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Abstract. In this paper we present a two species prey predator reaction–diffusion model 
with Holling II functional response to study the effects of drought to the dynamical 
behaviour of wildebeest (Connochaetustaurinus) and lion (pantheraleo) in the Serengeti 
ecosystem. We discretized our model equations by the implicit Euler method and the 
numerical simulations were performed in Matlab. The major limiting factor for 
wildebeest abundance is availability of enough forage and predation. We varied the 
parameter of drought for prey and predator and observed that drought reduces the 
abundance of both species. If drought persists then it is likely to lead to extinction of both 
species. Further we found spatial driven variabilities arising when both wildebeest and 
lion move through diffusion processes. The results predict that diffusion of the wildebeest 
is motivated by search for better forage and avoiding predators while the diffusion of lion 
is motivated by hunting the prey. Our model agrees with different theoretical and 
empirical studies about the environmental effects to the survival of wildebeests and lions. 
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AMS Mathematics Subject Classification (2010): 92D40 
1. Introduction 
The great migration of wildebeest (Connochaetestaurinus) from Serengeti national park 
in northern Tanzania to Masai-Mara in Kenya followed by other ungulates and predators 
is so distinctive that it has attracted researchers and visitors around the world [1]. The 
great migration is an annual movement of millions of animals searching for better forage 
[1,2]. Prey-predator mathematical models have been extensively studied by many authors 
[3]. Ecological studies in the Serengeti ecosystem have focused mainly on factors such as 
poaching, retaliatory killings, prey refuge diseases outbreak such as the study of [1,3,4,5]. 
Only a few studies included mathematical models such as the study of [1]. These studies 
relied mainly on explaining some factors such as food, predation and sustainable 
harvesting strategies of wildebeest and other herbivores species in the Serengeti 
ecosystem. None of these studies included the aspect of diffusion (migration) in the 
mathematical model. Migration of wildebeest and other species touches different patches. 
We included diffusion in the model to capture dynamics such as the existence of a 
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minimal patch size necessary to support a population, the presence of traveling wave 
fronts corresponding to biological invasions, and the formation of spatial patterns[7]. 

Drought has been reported to limit wildebeest abundance. Since 1960’s 
wildebeest population has been fluctuating to about 1.3 million until the year 1993 when 
a severe drought reduced the wildebeest population to about 917,000 wildebeest [6] 
however the population has since recovered to about 1.5 million wildebeest. While prey-
predator interactions involving diffusion have been applied to investigate the spatial 
spread of diseases [7,8] the Lotka-Volterra prey predator models with diffusion have 
been developed to study migration of different species such as fish schools and insect 
swarms [6-8,9]. Surprisingly these reaction diffusion models have been less considered in 
modeling ungulate migration and their predators. Therefore, in this paper we present 
Lotka-Volterra two species prey predator reaction–diffusion model with Holling II 
functional response to study the dynamical behaviour of wildebeests and lions. 

2. Methods 
(i) Data sources 
Data used in this study are aerial photo counts collected from Serengeti national park 
showing wildebeest locations in the Serengeti National Park. Data were collected 
April/May, 2015.In addition, we used reports and data from Tanzania Wildlife Research 
Institute [10]. 
 
(ii) The mathematical model 
The following are the parameters were used in the model:   � is the per capita intrinsic growth rates for wildebeests  � , �  is its carrying capacity, ℎ  
is the capturing rates of lions�on prey  � , � ℎ�  is the predator’s handling time on prey, 	  is the mortality for prey due to drought, the natural mortality rate of the predator is 
 
and the death of predator due to drought is �, the parameter � measures the predator’s 
efficiency to convert prey biomass into fertility (reproductivity), the diffusion coefficients 
are 
��, 
��, 
��, and 
��. Our proposed model is defined as follows: 

����� = �
�� ������ + 
�� ������� + �� �1 − ��� −  �!�"#� − 	�
�!�� = �
�� ��!��� + 
�� ��!���� − 
� + � �!�"#� − �� $   (1) 

�%&' > 0, �%&' > 0 and all the parameters �, �, ℎ, 	, 
, �, �, �  are positive. 

From model equations (1), the first equation represents the prey where the first 
two terms represent the diffusion part and the third term is the prey logistic growth, the 
fourth term represents the loss of prey due to interacting with lion and the last term is the 
loss of prey due to drought. The second equation represents the predator where the first 
two terms represent the diffusion part, the third term is the natural death of predator, the 
fourth term is the gain of predator after a successful hunting of prey and the last term is 
the loss of predator due to drought. 

(iii) Mode analysis 
The analysis of the mathematical model involves the local and global stability analysis. 
This is performed to analyse the ecosystem dynamics. This is done by letting the 



Modelling Predator Prey with Diffusion for Migrating Wildebeest and Lion in the 
Presence of Drought 

53 
 

diffusive parameters
�� = 
�� , = 
�� = 
�� = 0 . The remaining prey predator model 
is defined below 

����� = �� �1 − ��� −  �!�"#� − 	� �!�� = −
� + � �!�"#� − �� $     (2) 

 

(iv) Boundedness of the system 
The developed mathematical model deals with living individuals, therefore, the solution 
of the prey-predator model developed in (2) must be positive and bounded within its 
region. 

Lemma 1. All the solutions of the system (2) which start with ℝ"+  are uniformly 
bounded.  
Proof: To prove the Lemma, we define a function 

,%&' = �%&' + 1� �%&' 

where,%&' represents the total population of the prey and predator species 

�-�� = ���� + �� �!��        (3) 

Substitute equation (1) into equation (3) we get the following 

�,�& = �� �1 − ��� − ℎ��1 + �� − 	� + 1� .−
� + �ℎ��1 + �� − ��/ 

Then all terms with interspecific competition are cancelled out, we remain with 

�,�& = �� �1 − ��� − 	� − 1�  %
 + �'� 

We choose the arbitrary constant to be Ω then the equation above will be written as 
follows �,�& = �� − 	� − ���� − 1�  %
 + �'� + 0,%&' − 0,%&' 
Thus, 

�-�� + 0,%&' ≤ �� − 2��� − 	� − �� %
 + �'� + 0 .�%&' + ��  �%&'/ 

Using the concept of perfect square we obtain  

�-�� + 0,%&' ≤ %� − 	 + 0'� − 2��� − �� % 
 + � − 0'�. 
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But Max  �� �1 − ��� is
�32, it follows 

�,�& + 0,%&' ≤ �4� %� − 	 − 0'� − �� 5�� − %� − 	 + 0' �� � + �� .� − 	 + 04�� /�6
− 1� % 
 + � − 0'� 

Then using techniques of completing the square it follows 

�,�& + 0,%&' ≤ �4� %� − 	 − 0'� − �� 7� − %� − 	 + 0' �2�9� − 1� % 
 + � − 0'� 

Let
�32 %� − 	 − 0'� = :�, thus, 

�-�� + 0,%&' ≤ :� 

Solving this differential inequality using the integrating factor ; =  <=�  we 
obtained ,%&' = >?= + @<A=�. 
At & = 0, ,%0' = 0, then@ = − >?= . This gives ,%&' = >?= %1 − <A=�' 

As & → ∞, 0 ≤ ,%&' ≤ >?= . Therefore, ,%&' is bounded. And from positivity of �  and �  
0 ≤ D%&' ≤ >?= and0 ≤ E%&' ≤ >?=  

It follows that all the solutions of the system (2) that start in ℝ"+ are confined within the 

region F  such that  F = G%�, �' ∈ ℝ"� : , = >?= + J,   �for any�J > 0K. 
(v) Existence of equilibrium points of the system 
Taking

���� = 0 and 
�!�� = 0  we get the following three equilibrium points namely 

(i) LM%0,0' is the extinction of both species, prey and predator 
(ii)  L�%�∗, 0' is the persistence of prey and extinction of predator 
(iii)    L�%�, �∗' is the coexistence or equilibrium point of the system 

The equilibrium points LM%0,0' and L�%�∗, 0'are trivial and are saddle points (unstable) 
while  L�%�, �∗' is non trivial equilibrium point (the co-existence point) with �∗, �∗ > 0 �� �1 − ��� − ℎ��1 + �� − 	� = 0 

 −
� + �ℎ��1 + �� − �� = 0  
Using MAPLE software, we obtain the following co-existence point    L�%�, �∗'= .− 
 + ��
 + �� − �ℎ , − �%��
� − ��
	 + ���� − ���	 − ��ℎ� + ��ℎ	 + 
� + ��'�%�
 + �� − �ℎ'� / 

where, �
 + �� − �ℎ > 0  
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The co-existence equilibrium point exists if �
 + �� − �ℎ > 0  and � − 	 > 0 
In the following section, we describe the local and global stability of our model. The 
local stability means that the equilibrium point is stable to small perturbations, such that 
if you push the system (put the system somewhere near the point), the system moves back 
to its equilibrium point whereas, the global stability means that the system will come to 
the equilibrium point from any possible starting point within the system. 
 
(vi) Local stability analysis of the equilibrium points 
The local asymptotic stability of each equilibrium point is studied by computing the 
Jacobian matrix and finding the eigenvalues evaluated at each equilibrium point. For 
stability of the equilibrium points, the real parts of the eigenvalues of the Jacobian matrix 
must be negative. From the system equations (2), the Jacobian matrix of the system is 
given by 

O%LP' =
Q
RS

TU�TD TU�TETU�TD TU�TE V
WX 

O%LY' =
Q
RS� − 2��∗� − ℎ�∗%1 + ��∗' + ℎ��∗�∗%1 + ��∗'� − 	 −ℎ�∗%1 + ��∗'�ℎ�∗%1 + ��∗' − �ℎ��∗�∗%1 + ��∗'� −
 + �ℎ�∗1 + ��∗ − �V

WX 

  L�%�∗, �∗'= .− 
 + ��
 + �� − �ℎ , − �%��
� − ��
	 + ���� − ���	 − ��ℎ� + ��ℎ	 + 
� + ��%�
 + �� − �ℎ'� / 

O%L�' = .L�� L��L�� L��/ 

Using MAPLE software we get the following:  

L�� = 14 1
� .%
 + �'� − �� �ℎ/� %%
 + �'� − �ℎ' 54�%
 + �'Y%� − 	'�Y

− 9 5�ℎ%� − 	'� + 89 �%
 + �'6 %
 + �'���
+ 7�ℎ%
 + �']�ℎ%� − 	'� + �%
 + �'^�
− 2 5�ℎ%� − 	'� + 12 �%
 + �'6 ��ℎ�6 

L�� = %
 + �'ℎ%2
 + 2�'� − �ℎ 
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L�� = 14 �%� − 	']%
 + �'� − �ℎ^� + �%
 + �'� ��ℎ
� .%
 + �'� − �� �ℎ/�  

L�� = 2%
 + �']%
 + �'� − �ℎ^%2
 + 2�'� − �ℎ  

The stability of the O%L�' is stated using the the characteristic of polynomial equation 
techniques using trace and determinant techniques proposition as follows  

Preposition 1. Suppose the Jacobian matrix evaluated at the coexistence equilibrium 
point has a characteristic polynomial equation of the following form:  _ � − &��
<%O%L�''_ + 
<&<�:`a�a&%O%L�'' = 0 

such that  &��
<%O%L�'' = L�� + L��and
<&<�:`a�a&%O%L�'' = L��L�� − L��L�� 

The co-existence equilibrium point is locally asymptotically stable or stable spiral if &��
<%O%L�'' < 0  and 
<&<�:`a�a&%O%L�'' > 0 . Also the interior equlibrium point is 
center (neutral stable) if &��
<%O%L�'' = 0 and 
<&<�:`a�a&%O%L�'' > 0. 

(vii) Global Stability of equilibrium points 
Points L�  and L�  are shown by Linearizing the system of equations (2) and defining 
appropriate Lyapounov function to separately described each equilibrium point. The 
Linearization process is done using Jacobian technique such that 

�cP�& = O%LP'cP 
where O%LP'  is the Jacobian Matrix and cP  is the small perturbation on �P .Therefore 
system (1) reduces to the following linear system; 

��d�� = e� − �2�∗� −  !∗%�"#�∗' +  #�∗!∗%�"#�∗'� − 	f c − e  �∗%�"#�∗'f g
�h�� = e � !∗%�"#�∗' − � #�∗!∗%�"#�∗'�f c + e−
 + � �∗�"#�∗ − �f g $  (4) 

We choose the following Lyapunov function 

i%c, g' = c�2 + g�2  

The function i%c, g'is positive definite since i%c, g' ≥ 0, ∀ %c, g'. 

TiTc = c,    TiTg = g 

The time derivative of i%c, g'  is given by 
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�l�� = �l�d �d�� + �l�h �h��        (5) 

Substituting equation (4) into equation (5) we get the following relation 

�l�� = c e�� − �2�∗� −  !∗%�"#�∗' +  #�∗!∗%�"#�∗'� − 	� c − �  �∗%�"#�∗'� gf + g e� � !∗%�"#�∗' −� #�∗!∗%�"#�∗'�� c + �−
 + � �∗�"#�∗ − �� gf     (6) 

For a fixed point L�%�∗, 0' 
We substitute L�%�∗, 0' = L� ��%2Am'2 , 0� to equation (6) we get 

�i�& = c 7.� − 2��∗� − 	/ c − . ℎ�∗%1 + ��∗'/ g9 + g 7.−
 + �ℎ�∗1 + �� − �/ g9 
This simplifies to 

�l�� = c�%−� + 	' − �  �%2Am'2"#�%2Am'� cg + �−
 + � �%2Am'2"#�%2Am' − �� g� (7) 

Therefore from the equation (7) the equilibrium point L�%�∗, 0' is globally asymptotically 
stable if %� − 	' > 0  
Hence, in the absence of the predator, point L�%�∗, 0'is globally stable if the intrinsic 
growth rate of the prey population is greater than the natural mortality rate. 

For steady state   L�%�∗, �∗' 
We substituted 

  L�%�∗, �∗'= .− 
 + ��
 + �� − �ℎ , − �%��
� − ��
	 + ���� − ���	 − ��ℎ� + ��ℎ	 + 
� + ��%�
 + �� − �ℎ'� / 

into equation (6) we obtained an equation of the following form 

�l�� = L��c� + %L�� + L��'cg      (8) 

Therefore the point   L�%�∗, �∗' is globally stable if the condition below holds 

�i�& = %L��c� + %L�� + L��'cg' < 0 

(viii) Model analysis with diffusion 
From the system of equations (1) 
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�T��& = 5
�� T��TD� + 
�� T��TE�6 + �� �1 − ��� − ℎ��1 + �� − 	�
T��& = 5
�� T��TD� + 
�� T��TE�6 − 
� + �ℎ��1 + �� − �� nop

oq
 

(ix) Numerical solution 
In this section we use the implicit Euler method to approximate solutions to the model 
equations (1) subject to the boundary conditions�%D, 0, &' = �%r�, 0, &' = 0 , �%0, E, &' =�]0, r� , &^ = 0  and initial conditions �%D, E, 0' = �M  and �%D, E, 0' = �M  Such that  0 < D < r�, 0 < E < r�and 0 < & < s. We chose r� = 1, r� = 4  ands = 1000. The 
time derivative is discretized by using forward difference rule and while the spatial 
derivatives are discretized using the central difference approximation as shown below 

�P,tu"� − �P,tua = 
�� 5�P"�,tu − 2�P,tu + �PA�,tuℎ� 6 + 
�� 5�P,t"�u − 2�P,tu + �P,tA�uℎ� 6
+ ��P,tu 51 − �P,tu� 6 − ℎ�P,tu �P,tu1 + ��P,tu − 	�P,tu  

!v,wxy?A!v,wx
z = 
�� .!vy?,wx A�!v,wx "!v{?,wx

 � / + 
�� .!v,wy?x A�!v,wx "!v,w{?x
 � / − 
�P,tu + � �v,wx !v,wx

�"#�v,wx − ��P,tu (9) 

Parameters and their sources are shown in the following table. 

Parameter Description Symbol Value Source 

Per capita intrinsic growth rate for prey � 1 Mduma, 1996 
Natural mortality rate of predator  
 1.2 Schaller, 1972 
Mortality rate of prey due to drought  	 0.15 Sinclair et al. 2008 
Capturing rates of the predator  ℎ 0.674 Fryxell et al. 2007 
Prey biomass handled per unit time � 0.03 Assumed 
Efficiency to convert prey biomass into 
fertility 

� 0.18 Assumed 

Mortality rate of predator due to drought � 0.01 Sinclair et al. 2008 
Table 1: Parameters of the prey predator model with their sources 

3. Results of the prey predator model 
We simulated the current estimates of wildebeest population (�M =1.3 million) and lion %�M =3,000) and used parameters in table 1. In the first case, the simulations for prey-pre
dator are done in absence of drought. We observed thatPhase diagram for model (2) show
s a stable spiral (sink) between lion and wildebeest. Hence in absence of any other factor 
in Serengeti ecosystem, the dynamical system is stable spiral around the point (10.18, 0.8
8) i.e., 1.018 million wildebeests and 88,000 lions (see fig 1). 
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Figure 1: Population Dynamics of Lion and wildebeest 

The major limiting factor for wildebeest growth is availability of enough forage. 
ed the parameter of drought for both prey and predator. We observe
ought seasons, the abundance of both prey 
e., 850,000 wildebeest and 66

Figure 2: Population Dynamics of l	 = 0.15 and � � 0.01. 

When wildebeest population was declining in Kruger national park in South 
Africa, the average birthrate was 0.405
& Greef, 1999a.). We used this birth rate 
wildebeest population and we observed a decline 
drought persists (see fig 
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Population Dynamics of Lion and wildebeest %	 � 0,

The major limiting factor for wildebeest growth is availability of enough forage. 
ed the parameter of drought for both prey and predator. We observed that 

the abundance of both prey and predator grows slowlytoabout
850,000 wildebeest and 66,000 lion (fig. 2). 

Population Dynamics of lion and wildebeest during moderate drought seasons
 

When wildebeest population was declining in Kruger national park in South 
rage birthrate was 0.405and the hunting increases from 0.674 to 0.81

. We used this birth rate and hunting efficiency for the declining 
st population and we observed a decline wildebeest and lion population when 

 3). 

igrating Wildebeest and Lion in the 

 

� � 0' 

The major limiting factor for wildebeest growth is availability of enough forage. We vari
that for moderate dr

about(8.5, 0.66) i.

 

during moderate drought seasons 

When wildebeest population was declining in Kruger national park in South 
and the hunting increases from 0.674 to 0.81(Fay 

for the declining 
population when 



 

Figure 3: Population d	 = 0.45, � � 0.02 and 	

Furthermore, diffusion of 
and predator. This behaviour is shown in figure 4
populations. 

Figure 4: Aerial view of wildebeest population patterns due to diffusion
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dynamics of Lion and wildebeest in presence of severe drought 
	� � 0.405, � � 0.81 

of wildebeest and lion yielded regular peaks and troughs of prey 
s behaviour is shown in figure 4 and 5 for prey and predator 

erial view of wildebeest population patterns due to diffusion

 

in presence of severe drought 

regular peaks and troughs of prey 
for prey and predator 

 

erial view of wildebeest population patterns due to diffusion 
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Figure 5: Aerial view of lion population patterns due to diffusion 

Figures 4 and 5 are aerial view illustrating the type of patterns that can be formed when a 
predator-prey model is subjected to diffusion. 

However, if the intensity of drought increases we observed decreased population of 
wildebeest and lion as shown in figures 6 and 7. 

 

Figure 6: Aerial view of lion population patterns due to diffusion and drought 
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Figure 7: Aerial view of lion population patterns due to diffusion and drought. 

We observe from the color bar a decreased population. 

4. Conclusion 
The dynamical system of migrating wildebeest followed by lion in the Serengeti 
ecosystem shows a stable state. However, in presence of drought the population of both 
species decreases and hence we observed unstable state as drought persisted. Since forage 
is the main driver of wildebeest migration, wildebeest evolve migratory pathways 
containing information on the availability ofgood forage and free from predators. 
Therefore, diffusion of wildebeest followed by predators from place to place within 
Serengeti ecosystem is a result of search for better forage availability. Further, the 
Serengeti lion usually hide to areas with high prey catchability like woody vegetation and 
near water sources to catch prey. This relation leads to diffusion processes. The 
developed PDEs have successfully described the dynamical behaviour of migrating prey 
and predator.  

REFERENCES 

1. T.Damas Sagamiko, N. Shaban, C.L Nahonyo and O.D.Makinde, Optimal control of 
a threatened wildebeest-lion prey-predator system in the serengeti ecosystem, Appl 
Comput Math, 4(4) (2015) 296–312. 
Available from: http://www.sciencepublishinggroup.com/j/acm 

2. T.H.Fay and J.C.Greeff, Lion, wildebeest and zebra: A predator-prey model, Ecol 
Modelling,196(1–2) (2006) 237–244.  

3. A.Rusliza and B.Harun, Stability analysis of mutualism population model with time 
delay, Int J Math Comput Sci., 6(2) (2012) 34-45.  

4. D.Ikanda and C.Packer, Ritual vs. retaliatory killing of African lions in the 
Ngorongoro Conservation Area, Tanzania, Endanger Species Res., 6(1) (2008) 67–74.  

5. R.M.Holdo, J.M.Fryxell, A.R.E.Sinclair, A.Dobson and R.D.Holt, Predicted impact 
of barriers to migration on the Serengeti wildebeest population, PLoS One, 6(1) 
(2011) 56-78.  

6. S.A.R.Mduma, A.R.E.Sinclair and R.Hilborn, Food regulates the Serengeti Wilde -



Modelling Predator Prey with Diffusion for Migrating Wildebeest and Lion in the 
Presence of Drought 

63 
 

beest:  A 40 year Record, J Anim Ecol., 68(6) (1999) 1101–1122.  
7. E.E.Holmes, M.A.Lewis, J.E.Banks, R.R.Veit and N.Jan, Partial differential 

equations in ecology: spatial interactions and population dynamics, Ecology, 75(1) 
(1994) 17–29.  

8. A.Okubo and S.A.Levin, Diffusion and ecological problems modern perspectives. 
Springer. 2001.  

9. A.Okubo. Dynamical aspects of animal grouping: Swarms, schools, flocks, and herds,  
Adv Biophys, 22(C) (1986) 1–94.  

10. T.M.Edeus, T.M.Honori, K.B.Samwel and K.Hamza, Tanzania Wildlife Research 
Institute (TAWIRI), 2010 Aerial Census in the Serengeti Ecosystem. 2010.  

11. T.H.Fay and J.C.Greef, Lion and Wildebeest: a prey predator model, Math Comput 
Educ., 25(2) (2015) 33–45.  


