend to be ldhiteational and have subjective
distortions in their perception of benefits andsissuch as pursuing the "certainty effect",
given the same expected benefits, decision makeis tb choose certain benefits over
risky ones [16]. The decision maker's attitude tasarisk in the face of gain and loss
affects the outcome of his or her decision, andpeot theory better portrays the limited
rationality of decision makers. Therefore, thisdstembeds prospect theory into a data-
driven dynamic contingency decision-making appraach way to simulate real decision-
making situations and portray the limited ratiotyatif decision makers.

3.2. Methodological analysis

In dynamic emergency decision-making problems,dgi@cimakers predict the next state
of a public emergency based on real-time data anemt cues. If the decision maker is
fully rational, then the predicted value can bedudizectly as the basis for the decision
maker's choice of scenario. In reality, howeveeg tiuthe limited rationality of the decision
maker, the predicted 'prospect’ value can bettigctethe decision maker's subjective
perception of gains and losses, and better matehattual decision-making situation.
Therefore, this study uses the predicted 'prospalttt as the basis for decision makers to
choose the current contingency plan. As the cdiomaf the predicted ‘prospect’ value is
based on the decision maker's prediction of th¢ staxe of the event, there is subjectivity
in the decision maker's weighting and assignmewues when solving for the predicted
value, which means that the accuracy of the prediotutcome is affected by the decision
maker's own factors. In this case, the predicteabsfgect' value should not be used as the
only basis for decision making, so this study reterthe judgmental performance in the
lens model and introduces the prediction perforreaimdicator, which is obtained by
calculating the correlation coefficient betweendkeision maker's predicted value and the
true value of the event. Predict performance r&fléree degree of accuracy of the decision
maker's subjective predict and is one of the bsegecision making.

Based on the above analysis, this study improves dicision-making method
proposed by Jing Gu et §.7] and introduces it into the field of emergerdscision-
making for public emergencies:

1. Predict "prospect"” values

Based on the task system in the lens model, thdigtien process of the decision
maker in Figure 3.1 is used as the basis for tlayais and the calculation method for
predicting the "prospect value" is proposed.

(1) Cue selection and weighting. A number of vdgalwith the highest relevance to
the public emergency situation were selected asscland the weights of each clue were
calculated using the DEMATEL method.

(2) Collect real-time data and calculate predictreéues. Based on the cue weights
solved in the previous step, the decision makegass value to the cue based on the real-
time data to predict the next state of the event.
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Y(aj )s,t+1 = Z rSyi )g,t + rSvn’flai (31)
i=1
In the equation (3-1X;, (i =12, n) represents thecues for decision makers at the
point in timet ; & (j=12,--m) is the j option from the set of options

A={a1, a,, ,am} as an additional lead for predicting the 'prospsttie is the

! rs,n+1
n+l

weight of the option ‘cuesa, (j =1,2;--m), sty r, :1;Y(aj )St+1 represents the
i=1 '

decision maker's prediction of the state of a puélhergency at thd +1point in time
following the adoption of the contingenay(j =1,2,;-- ,m).

(3) Inscription of uncertain decision informatigkssigning value cues and solution
cues in the form of Pythagorean fuzzy numbers, &te g

Y(a‘j )s,t+l = rs,lxll D r5,2)(2t D D rsnxnt D rsn+ p]
wherex , = (,Ui,t’Vi ,t)(i =1,2;-- ,n) is the Pythagorean fuzzy numbhgr, indicates the
extent to which the decision maker believes thatstiate of X, meets the "ideal" level,

andv,  indicates the extent to which the decision makéebes that the state &f, does

not meet the "ideal" level. The above equatioreisell on the Pythagorean fuzzy number
algorithm and the Pythagorean fuzzy weighted aeoggrator.

(4) Calculating the predicted "prospect” value.d&hbsn the predicted state of the next
public emergency, decision makers have a sendeeofdlue and weight of each cue and
further calculate the predicted "prospect” value.

First, choose the reference point. Choose the eefer pointx, = (0.5,0.5)
according to the definition of the Pythagorean fjuzamber and the score function;

Second, based on prospect theory, the value funofithe cluex , (i =1, 2,-~-n) is
obtained as

-AD(%.%)" X, <%,
D(x. %)  %,2%
Of which. D(x,,%,)=(1-maxL, H,,) ,mifL, H,,))
L= min(0.5,,ui’t) = min(0.5,1—vi’t)
max( 0.5, ) max( 0.5,1-v, )

The value function()g’t) is a Pythagorean fuzzy number, that is the predigirospect"

v(x,)=

value of the lead is a fuzzy numbefx, ) = (,uv()q Vi )) .

The weights of the leads, (i =12, ,n) are then calculated as
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2 +fier,) T o
)=
[r;+(1—rsyi)y}i X, 2%

Finally, the decision maker's predicted "prospettdopting a particular contingency
option is obtained as follows:

V() =0 w(res) Bz Jw(rs ) 8- J s, ) O v(a Jw(rs, )

{ ’ ” [+4 “(W)W(rs") {s ”v(aj))W(rW) rJ i) Wiﬁ"))j

2. Predict performance

(1) Historical data collation. At each time pdi{k =1,2;-- t—1 before the time
pointt , the decision maker gives the predicted valuehef mext state of the event
Y(aj )s,k+1' When the decision process advances to the tinm¢lpt 1 | the true value of

the event stat’é(aj )e o1 is displayed and is in the form of a Pythagoreezy number.

Y. :{Y (aj )S k+1|k =1,2,-- t- } Collate historical data of predicted and true value

at each point in time witl, representing the set of predicted values befael#tision
maker's point in time t for each element of the set
Y(aj )s,k+1 :(,U(Ys,j ),V(YS,J- ))(j =1,2,;-- t) andY, representing the set of true state
values before the decision maker's point in timdor each element of the set
Y ={Y(aj) k+l|k =12t —% for each element of the set

Y(a, )e,k =(Iu(Ye,k)'V(Ye,k)) '

(2) Predictive performance calculation
According to the solution of the Pythagorean fusey correlation coefficient, the
decision maker's predicted performance at the poitinet is

cov (¥, Y,)
SIALIA

e

ra,t =P (Ye’Ys) =

where forCOV (Ye,YS) are the covariances of the Pythagorean fuzzyYsetsd Y,
D(Y,) andD(Y,) are the variances of the Pythagorean fuzzy¥setsd respectively
Y.

s*
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cov(Y,Y,)= Z{( (v.,)-7 )(ﬂ(Ys,j)-ﬂYs,,)+(V(Ye,j)-'7ve,,)(V(Ys,j)‘vvs.,)}

)= 3 (), + (o), )]
(=253 (uv ) (o), )]

D
Where(ﬂve. ’VYeJ ) (/JY

respectively.

j) is the mean of the actldl set and the predicted set,

Let b, :ﬂ(Ye,;)_ﬁve,j C, :,u(YSY].)—,UYS‘j d, :V(Ye’j)—VYaj g :V(Ys,j)_vvs,i , then
the calculation of predicted performance can bekfied as

t
Z(bjcj +djei)

=1

Rl ee)

j=1 =1

4. Case studies

4.1. Case background

At the end of 2019, a sudden outbreak and rapidaspof novel coronavirus to several
provinces and cities in China caused huge cassaltid economic losses, and seriously
disrupted the normal social order. A study by Gadlei and Liu Nan [18] pointed out that
the evolutionary status of the new coronavirus pmania epidemic could be judged from
four dimensions: spatial distribution, transmissidynamics, scale of infection, and
epidemic information characteristics, as shownha table. Based on this, this study
conducted emergency decision-making research aalgisis by collecting historical and
real-time data of these 4 dimensions. Data sounmsde data released by the Chinese
Centre for Disease Control and Prevention, the étpid Prevention and Control Office,
and the New Coronary Pneumonia Epidemic Querydthatf

Table 4.1 Evolutionary status of the new crown pneumonidmak

S4:
o Resumption
) S2:Multi-city S3:National of work and
Status S1:Uncontrolled peak under :
. outbreak under . production
Features and rapid spread . community
traffic control and
control
concurrent
management
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of the
epidemic
period
Concentrated i Serious
. a single city, Outbreak in outbreaks in  Outbreaks
Spatial S . X . . o
e distributed with  multiple regions multiple exist in a few
distribution . . " . o
neighbouring and cities regions and cities
cities cities
. Population Aggrega;e .
Propagation mobilit communication, Aggregate Aggregate
Dynamics y community transmission transmission
transmission ST
communication
_Scale' of Smaller overall The oyerall Very large Dwindling
infection scale is large overall numbers
_Outbrea_k Height High level of Decreasing  Low
information . . . .
uncertainty uncertainty uncertainty  uncertainty

characteristics

This study addresses the sixth roun(lt(;f 6) control options for decision making
after the initial control phase of the outbreak}wtihree optiona ={ a,a,, a3} as follows

& : normal inter-urban movement, quarantine gatesranuediate isolation of those
in abnormal health conditions;

a,: Zone closure for key areas of the epidemic, nbaneess to the rest of the area,
guarantine gates and immediate isolation of thesdnormal health conditions;

a,: The city is closed to traffic.

4.2. Decision-making process
(1) Preparation

Step 1. Clue selection and assignment. Through reviewiterature and field
research, and combining the results of Ge HongleiLéau Nan (2020), a total of five clues

indicators were selected for this study, includfogr cluesx = "spatial distribution” ,
X, = "transmission dynamics¥, = " Infection size" X, = "Epidemic information

characteristics”, and one programme ap(ej =l,2,3 . The weight of each cue was
obtained using the DEMATEL method at
rf =(0.204,0.196,0.218,0.189,0.])S :

Step 2. Collation of historical data. Collect and colldke predicted values for the
next period of the event state and the correspgntifire values of the event made by
decision makers at the point in titne 1, 2, 3, 4, &, the results are shown in Table 4-2.

Step 3. Preset thresholds. Based on interviews with a mundf emergency
management experts, the threshold conditions, forare:r,, 2 0.75 and fof\/(aj )t+1
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are:;fd,, —V,,, 20 .

Step 4. Determining the parameters. In this study, theestaken for each parameter
in Kahneman and Tversky's study were used to reptethe decision maker's finite
rational decision situation and the results weikeraas a = 3=0.88, 4 =2.25,
0=0.69,y=0.61

(2) Actual decision-making process

The sixth round of decision-making for the Newaas#ineumonia outbreak is
currently underway, the fifth round of decision-rimakhas been completed. Based on the
definition of the decision point, the emergencyisiea-making process for the Newcastle
pneumonia outbreak has reached point 6.

Step 1. Collect real-time data. Collect information on tkpatial distribution,
transmission dynamics, scale of infection, and @pid information characteristics of the
new crown pneumonia outbreak in immediate data.

Step 2: Lead assignment. The decision maker assesséaguiuios of each lead based
on the real-time data and assigns a value to ie fesults of the assignment are:

X5 = (0.76, 0.13, X5 = (0.73, 0.11, X35 = (0.82, 0.17 X5 = (0.69, 0.03 ,

a = (0.23, 0.04),a2 = (0.38, 0.0') , 8y = (0.19, 0.09.

Step 3: Calculate the predicted 'prospect' values. Thdigied "prospect” values for
each scenaria, ( j =1,2,3 are calculated 35(a,), =(0.77,0.14,

V(a,), =(0.83,0.08 and V(a,), =(0.75,0.1}respectively.

Step 4. Calculate the predicted performance. Calculatg@tidict performance of the
decision-maker, ; = 0.8716. Combined with Step2 in the preparatory work,d&eision
maker's predicted valg, , the corresponding true valMg and predicted performance
ra,t

4.2.

Table 4.2: Predicted, true and predicted performance fostate of the event next period
before time point 6

for each point in time up to time point 6 are at#d and the results are shown in Table

t YS,I Ye,t ra,t
1 (0.75,0.20 (0.74,0.24 -
2 (0.73,0.15 (0.71,0.09 0.825(
3 (0.70,0.10 (0.69,0.10 0.842:
4 (0.76,0.06 (0.75,0.02 0.976:
5 (0.70,0.14 (0.72,0.06 0.871¢

Step 5: Tests whether the predicted 'outlook'’ vaIue\b(aj )t+l and the predicted
performance ofr,, reach the 'satisfactory’ level. The predicted Speet” values of
V(a), =(0.77,0.13 ,V(a,), =(0.83,0.08 andV(a,) =(0.75,0.1) meet the
threshold conditions gfi; —V; = Oand the predicted performance gf =0.8716= 0.7!
meets the threshold conditions.
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Step 6: Compare the ranking M‘(al)6 ,V(az)6 andV(ag)G. According to the

Pythagorean rule of comparison between fuzzy nuspbifye score functions of the
solutionsaj(j =l,2,3 areS(a1)20.65 ,S(a2)=O.76 ,S(a3)20.62, then there

areS(a,) >S(a,) >S(a;).V(a,), >V (a),>V(a;), so the optimal solutiod, is
chosen and the decision process is finished.

5 Conclusion

In the big data environment, the methodologicakpss of emergency decision-making
has been transformed, and decision-makers canracgesearch and judge dynamic data
instantly and respond in real time, and adjustethrergency response plan through the
latest interactive feedback back from the resultemergency decision-making and the
state of public emergencies, improving the flexipnd accuracy of emergency decision-
making. Based on this, this chapter proposes adiatan dynamic emergency decision-
making approach: firstly, based on the idea of léms model, decision-makers assign
current clues to predict the next state of pubiiesgencies based on real-time data, while
converting the predicted values into predictedspest' values under the framework of
prospect theory. Secondly, the historical predictatlies of decision makers and the
historical true values of event states are coltbatad the correlation coefficients between
them are calculated to derive the prediction penforce; then, the predicted "prospect"
values and the prediction performance are analgisetie basis for emergency decision-
making and specific decision-making steps are gikFarally, the validity and applicability
of the data-driven dynamic emergency decision-ntkipproach proposed in this chapter
are further verified through the analysis and rafess testing of the cases.
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