Journal of Mathematics and Informatics Vol. 25, 2023, 7-13 ISSN: 2349-0632 (P), 2349-0640 (online) Published 22 July 2023 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/jmi.v25a02228

Journal of Mathematics and Informatics

Minimal Equitable Dominating Symmetric n-Sigraphs

K. M. Manjula¹, C. N. Harshavardhana^{2*} and R. Kemparaju³
¹Department of Mathematics, Government First Grade College for Women Hassan-573 202, India Email: manjula.km.gowda@gmail.com
²Department of Mathematics, Government First Grade College for Women Holenarasipur-573 211, India Email: cnhmaths@gmail.com
³Department of Mathematics, Government First Grade College T. Narasipura-571 124, India Email: kemps007@gmail.com *Corresponding author

Received 7 May 2023; accepted 21 July 2023

Abstract. An *n*-tuple $(a_1, a_2, ..., a_n)$ is symmetric, if $a_k = a_{n-k+1}$, $1 \le k \le n$. Let $H_n = \{(a_1, a_2, ..., a_n): a_k \in \{+, -\}, a_k = a_{n-k+1}, 1 \le k \le n\}$ be the set of all symmetric *n*-tuples. A symmetric *n*-sigraph (symmetric *n*-marked graph) is an ordered pair $S_n = (G, \sigma)$ $(S_n = (G, \mu))$, where G = (V, E) is a graph called the underlying graph of S_n and $\sigma : E \to H_n$ $(\mu : V \to H_n)$ is a function. In this paper, we introduced a new notion minimal equitable dominating symmetric *n*-sigraph of a symmetric *n*-sigraph and its properties are obtained. Also, we obtained the structural characterization of minimal equitable dominating symmetric *n*-signed graphs.

Keywords: Symmetric *n*-sigraphs, Symmetric *n*-marked graphs, Balance, Switching, Minimal equitable dominating symmetric *n*-sigraphs, Complementation.

AMS Mathematics Subject Classification (2010): 05C22

1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the reader is refer to [1]. We consider only finite, simple graphs free from self-loops.

Let $n \ge 1$ be an integer. An *n*-tuple $(a_1, a_2, ..., a_n)$ is symmetric, if $a_k = a_{n-k+1}, 1 \le k \le n$. Let $H_n = \{(a_1, a_2, ..., a_n) : a_k \in \{+, -\}, a_k = a_{n-k+1}, 1 \le k \le n\}$ be the set of all symmetric *n*-tuples. Note that H_n is a group under coordinate wise multiplication, and the order of H_n is 2^m , where $m = \left[\frac{n}{2}\right]$.

K. M. Manjula, C. N. Harshavardhana and R. Kemparaju

A symmetric *n*-sigraph (symmetric *n*-marked graph) is an ordered pair $S_n = (G, \sigma)$ ($S_n = (G, \mu)$), where G = (V, E) is a graph called the *underlying graph* of S_n and $\sigma : E \to H_n(\mu : V \to H_n)$ is a function.

In this paper by an *n-tuple/n-sigraph/n-marked graph* we always mean a symmetric *n*-tuple/symmetric *n*-sigraph/symmetric *n*-marked graph.

An *n*-tuple $(a_1, a_2, ..., a_n)$ is the *identity n*-tuple, if $a_k = +$, for $1 \le k \le n$, otherwise it is a *non-identity n*-tuple. In an *n*-sigraph $S_n = (G, \sigma)$ an edge labelled with the identity *n*-tuple is called an *identity edge*, otherwise it is a *non-identity edge*.

Further, in an *n*-sigraph $S_n = (G, \sigma)$, for any $A \subseteq E(G)$ the *n*-tuple $\sigma(A)$ is the product of the *n*-tuples on the edges of *A*.

In [7], the authors defined two notions of balance in *n*-sigraph $S_n = (G, \sigma)$ as follows (See also R. Rangarajan and P. S. K. Reddy [3]):

Definition 1.1. Let $S_n = (G, \sigma)$ be an *n*-sigraph. Then,

(i) S_n is *identity balanced* (or *i-balanced*), if product of *n*-tuples on each cycle of S_n is the identity *n*-tuple, and

(ii) S_n is *balanced*, if every cycle in S_n contains an even number of non-identity edges.

Note: An *i*-balanced *n*-sigraph need not be balanced and conversely. The following characterization of *i*-balanced *n*-sigraphs is obtained in [7].

Theorem 1.1. (Sampathkumar et al. [7]) An *n*-sigraph $S_n = (G, \sigma)$ is *i*-balanced if, and only if, it is possible to assign *n*-tuples to its vertices such that the *n*-tuple of each edge uv is equal to the product of the *n*-tuples of u and v.

Let $S_n = (G, \sigma)$ be an *n*-sigraph. Consider the *n*-marking μ on vertices of S_n defined as follows: each vertex $v \in V$, $\mu(v)$ is the *n*-tuple which is the product of the *n*-tuples on the edges incident with *v*. *Complement* of S_n is an *n*-sigraph $\overline{S_n} = (\overline{G}, \sigma^c)$, where for any edge $e = uv \in \overline{G}, \sigma^c(uv) = \mu(u)\mu(v)$. Clearly, $\overline{S_n}$ is defined here is an *i*-balanced *n*-sigraph due to Theorem 1.1.

In [7], the authors also have defined switching and cycle isomorphism of an *n*-sigraph $S_n = (G, \sigma)$ as follows: (See also [2, 4-6, 9–19])

Let $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ be two *n*-sigraphs. Then S_n and S'_n are said to be *isomorphic*, if there exists an isomorphism $\phi : G \to G'$ such that if uv is an edge in S_n with label (a_1, a_2, \dots, a_n) then $\phi(u)\phi(v)$ is an edge in S'_n with label (a_1, a_2, \dots, a_n) .

Given an *n*-marking μ of an *n*-sigraph $S_n = (G, \sigma)$, *switching* S_n with respect to μ is the operation of changing the *n*-tuple of every edge uv of S_n by $\mu(u)\sigma(uv)\mu(v)$. The*n*-sigraph obtained in this way is denoted by $S_{\mu}(S_n)$ and is called the μ -switched *n*-sigraph or just *switched n*-sigraph.

Further, an *n*-sigraph S_n switches to *n*-sigraph S'_n (or that they are switching equivalent to each other), written as $S_n \sim S'_n$, whenever there exists an *n*-marking of S_n such that $S_{\mu}(S_n) \cong S'_n$.

Minimal Equitable Dominating Symmetric n-Sigraphs

Two *n*-sigraphs $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ are said to be *cycle isomorphic*, if there exists an isomorphism $\phi : G \to G'$ such that the *n*-tuple $\sigma(C)$ of every cycle *C* in S_n equals to the *n*-tuple $\sigma(\Phi(C))$ in S'_n .

We make use of the following known result (see [7]).

Theorem 1.2. (Sampathkumar et al. [7]) *Given a graph G, any two n-sigraphs with G as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.*

2. Minimal equitable dominating *n*-sigraph of an *n*-sigraph

A subset *D* of *V*(*G*) is called an equitable dominating set of a graph *G*, if for every $v \in V - D$ there exists a vertex $v \in D$ such that $uv \in E(G)$ and $|d(u) - d(v)| \leq 1$. The minimum cardinality of such a dominating set is denoted by γ_e and is called equitable domination number of *G*. An equitable dominating set *D* is minimal, if for any vertex $u \in D$, $D - \{u\}$ is not an equitable dominating set of *G*. A subset *S* of *V* is called an equitable independent set, if for any $u \in S$, $v \notin N_e(u)$, for all $v \in S - \{u\}$. If If a vertex $u \in V$ be such that $|d(u) - d(v)| \leq 2$, for all $v \in N(u)$ then *u* is in equitable dominating set. Such vertices are called equitable isolates. An equitable dominating set *D* is minimal, if for any vertex $u \in V$ be such that $|d(u) - d(v)| \leq 2$, for all $v \in N(u)$ then *u* is in equitable dominating set. Such vertices are called equitable isolates. An equitable dominating set *D* is minimal, if for any vertex $u \in D$, $D - \{u\}$ is not an equitable dominating set of *G*.

Let \mathcal{F} be a finite set and $F = \{\mathcal{F}_1, \mathcal{F}_2, ..., \mathcal{F}_n\}$ be a partition of \mathcal{F} . Then the intersection graph $\omega(F)$ is the graph whose vertices are the subsets in F and in which two vertices \mathcal{F}_i and \mathcal{F}_j are adjacent if and only if $\mathcal{F}_i \cap \mathcal{F}_j \neq \phi, i \neq j$.

Motivated by the existing definition of complement of an *n*-sigraph, we extend the notion of minimal equitable dominating graphs to *n*-sigraphs as follows: The minimal equitable dominating *n*-sigraph $MED(S_n)$ of an *n*-sigraph $S_n = (G, \sigma)$ is an *n*-sigraph whose underlying graph is MED(G) and the *n*-tuple of any edge uv is $MED(S_n)$ is $\mu(u)\mu(v)$, where μ is the canonical *n*-marking of S_n . Further, an *n*-sigraph $S_n = (G, \sigma)$ is called minimal equitable dominating *n*-sigraph, if $S_n \cong MED(S'_n)$ for some *n*-sigraph S'_n . The following result indicates the limitations of the notion $MED(S_n)$ as introduced above, since the entire class of *i*-unbalanced *n*-sigraphs is forbidden to be minimal equitable dominating *n*-sigraphs.

Theorem 2.1. For any n-sigraph $S_n = (G, \sigma)$, its minimal equitable dominating n-sigraph $MED(S_n)$ is i-balanced.

Proof: Since the *n*-tuple of any edge uv in $MED(S_n)$ is $\mu(u)\mu(v)$, where μ is the canonical *n*-marking of S_n , by Theorem 1.1, $MED(S_n)$ is *i*-balanced.

For any positive integer k, the k^{th} iterated minimal equitable dominating *n*-sigraph, $MED^k(S_n)$ of S_n is defined as follows:

$$MED^{0}(S_n) = S, MED^{k}(S_n) = MED(MED^{k-1}(S_n))$$

K. M. Manjula, C. N. Harshavardhana and R. Kemparaju

Corollary 2.2. For any n-sigraph $S_n = (G, \sigma)$ and for any positive integer k, $MED^k(S_n)$ is *i*-balanced.

The following result characterizes n-sigraphs which are minimal equitable dominating n-sigraphs.

Theorem 2.3. An *n*-sigraph $S_n = (G, \sigma)$ is a minimal equitable dominating *n*-sigraph if, and only if, S_n is *i*-balanced *n*-sigraph and its underlying graph G is a minimal equitable dominating graph.

Proof: Suppose that S_n is *i*-balanced and *G* is a minimal equitable dominating graph. Then there exists a graph *H* such that $MED(H) \cong G$. Since S_n is *i*-balanced, by Theorem 1.1, there exists a marking ζ of *G* such that each edge e = uv in S_n satisfies $\sigma(uv) = \zeta(u)\zeta(v)$. Now consider the *n*-sigraph $S_n' = (H, \sigma')$, where for any edge *e* in *H*, $\sigma'(e)$ is the *n*-marking of the corresponding vertex in *G*. Then clearly, $MED(S_n') \cong S_n$. Hence S_n is a minimal equitable dominating *n*-sigraph.

Conversely, suppose that $S_n = (G, \sigma)$ is a is a minimal equitable dominating *n*-sigraph. Then there exists an *n*-sigraph $S_n' = (H, \sigma')$ such that $MED(S_n') \cong S_n$. Hence G is the minimal equitable dominating graph of H and by Theorem 2.1, S_n is *i*-balanced.

In [20], the authors characterized graphs for which $MED(G) \cong \overline{G}$.

Theorem 2.4. (Sumathi & Soner [20])

For any graph G=(V, E), $MED(G) \cong \overline{G}$ if and only if G is a complete with p vertices.

We now characterize n-sigraphs whose minimal equitable dominating n-sigraphs and complementary n-sigraphs are switching equivalent.

Theorem 2.5. For any n-sigraph $S_n = (G, \sigma)$, $\overline{S_n} \sim MED(S_n)$ if, and only if, G is K_p . **Proof:** Suppose $\overline{S_n} \sim MED(S_n)$. This implies, $MED(G) \cong \overline{G}$ and hence by Theorem 2.4, G is K_p .

Conversely, suppose that *G* is K_p . Then $MED(G) \cong \overline{G}$ by Thorem 2.4. Now, if S_n is an *n*-sigraph with underlying graph *G* is K_p , by the definition of complementary *n*-sigraph and Theorem 2.1, $\overline{S_n}$ and $MED(S_n)$ are *i*-balanced and hence, the result follows from Theorem 1.2.

Theorem 2.6. For any two n-sigraphs S_n and S_n' with the same underlying graph, their minimal equitable dominating n-sigraphs are switching equivalent. **Proof:** Suppose $S_n = (G, \sigma)$ and $S_n' = (G', \sigma')$ be two n-sigraphs with $G \cong G'$. By Theorem

Proof: Suppose $S_n = (G, \sigma)$ and $S_n' = (G', \sigma')$ be two *n*-sigraphs with $G \cong G'$. By Theorem 2.1, $MED(S_n)$ and $MED(S_n')$ are *i*-balanced and hence, the result follows from Theorem 1.2.

For any $m \in H_n$, the *m*-complement of $a = (a_1, a_2, ..., a_n)$ is: $a^m = am$. For any $M \subseteq H_n$, and $m \in H_n$, the *m*-complement of M is $M^m = \{a^m : a \in M\}$.

Minimal Equitable Dominating Symmetric n-Sigraphs

For any $m \in H_n$, the *m*-complement of an *n*-sigraph $S_n = (G, \sigma)$, written (S_n^m) , is the same graph but with each edge label $a = (a_1, a_2, ..., a_n)$ replaced by a^m .

For an *n*-sigraph $S_n = (G, \sigma)$, the $MED(S_n)$ is *i*-balanced. We now examine, the condition under which *m*-complement of $MED(S_n)$ is *i*-balanced, where for any $m \in H_n$.

Theorem 2.7. Let $S_n = (G, \sigma)$ be an n-sigraph. Then, for any $m \in H_n$, if MED(G) is bipartite then $(MED(S_n))^m$ is i-balanced.

Proof: Since, by Theorem 2.1, $MED(S_n)$ is *i*-balanced, for each k, $1 \le k \le n$, the number of *n*-tuples on any cycle *C* in $MED(S_n)$ whose k^{th} co-ordinate are – is even. Also, since MED(G) is bipartite, all cycles have even length; thus, for each k, $1 \le k \le n$, the number of *n*-tuples on any cycle *C* in $MED(S_n)$ whose k^{th} co-ordinate are + is also even. This implies that the same thing is true in any *m*-complement, where for any $m \in H_n$. Hence $(MED(S_n))^t$ is *i*-balanced.

Theorem 2.6 provides easy solutions to other *n*-sigraph switching equivalence relations, which are given in the following results.

Corollary 2.8. For any two n-sigraphs S_n and S'_n with the same underlying graph, $MED(S_n)$ and $MED((S'_n)^m)$ are switching equivalent.

Corollary 2.9. For any two n-sigraphs S_n and S'_n with the same underlying graph, $MED((S_n)^m)$ and $MED(S'_n)$ are switching equivalent.

Corollary 2.10. For any two n-sigraphs S_n and S_n' with the same underlying graph, $MED((S_n)^m)$ and $MED((S_n')^m)$ are switching equivalent.

Corollary 2.11. For any two n-sigraphs $S_n = (G, \sigma)$ and $S_n' = (G', \sigma')$ with the $G \cong G'$ and G, G' are bipartite, $(MED(S_n))^m$ and $MED(S_n')$ are switching equivalent.

Corollary 2.12. For any two n-sigraphs $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ with the $G \cong G'$ and G, G' are bipartite, $MED(S_n)$ and $MED((S'_n)^m)$ are switching equivalent.

Corollary 2.13. For any two n-sigraphs $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ with the $G \cong G'$ and G, G' are bipartite, $(MED(S_1))^m$ and $(MED(S_2))^m$ are switching equivalent.

3. Conclusion

We have introduced a new notion for *n*-signed graphs called minimal equitable dominating *n*-sigraph of an *n*-signed graph. We have proved some results and presented the structural characterization of minimal equitable dominating *n*-signed graph. There is no structural characterization of minimal equitable dominating graph, but we have obtained the structural characterization of minimal equitable dominating *n*-signed graph.

K. M. Manjula, C. N. Harshavardhana and R. Kemparaju

Acknowledgments. The authors thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Author's Contributions: All authors equally contributed.

REFERENCES

- 1. F. Harary, *Graph Theory*, Addison-Wesley Publishing Co., 1969.
- 2. V. Lokesha, P.S.K.Reddy and S. Vijay, The triangular line *n*-sigraph of a symmetric *n*-sigraph, *Advn. Stud. Contemp. Math.*, 19(1) (2009) 123-129.
- 3. R.Rangarajan and P.S.K.Reddy, Notions of balance in symmetric *n*-sigraphs, *Proceedings of the Jangjeon Math. Soc.*, 11(2) (2008) 145-151.
- 4. R. Rangarajan, P.S.K.Reddy and M.S.Subramanya, Switching Equivalence in Symmetric *n*-Sigraphs, *Adv. Stud. Comtemp. Math.*, 18(1) (2009) 79-85.
- 5. R.Rangarajan, P.S.K.Reddy and N.D.Soner, Switching equivalence in symmetric *n*-sigraphs-II, *J. Orissa Math. Sco.*, 28 (1 & 2) (2009) 1-12.
- 6. R.Rangarajan, P.S.K.Reddy and N.D.Soner, *mth*Power Symmetric *n*-Sigraphs, *Italian Journal of Pure & Applied Mathematics*, 29(2012) 87-92.
- 7. E.Sampathkumar, P.S.K.Reddy, and M.S.Subramanya, Jump symmetric *n*-sigraph, *Proceedings of the Jangjeon Math. Soc.*, 11(1) (2008) 89-95.
- 8. E.Sampathkumar, P.S.K.Reddy, and M.S.Subramanya, The Line *n*sigraph of a symmetric *n*-sigraph, *Southeast Asian Bull. Math.*, 34(5) (2010) 953-958.
- 9. P.S.K.Reddy and B.Prashanth, Switching equivalence in symmetric *n*sigraphs-I, *Advances and Applications in Discrete Mathematics*, 4(1) (2009) 25-32.
- 10. P.S.K.Reddy, S.Vijay and B.Prashanth, The edge C₄ *n*-sigraph of a symmetric *n*-sigraph, *Int. Journal of Math. Sci. & Engg. Appls.*, 3(2) (2009) 21-27.
- 11. P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, The Line *n*-sigraph of a symmetric *n*-sigraph-II, *Proceedings of the Jangjeon Math. Soc.*, 13(3) (2010) 305-312.
- 12. P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, The Line *n*-sigraph of a symmetric *n*-sigraph-III, *Int. J. Open Problems in Computer Science and Mathematics*, 3(5) (2010) 172-178.
- 13. P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, Switching equivalence in symmetric *n*-sigraphs-III, *Int. Journal of Math. Sci. & Engg. Appls.*, 5(1) (2011) 95-101.
- 14. P.S.K.Reddy, B.Prashanth and Kavita.S.Permi, A Note on Switching in Symmetric *n*-Sigraphs, *Notes on Number Theory and Discrete Mathematics*, 17(3) (2011) 22-25.
- 15. P.S.K.Reddy, M.C.Geetha and K.R.Rajanna, Switching Equivalence in Symmetric *n*-Sigraphs-IV, *Scientia Magna*, 7(3) (2011) 34-38.
- 16. P.S.K.Reddy, K.M.Nagaraja and M.C.Geetha, The Line *n*-sigraph of a symmetric *n*-sigraph-IV, *International J. Math. Combin.*, 1 (2012) 106-112.

Minimal Equitable Dominating Symmetric *n*-Sigraphs

- 17. P.S.K.Reddy, M.C.Geetha and K.R.Rajanna, Switching equivalence in symmetric *n*-sigraphs-V, *International J. Math. Combin.*, 3 (2012) 58-63.
- 18. P.S.K.Reddy, K.M.Nagaraja and M.C.Geetha, The Line *n*-sigraph of a symmetric *n*-sigraph-V, *Kyungpook Mathematical Journal*, 54(1) (2014) 95-101.
- 19. P.S.K.Reddy, R.Rajendra and M.C.Geetha, Boundary *n*-Signed Graphs, *Int. Journal of Math. Sci. &Engg. Appls.*, 10(2) (2016) 161-168.
- 20. M.P.Sumathi and N.D.Soner, Minimal equitable dominating graph, *International J. of Math. Sci. & Engg. Appls.*, 6(4) (2012) 273-278.