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Abgtract. In this paper we present a two species prey poedaaction—diffusion model
with Holling 1l functional response to study thefesfts of drought to the dynamical
behaviour of wildebeestCpnnochaetustaurinus) and lion pantheraleo) in the Serengeti
ecosystem. We discretized our model equations byirtiplicit Euler method and the
numerical simulations were performed in Matlab. Thmjor limiting factor for
wildebeest abundance is availability of enough derand predation. We varied the
parameter of drought for prey and predator and rebdethat drought reduces the
abundance of both species. If drought persistsithisrikely to lead to extinction of both
species. Further we found spatial driven varidedgitarising when both wildebeest and
lion move through diffusion processes. The resuigglict that diffusion of the wildebeest
is motivated by search for better forage and angigiredators while the diffusion of lion
is motivated by hunting the prey. Our model agreéth different theoretical and
empirical studies about the environmental effecthé survival of wildebeests and lions.
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1. Introduction

The great migration of wildebeesTdnnochaetestaurinus) from Serengeti national park
in northern Tanzania to Masai-Mara in Kenya follow®y other ungulates and predators
is so distinctive that it has attracted researchens visitors around the world [1]. The
great migration is an annual movement of milliohsimals searching for better forage
[1,2]. Prey-predator mathematical models have leag¢ensively studied by many authors
[3]. Ecological studies in the Serengeti ecosydtawe focused mainly on factors such as
poaching, retaliatory killings, prey refuge diseasatbreak such as the study of [1,3,4,5].
Only a few studies included mathematical model$sagcthe study of [1]. These studies
relied mainly on explaining some factors such asdfopredation and sustainable
harvesting strategies of wildebeest and other herbs species in the Serengeti
ecosystem. None of these studies included the agfediffusion (migration) in the
mathematical model. Migration of wildebeest andeotpecies touches different patches.
We included diffusion in the model to capture dyiesmsuch as the existence of a
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minimal patch size necessary to support a populative presence of traveling wave
fronts corresponding to biological invasions, amg formation of spatial patterns[7].

Drought has been reported to limit wildebeest abund. Since 1960’s
wildebeest population has been fluctuating to aldaBitmillion until the year 1993 when
a severe drought reduced the wildebeest populdtioabout 917,000 wildebeest [6]
however the population has since recovered to ah&umillion wildebeest. While prey-
predator interactions involving diffusion have beapplied to investigate the spatial
spread of diseases [7,8] the Lotka-Volterra presdator models with diffusion have
been developed to study migration of different s®ecuch as fish schools and insect
swarms [6-8,9]. Surprisingly these reaction diffusmodels have been less considered in
modeling ungulate migration and their predatorser€fore, in this paper we present
Lotka-Volterra two species prey predator reactigffiusion model with Holling Il
functional response to study the dynamical behavabwildebeests and lions.

2. Methods

(i) Data sources

Data used in this study are aerial photo countkeateld from Serengeti national park
showing wildebeest locations in the Serengeti NatioPark. Data were collected
April/May, 2015.In addition, we used reports andadisom Tanzania Wildlife Research
Institute [10].

(ii) The mathematical model

The following are the parameters were used in thdeah

r is the per capita intrinsic growth rates for wbeéestsu , K is its carrying capacityy

is the capturing rates of lionsn preyu, a/h is the predator’'s handling time on prey,

z is the mortality for prey due to drought, the natunortality rate of the predator ds
and the death of predator due to drought,ithe parametat measures the predator’s
efficiency to convert prey biomass into fertilityeproductivity), the diffusion coefficients
areD;4, D15, D54, andD,,. Our proposed model is defined as follows:

ou 9%u 2%u u huv

= (Pugg+ D gg) +ru(1-3) - i -z @
ov 9%v 0%v dhuv
a (Dzlﬁ“)ﬂﬁ) Tt

u(t) > 0,v(t) > 0 and all the parametersK, h, z,c,d,a, u are positive.

From model equations (1), the first equation regmesthe prey where the first
two terms represent the diffusion part and thedtkérm is the prey logistic growth, the
fourth term represents the loss of prey due todcteng with lion and the last term is the
loss of prey due to drought. The second equatipresents the predator where the first
two terms represent the diffusion part, the thindrt is the natural death of predator, the
fourth term is the gain of predator after a sudegdsinting of prey and the last term is
the loss of predator due to drought.

(iii) Mode analysis

The analysis of the mathematical model involvesitical and global stability analysis.
This is performed to analyse the ecosystem dynaniibss is done by letting the
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diffusive paramete®; = Dy, = D,; = D, = 0. The remaining prey predator model
is defined below

du u huv
—=ru(1——)———zu

dt K 1+au
dv _ cv + dhuv v (2)
dt 1+au H

(iv) Boundedness of the system

The developed mathematical model deals with liiir@jviduals, therefore, the solution
of the prey-predator model developed in (2) mustpbsitive and bounded within its
region.

Lemma 1. All the solutions of the system (2) which startthwiR? are uniformly
bounded.
Proof: To prove the Lemma, we define a function

P(t) = u(t) + %v(t)

whereP(t) represents the total population of the prey aedator species

«=atam ©
Substitute equation (1) into equation (3) we getftillowing

dP_ (1 u) huv +1< +dhuv )
- K 1+ au au d v 1+ au Ho

Then all terms with interspecific competition araeazlled out, we remain with

dpP _ (1 U) 1 n
Pl %) T (c+wv

We choose the arbitrary constant to @ethen the equation above will be written as
follows

P _ ru’ 1 + + 0OP(t) —OP(t
Pt i A CR DL () ()
dpP ru? 1 1
Thus,a +0P(t) <ru-— — T U E(C + v+ 0 (u(t) +- v(t))
Using the concept of perfect square we obtain

dp ru? 1
E+!2P(t)S(r—z+.(2)u—T—E(c+u—.Q)v.
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But Max ru (1 — %) isg, it follows

P opw) <X 2 -2 - -2+ +K2(T_Z+ﬂ>2
dt Sar 7 K\" e r 4r?

1
—E(c+,u—.(2)v

Then using techniques of completing the squamaldws

2

P arm <X Q)? r[ ozt et u-n
dt S 7 glp = -zt —gletu=—Dy

Letf—r (r—z—0)?=my, thus,Z—i +0P(t) <my

Solving this differential inequality using the igtating factor I = e? we
obtainedP(t) = % 4+ Ce 0,

Att =0,P(0) = 0, therC = —%. This givesP(t) = %(1 — e~

Ast > 0,0 < P(t) < % ThereforeP(t) is bounded. And from positivity af andv
0 < x(t) < Zrand) < y(r) < 7

It follows that all the solutions of the system (Bt start ifR2are confined within the
regionB such thatB = {(u, v) ERZ:P = % + ¢, for ang > 0}.

(v) Existence of equilibrium points of the system
Taking% =0 and% = 0 we get the following three equilibrium points ndyne

® E;(0,0) is the extinction of both species, prey and pi@dat

(i) E;(u*,0) is the persistence of prey and extinction of preda

(i) E,(u,v™) is the coexistence or equilibrium point of theteys
The equilibrium point€,(0,0) andE; (u*, 0)are trivial and are saddle points (unstable)
while E,(u, v*) is non trivial equilibrium point (the co-existengeint) withu*, v* > 0

ru(l—z) —ﬂ—zu =0
K 1+au B
N dhuv _ 0
| Cllvau MU |
Using MAPLE software, we obtain the following coistence point
E,(u,v")
_( c+u d(Kacr — Kacz + Kaur — Kauz — Kdhr + Kdhz + cr +,ur))
~\ ac+au—dh’ K (ac + au — dh)?

where,ac + au —dh > 0
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The co-existence equilibrium point existsitf + au —dh > 0 andr —z >0

In the following section, we describe the local aidbal stability of our model. The
local stability means that the equilibrium pointstable to small perturbations, such that
if you push the system (put the system somewheaethe point), the system moves back
to its equilibrium point whereas, the global stipimeans that the system will come to
the equilibrium point from any possible startingrpavithin the system.

(vi) Local stability analysis of the equilibrium points

The local asymptotic stability of each equilibriymoint is studied by computing the

Jacobian matrix and finding the eigenvalues evatliat each equilibrium point. For

stability of the equilibrium points, the real paofsthe eigenvalues of the Jacobian matrix
must be negative. From the system equations (8)J#éitobian matrix of the system is

given by
(% %w
dx 0dy
E) =
dx 0dy
2ru hv* hau*v* —hu*
r— — + -z —_—
(E;) = K (1+au*) 1+ au*)? 1+ au®)
J(Es) = dhv* dhau*v* dhu*
- —Cc+ —u
(1+au*) (14 au*)? 1+ au* /
E,(u*,v")
_( c+u d(Kacr—Kacz+Kaur—Kauz—thr+thz+cr+,ur>
"\ ac+ap—dhn’ (ac + ap — dh)?

E E
) = ( 11 12)
]( 2) E21 EZZ
Using MAPLE software we get the following:

1

E;1 = <4K(c + w3 (r —2)a®

K«c+Ma—%d®2«c+Ma—dm
-9 (dh(r - 2)K + gr(c + ,u)) (c + w?a?
+ 7dh(c + w)(dh(r — 2)K + r(c + 1))a
-2 <dh(r -2)K + %r(c + ,u)> d2h2>

£ = (c+wh
27 Q2c+2wa—dh
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1 ((r —2)((c+wa—dh)K +7r(c+ u)) d*h

21_4

K ((c +ua— %dh)z

_ 2(c+ u)((c + wa— dh)
2z (2c + 2u)a — dh

The stability of thg (E,) is stated using the the characteristic of polymdreguation
techniques using trace and determinant techniqugssgition as follows

Preposition 1. Suppose the Jacobian matrix evaluated at the steexie equilibrium
point has a characteristic polynomial equatiorneffbllowing form:
A2 —trace(J(E;))A + Determinant(J(E,)) = 0
such that
trace(J(E;)) = E11 + Ex,andeterminant(J(E,)) = E11E2; — E12E21

The co-existence equilibrium point is locally asyotjcally stable or stable spiral if
trace(J(E;)) < 0 andDeterminant(J(E,)) > 0. Also the interior equlibrium point is
center (neutral stable)if-ace(J(E,)) = 0 andDeterminant(J(E;)) > 0.

(vii) Global Stability of equilibrium points

PointskE; andE, are shown by Linearizing the system of equatid®)sand defining
appropriate Lyapounov function to separately désctieach equilibrium point. The
Linearization process is done using Jacobian teciensuch that

U,
v =J(E)U;

whereJ(E;) is the Jacobian Matrix and; is the small perturbation am .Therefore
system (1) reduces to the following linear system;

BTy,
dhv* dhau*v* ]U+[— ]V

dt ~ la+aun) (1+au*)2

We choose the following Lyapunov function

UZ 2
QU,V)=—+—
2
The functionQ (U, V)is positive definite sinc@(U,V) = 0,V (U, V).
aQ aQ
w0 w=V

The time derivative of (U,V) is given by
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dQ _ 9Qadu , aQ av
dt ~ au dt = oV dt ®)

Substituting equation (4) into equation (5) wethetfollowing relation

Z_gZU[(T_ZrTM hv* + hau*v* Z)U—( hu* )V]+V[( dhv*

AN - (t+ax) ' (1+aw)? - (1+au”) (1+au)
ra) U+ (e +imam — 1)V ©)
For a fixed point; (u*,0)
K(r—z)

We substitutés; (u*,0) = E; ( ,0) to equation (6) we get

T

a == 2)o -G+ [errrm

This simplifies to

aQ _ yr2/_ _(_hK(r-2) _ dhK(r-z) 2
dt u ( [ Z) (r+aK(r—Z)) ov + ( ¢+ r+aK(r-z) ‘u) v (7)

Therefore from the equation (7) the equilibriummdi; (u*, 0) is globally asymptotically
stable if(r—z) >0

Hence, in the absence of the predator, pBiGt*, 0)is globally stable if the intrinsic
growth rate of the prey population is greater ttiennatural mortality rate.

For steady stateE, (u*, v*)

We substituted

E,(u*,v*)
_( c+u d(Kacr—Kacz+Kaur—Kauz—thr+thz+cr+ur>
“\ ac+au—dh’ (ac + au — dh)?

into equation (6) we obtained an equation of thieéng form

dqQ
P E11U? + (Eqp + Ex)UV (8)

Therefore the pointE, (u*, v*) is globally stable if the condition below holds

dQ

% = (E11U2 + (Elz + EZI)UV) < 0

(viii) Model analysiswith diffusion
From the system of equations (1)
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ou b 02u+D 2°u N (1 u) huv 1
dt ~ \"Mox? 129y2 i K) 1T+au L

v b 62v+D d0%v N dhuv
dt ~ \7*oxz T T gy2 Y v W J

(ix) Numerical solution

In this section we use the implicit Euler methodafiproximate solutions to the model
equations (1) subject to the boundary conditiges0, t) = u(L,,0,t) = 0, u(0,y,t) =
u(0,L,,t) =0 and initial conditionsu(x,y,0) =u, and v(x,y,0) = v, Such that
0<x<L,0<y<Lyand0 <t <T. We chosd., =1,L, =4 andl' = 1000. The
time derivative is discretized by using forwardfelience rule and while the spatial
derivatives are discretized using the central tiffiee approximation as shown below

upt ol (W T2l Uy (e — 2t udy
ui\ v
+ru{fj (1 —7> _Tau?j_ Zu:’l]
v vl Uiy 20V vl 2] dhul vl
: " L =Dy (—+1] h2] 1]) + Dy, <—]+1 hzj - 1) — vy + 1+ai3j] — uv;(9)
Parameters and their sources are shown in thenioliptable.
Parameter Description Symbol | Value | Source
Per capita intrinsic growth rate for p T 1 Mduma, 199
Natural mortality rate cpredator c 1.2 Schaller, 197
Mortality rate of prey due to droug z 0.1f Sinclair et al. 20C
Capturing rates of the preda h 0.67¢ | Fryxell et al. 200
Prey biomass handled per unit t a 0.0¢ Assumed
Efficiency to convert prey biomass ir d 0.18 Assumed
fertility
Mortality rate of predator due to drou u 0.01 Sinclair et al. 20C

Table 1. Parameters of the prey predator model with trairces

3. Results of the prey predator model

We simulated the current estimates of wildebeeptifadion ¢, =1.3 million) and lion
(vy =3,000) and used parameters in table 1. In thecise, the simulations for prey-pre
dator are done in absence of drought. We obsehaBliase diagram for model (2) show
s a stable spiral (sink) between lion and wildebddsnce in absence of any other factor
in Serengeti ecosystem, the dynamical system lidesgpiral around the point (10.18, 0.8
8) i.e., 1.018 million wildebeests and 88,000 li¢sse fig 1).

58



Modelling Predator Prey with Diffusion fiMigrating Wildebeest and Lion in ti
Presence of Drought

Oynamics in time Phase spaze

— Widebe=s 10

—— Lion
\ ]
N \

I A

& 200 4aC xld) EO0 1003 11 1z =1 1 15 15 i
Wildebeest (¥ 107 5)

o
=
in

o

H

wn ) =]
=] wn o

Fapulaz on Uensity (4 1075

r
n
¥

o
=]

Figure 1: Population Dynamics of Lion and wildebe(z = 0, u = 0)

The major limiting factor for wildebeest growthdsailability of enough foragdWVe vari

ed the parameter of drought for both prey and poed®/e observd thatfor moderate dr
ought seasonshe abundance of both prand predator grows slowlyabou(8.5, 0.66) i.
e.,850,000 wildebeest and,000 lion (fig. 2).
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Figure 2: Population Dynamics oion and wildebeesiuring moderate drought seas
z = 0.15 andu = 0.01.

When wildebeest population was declining in Krugetional park in Sout
Africa, the aveage birthrate was 0.4and the hunting increases from 0.674 to (Fay
& Greef, 1999a.) We used this birth ratand hunting efficiencyfor the declining
wildebeest population and we observed a decwildebeest and liopopulation whel
drought persists (see fR).
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Oynamics in time Phase space
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Figure 3. Populationdynamics of Lion and wildebeest presence of severe drous
z =0.45,u = 0.02 andr = 0.405,h = 0.81

Furthermore, diffusiorof wildebeest and lion yieldeskgular peaks and troughs of p
and predator. Tki behaviour is shown in figure and 5for prey and predatc
populations.

Aerial view of W t popu

35

30

Wildebeest population

Figure 4: Aerial view of wildebeest population patterns dudiftusion

60



Modelling Predator Prey with Diffusion for Migragrnwildebeest and Lion in the
Presence of Drought

Aecerial view of Lion population

Lion population

Figure5: Aerial view of lion population patterns due to difon

Figures 4 and 5 are aerial view illustrating theetyf patterns that can be formed when a
predator-prey model is subjected to diffusion.

However, if the intensity of drought increases weserved decreased population of
wildebeest and lion as shown in figures 6 and 7.

Aerial view of Wildbeest population

16
14

12

Wildebeest population

Figure 6: Aerial view of lion population patterns due to digfon and drought
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Aerial view of Lion population

-1 1.8
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-+ 1.4
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Figure7: Aerial view of lion population patterns due to dgfon and drought.
We observe from the color bar a decreased popalatio

4. Conclusion

The dynamical system of migrating wildebeest fokowby lion in the Serengeti
ecosystem shows a stable state. However, in pres#ndrought the population of both
species decreases and hence we observed unstablastrought persistesince forage
is the main driver of wildebeest migration, wildebe evolve migratory pathways
containing information on the availability ofgoodréige and free from predators.
Therefore, diffusion of wildebeest followed by pators from place to place within
Serengeti ecosystem is a result of search for roéttage availability. Further, the
Serengeti lion usually hide to areas with high pratchability like woody vegetation and
near water sources to catch prey. This relatiorddetn diffusion processes. The
developed PDEs have successfully described thendgahbehaviour of migrating prey
and predator.
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