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Abstract. An n-tuple (��, ��, … , ��) is symmetric, if �	 = ���	��, 1 ≤ � ≤ �. Let �� =
�(��, ��, … , ��): �	 ∈ �+, −�,  �	 = ���	��,  1 ≤ � ≤ �� be the set of all symmetric n-
tuples. A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair Sn = (G, σ) 
(Sn = (G, µ)), where G = (V, E) is a graph called the underlying graph of Sn and σ : E → Hn 

(µ : V → Hn) is a function. In this paper, we introduced a new notion minimal equitable 
dominating symmetric n-sigraph of a symmetric n-sigraph and its properties are obtained. 
Also, we obtained the structural characterization of minimal equitable dominating 
symmetric n-signed graphs.  
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1. Introduction 
Unless mentioned or defined otherwise, for all terminology and notion in graph theory the 
reader is refer to [1]. We consider only finite, simple graphs free from self-loops. 

Let n ≥ 1 be an integer. An n-tuple (a1, a2,... ,an) is symmetric, if ak= an−k+1,1 ≤ k ≤ n. 
Let Hn= {(a1,a2,...,an) : ak∈ {+ ,−} , ak= an−k+1,1 ≤ k ≤ n} be the set of all symmetric n-tuples. 
Note that Hn is a group under coordinate wise multiplication, and the order of Hn is 2m, 

where � = ��
��. 
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A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair Sn = (G,σ) (Sn = 
(G,µ)), where G = (V,E) is a graph called the underlying graph of Sn and σ : E → Hn (µ : V 
→ Hn) is a function. 

In this paper by an n-tuple/n-sigraph/n-marked graph we always mean a symmetric n-
tuple/symmetric n-sigraph/symmetric n-marked graph. 

An n-tuple (a1, a2, ... ,an) is the identity n-tuple, if ak= +, for 1 ≤ k ≤ n, otherwise it is a 
non-identity n-tuple. In an n-sigraph Sn = (G, σ) an edge labelled with the identity n-tuple 
is called an identity edge, otherwise it is a non-identity edge. 

Further, in an n-sigraph Sn = (G, σ), for any A ⊆ E(G) the n-tuple σ(A) is the product of 
the n-tuples on the edges of A. 

In [7], the authors defined two notions of balance in n-sigraph Sn = (G, σ) as follows 
(See also R. Rangarajan and P. S. K. Reddy [3]): 
 
Definition 1.1. Let Sn = (G, σ) be an n-sigraph. Then, 

(i) Sn is identity balanced (or i-balanced), if product of n-tuples on each cycle of Sn is 
the identity n-tuple, and 

(ii) Sn is balanced, if every cycle in Sn contains an even number of non-identity edges. 
 
Note: An i-balanced n-sigraph need not be balanced and conversely. 
The following characterization of i-balanced n-sigraphs is obtained in [7]. 
 
Theorem 1.1. (Sampathkumar et al. [7]) An n-sigraph Sn = (G, σ) is i-balanced if, and 
only if, it is possible to assign n-tuples to its vertices such that the n-tuple of each edge  ! 
is equal to the product of the n-tuples of   and !. 
Let Sn = (G, σ) be an n-sigraph. Consider the n-marking µ on vertices of Sn defined as 
follows: each vertex !∈V , µ(!) is the n-tuple which is the product of the n-tuples on the 
edges incident with !. Complement of Sn is an n-sigraph  "�####=($̅, &'), where for any edge 
e =  !∊ $̅, &'( !) = μ( ))(!). Clearly, "�### is defined here is an i-balanced n-sigraph due 
to Theorem 1.1. 

In [7], the authors also have defined switching and cycle isomorphism of an n-sigraph 
Sn = (G, σ) as follows: (See also [2, 4-6, 9–19]) 

Let Sn = (G, σ) and "�* = ($*, &*) be two n-sigraphs. Then Sn and "�*  are said to be 
isomorphic, if there exists an isomorphism ϕ : G → $*such that if uv is an edge in Sn with 
label (a1, a2,... ,an) then ϕ(u)ϕ(v) is an edge in "�* with label (a1, a2,... ,an). 

Given an n-marking µ of an n-sigraph Sn = (G, σ), switching Sn with respect to µ is the 
operation of changing the n-tuple of every edge uv of Sn by µ(u)σ(uv)µ(v). Then-sigraph 
obtained in this way is denoted by Sµ(Sn) and is called the µ-switched n-sigraph or just 
switched n-sigraph. 

Further, an n-sigraph Sn switches to n-sigraph "�*  (or that they are switching equivalent 
to each other), written as "�~"�* , whenever there exists an n-marking of Sn such that 
",("�)≌"�* . 
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Two n-sigraphs Sn = (G,σ) and "�* = ($*, &*) are said to be cycle isomorphic, if there 
exists an isomorphism ϕ : G →$′ such that the n-tuple σ(C) of every cycle C in Sn equals 
to the n-tuple /(Փ(C)) in "�* . 
We make use of the following known result (see [7]). 
 
Theorem 1.2. (Sampathkumar et al. [7]) Given a graph G, any two n-sigraphs with G as 
underlying graph are switching equivalent if, and only if, they are cycle isomorphic. 
 
2. Minimal equitable dominating n-sigraph of an n-sigraph  
A subset D of V(G) is called an equitable dominating set of a graph G,  if for every ! ∈
0 − 1 there exists a vertex ! ∈ 1 such that  ! ∈ 2($) and |4( ) − 4(!)| ≤ 1. The 
minimum cardinality of such a dominating set is denoted by  56 and is called equitable 
domination number of G. An equitable dominating set D is minimal, if for any vertex  ∈
1, 1 − � �  is not an equitable dominating set of G. A subset S of V is called an equitable 
independent set, if for any  ∈ ", ! ∉ 86( ), for all ! ∈ " − � �. If If a vertex  ∈ 0 be 
such that |4( ) − 4(!)| ≤ 2, for all ! ∈ 8( ) then u is in equitable dominating set. Such 
vertices are called equitable isolates. An equitable dominating set D is minimal, if for any 
vertex  ∈ 1, 1 − � � is not an equitable dominating set of G. 

Let ℱ be a finite set and ; = �ℱ�, ℱ�, … , ℱ�� be a partition of ℱ. Then the 
intersection graph <(;) is the graph whose vertices are the subsets in F and in which two 
vertices ℱ= and ℱ> are adjacent if and only if ℱ= ∩ ℱ> ≠ A, B ≠ C. 

Motivated by the existing definition of complement of an n-sigraph, we extend the 
notion of minimal equitable dominating graphs to n-sigraphs as follows: The minimal 
equitable dominating n-sigraph MED(Sn) of an n-sigraph Sn = (G, σ) is  an n-sigraph whose 
underlying graph is MED(G) and the n-tuple of any edge uv is MED(Sn) is )( ))(!), where 
) is the canonical n-marking of Sn. Further, an n-sigraph Sn = (G, σ) is called minimal 
equitable dominating n-sigraph, if "� ≅ E21("�* ) for some n-sigraph "�* .  The following 
result indicates the limitations of the notion MED(Sn) as introduced above, since the entire 
class of i-unbalanced n-sigraphs is forbidden to be minimal equitable dominating n-
sigraphs. 
 
Theorem 2.1. For any n-sigraph Sn = (G, σ), its minimal equitable dominating n-sigraph 
MED(Sn) is i-balanced. 
Proof: Since the n-tuple of any edge uv in MED(Sn) is )( ))(!), where ) is the canonical 
n-marking of Sn, by Theorem 1.1, MED(Sn) is i-balanced.  
 
For any positive integer k, the kth iterated minimal equitable dominating n-sigraph, 
MEDk(Sn) of Sn is defined as follows: 

MED0(Sn) = S, MEDk(Sn) = MED(MEDk−1(Sn)). 
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Corollary 2.2. For any n-sigraph Sn = (G, σ) and for any positive integer k, MEDk(Sn) is i-
balanced. 

The following result characterizes n-sigraphs which are minimal equitable 
dominating n-sigraphs. 
 
Theorem 2.3. An n-sigraph Sn = (G, σ) is a minimal equitable dominating n-sigraph if, and 

only if, Sn is i-balanced n-sigraph and its underlying graph G is a minimal equitable 

dominating graph. 

Proof: Suppose that Sn is i-balanced and G is a minimal equitable dominating graph. Then 
there exists a graph � such that MED(H) ≌G. Since Sn is i-balanced, by Theorem 1.1, there 
exists a marking ζ of G such that each edge e = uv in Sn satisfies σ(uv) = ζ(u)ζ(v). Now 
consider the n-sigraph "�

* = (�, &*), where for any edge e in �, &*(e) is the n-marking of 
the corresponding vertex in G. Then clearly, MED("�

*)  ≌  "�. Hence Sn is a minimal 
equitable dominating n-sigraph. 
Conversely, suppose that Sn = (G, σ) is a is a minimal equitable dominating n-sigraph. Then 
there exists an n-sigraph    "�

* = (�, &*) such that MED("�
*)  ≌  "� . Hence G is the 

minimal equitable dominating graph of � and by Theorem 2.1, Sn is i-balanced. 
 
In [20], the authors characterized graphs for which E21($) ≅ $̅.  
 
Theorem 2.4. (Sumathi & Soner [20]) 
For any graph G=(V, E), E21($) ≅ $̅  if and only if G is a complete with p vertices. 
 

We now characterize n-sigraphs whose minimal equitable dominating n-sigraphs 
and complementary n-sigraphs are switching equivalent. 
 
Theorem 2.5. For any n-sigraph Sn = (G, σ),  "�### ∼ E21("�) if, and only if, G is Kp. 

Proof: Suppose "�### ∼ E21("�). This implies, E21($) ≅ $̅ and hence by Theorem 2.4, 
G is Kp.  

Conversely, suppose that G is Kp. Then E21($) ≅ $̅ by Thorem 2.4. Now, if Sn 
is an n-sigraph with underlying graph G is Kp,  by the definition of complementary n-
sigraph and Theorem 2.1, "�###  and MED(Sn) are i-balanced and hence, the result follows 
from Theorem 1.2. 
 
Theorem 2.6. For any two n-sigraphs Sn  and "�

*with the same underlying graph, their 
minimal equitable dominating n-sigraphs are switching equivalent. 
Proof: Suppose Sn = (G, σ) and  "�

* = ($*, &*)) be two n-sigraphs with G≌$*. By Theorem 
2.1, MED(Sn) and MED("�

*) are i-balanced and hence, the result follows from Theorem 
1.2. 

For any m ∈ Hn, the m-complement of a = (a1, a2,.., an) is: am = am. For any M ⊆ 
Hn, and m ∈ Hn, the m-complement of M is Mm = {am : a ∈ M}. 
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For any m ∈ Hn, the m- complement of an n-sigraphSn = (G, σ), written ("�
G), is the same 

graph but with each edge label a = (a1, a2,... ,an) replaced by am. 
For an n-sigraph Sn = (G, σ), the MED(Sn) is i-balanced. We now examine, the 

condition under which m-complement of MED(Sn) is i-balanced, where for any m ∈ Hn. 
 
Theorem 2.7. Let Sn = (G, σ) be an n-sigraph. Then, for any m ∈ Hn, if MED(G) is bipartite 

then (MED(Sn))m is i-balanced. 

Proof: Since, by Theorem 2.1, MED(Sn) is i-balanced, for each k, 1 ≤ k ≤ n, the number of 
n-tuples on any cycle C in MED(Sn) whose kth co-ordinate are − is even. Also, since 
MED(G) is bipartite, all cycles have even length; thus, for each k, 1 ≤ k ≤ n, the number of 
n-tuples on any cycle C in MED(Sn) whose kth co-ordinate are + is also even. This implies 
that the same thing is true in any m-complement, where for any m∈Hn. Hence (MED(Sn))t  

is i-balanced.  
Theorem 2.6 provides easy solutions to other n-sigraph switching equivalence 

relations, which are given in the following results. 
 
Corollary 2.8. For any two n-sigraphs Sn and  "�

* with the same underlying graph, 
MED(Sn) and MED(("�

*)G) are switching equivalent. 
 
Corollary 2.9. For any two n-sigraphs Sn and  "�

* with the same underlying graph, 
MED((Sn)m) and E21("�

*) are switching equivalent. 
 
Corollary 2.10. For any two n-sigraphs Sn and   "�

* with the same underlying graph, 
MED((Sn)m) and MED(("�

*)G) are switching equivalent. 
 
Corollary 2.11. For any two n-sigraphs Sn = (G, σ) and     "�

* = ($*, &*) with the G≌$*and 
G, $*are bipartite, (MED(Sn))m and MED("�

*) are switching equivalent. 
 
Corollary 2.12. For any two n-sigraphs Sn = (G,σ) and     "�

* = ($*, &*) with the G ≌$*and 
G, $*are bipartite, MED(Sn) and MED(("�

*)G) are switching equivalent. 
 
Corollary 2.13. For any two n-sigraphs  "� = ($, &) ��4 "�

* = ($*, &*) with the G 
≌$*and $, $*are bipartite, (MED(S1))m and (MED(S2))m are switching equivalent. 

 
3. Conclusion 
We have introduced a new notion for n-signed graphs called minimal equitable dominating 
n-sigraph of an n-signed graph. We have proved some results and presented the structural 
characterization of minimal equitable dominating n-signed graph. There is no structural 
characterization of minimal equitable dominating graph, but we have obtained the 
structural characterization of minimal equitable dominating n-signed graph. 
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