Journal of Mathematics and Informatics
Vol. 25, 2023, 7-13
ISSN: 2349-0632 (P), 2349-0640 (online)
Published 22 July 2023
www.researchmathsci.org
DOI: http://dx.doi.org/10.22457/jmi.v25a02228

Journal of

Mathematics and

Minimal Equitable Dominating Symmetric \boldsymbol{n}-Sigraphs

K. M. Manjula ${ }^{I}$, C. N. Harshavardhana ${ }^{2 *}$ and R. Kemparaju ${ }^{3}$
${ }^{1}$ Department of Mathematics, Government First Grade College for Women Hassan-573 202, India
Email: manjula.km.gowda@gmail.com
${ }^{2}$ Department of Mathematics, Government First Grade College for Women
Holenarasipur-573 211, India
Email: cnhmaths@gmail.com
${ }^{3}$ Department of Mathematics, Government First Grade College
T. Narasipura-571 124, India
Email: kemps007@gmail.com
*Corresponding author

Received 7 May 2023; accepted 21 July 2023
Abstract. An n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is symmetric, if $a_{k}=a_{n-k+1}, 1 \leq k \leq n$. Let $H_{n}=$ $\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{k} \in\{+,-\}, a_{k}=a_{n-k+1}, 1 \leq k \leq n\right\}$ be the set of all symmetric $n-$ tuples. A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_{n}=(G, \sigma)$ $\left(S_{n}=(G, \mu)\right)$, where $G=(V, E)$ is a graph called the underlying graph of S_{n} and $\sigma: E \rightarrow H_{n}$ $\left(\mu: V \rightarrow H_{n}\right)$ is a function. In this paper, we introduced a new notion minimal equitable dominating symmetric n-sigraph of a symmetric n-sigraph and its properties are obtained. Also, we obtained the structural characterization of minimal equitable dominating symmetric n-signed graphs.
Keywords: Symmetric n-sigraphs, Symmetric n-marked graphs, Balance, Switching, Minimal equitable dominating symmetric n-sigraphs, Complementation.

AMS Mathematics Subject Classification (2010): 05C22

1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the reader is refer to [1]. We consider only finite, simple graphs free from self-loops.

Let $n \geq 1$ be an integer. An n-tuple ($a_{1}, a_{2}, \ldots, a_{n}$) is symmetric, if $a_{k}=a_{n-k+1}, 1 \leq k \leq n$. Let $H_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{k} \in\{+,-\}, a_{k}=a_{n-k+1}, 1 \leq k \leq n\right\}$ be the set of all symmetric n-tuples. Note that H_{n} is a group under coordinate wise multiplication, and the order of H_{n} is 2^{m}, where $m=\left\lceil\frac{n}{2}\right\rceil$.

K. M. Manjula, C. N. Harshavardhana and R. Kemparaju

A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_{n}=(G, \sigma)\left(S_{n}=\right.$ $(G, \mu))$, where $G=(V, E)$ is a graph called the underlying graph of S_{n} and $\sigma: E \rightarrow H_{n}(\mu: V$ $\rightarrow H_{n}$) is a function.

In this paper by an n-tuple/n-sigraph/n-marked graph we always mean a symmetric n tuple/symmetric n-sigraph/symmetric n-marked graph.

An n-tuple ($a_{1}, a_{2}, \ldots, a_{n}$) is the identity n-tuple, if $a_{k}=+$, for $1 \leq k \leq n$, otherwise it is a non-identity n-tuple. In an n-sigraph $S_{n}=(G, \sigma)$ an edge labelled with the identity n-tuple is called an identity edge, otherwise it is a non-identity edge.

Further, in an n-sigraph $S_{n}=(G, \sigma)$, for any $A \subseteq E(G)$ the n-tuple $\sigma(A)$ is the product of the n-tuples on the edges of A.

In [7], the authors defined two notions of balance in n-sigraph $S_{n}=(G, \sigma)$ as follows (See also R. Rangarajan and P. S. K. Reddy [3]):

Definition 1.1. Let $S_{n}=(G, \sigma)$ be an n-sigraph. Then,
(i) $\quad S_{n}$ is identity balanced (or i-balanced), if product of n-tuples on each cycle of S_{n} is the identity n-tuple, and
(ii) $\quad S_{n}$ is balanced, if every cycle in S_{n} contains an even number of non-identity edges.

Note: An i-balanced n-sigraph need not be balanced and conversely.
The following characterization of i-balanced n-sigraphs is obtained in [7].
Theorem 1.1. (Sampathkumar et al. [7]) An n-sigraph $S_{n}=(G, \sigma)$ is i-balanced if, and only if, it is possible to assign n-tuples to its vertices such that the n-tuple of each edge $u v$ is equal to the product of the n-tuples of u and v.
Let $S_{n}=(G, \sigma)$ be an n-sigraph. Consider the n-marking μ on vertices of S_{n} defined as follows: each vertex $v \in V, \mu(v)$ is the n-tuple which is the product of the n-tuples on the edges incident with v. Complement of S_{n} is an n-sigraph $\overline{S_{n}}=\left(\bar{G}, \sigma^{c}\right)$, where for any edge $\mathrm{e}=u v \in \bar{G}, \sigma^{c}(u v)=\mu(u) \mu(v)$. Clearly, $\overline{S_{n}}$ is defined here is an i-balanced n-sigraph due to Theorem 1.1.

In [7], the authors also have defined switching and cycle isomorphism of an n-sigraph $S_{n}=(G, \sigma)$ as follows: (See also [2, 4-6, 9-19])

Let $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ be two n-sigraphs. Then S_{n} and S_{n}^{\prime} are said to be isomorphic, if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that if $u v$ is an edge in S_{n} with label $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ then $\phi(u) \phi(v)$ is an edge in S_{n}^{\prime} with label $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

Given an n-marking μ of an n-sigraph $S_{n}=(G, \sigma)$, switching S_{n} with respect to μ is the operation of changing the n-tuple of every edge $u v$ of S_{n} by $\mu(u) \sigma(u v) \mu(v)$. Then-sigraph obtained in this way is denoted by $\mathrm{S}_{\mu}\left(S_{n}\right)$ and is called the μ-switched n-sigraph or just switched n-sigraph.

Further, an n-sigraph S_{n} switches to n-sigraph S_{n}^{\prime} (or that they are switching equivalent to each other), written as $S_{n} \sim S_{n}^{\prime}$, whenever there exists an n-marking of S_{n} such that $S_{\mu}\left(S_{n}\right) \cong S_{n}^{\prime}$.

Minimal Equitable Dominating Symmetric n-Sigraphs

Two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ are said to be cycle isomorphic, if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that the n-tuple $\sigma(C)$ of every cycle C in S_{n} equals to the n-tuple $\sigma(\Phi(C))$ in S_{n}^{\prime}.
We make use of the following known result (see [7]).

Theorem 1.2. (Sampathkumar et al. [7]) Given a graph G, any two n-sigraphs with G as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.
2. Minimal equitable dominating n-sigraph of an n-sigraph

A subset D of $V(G)$ is called an equitable dominating set of a graph G, if for every $v \in$ $V-D$ there exists a vertex $v \in D$ such that $u v \in E(G)$ and $|d(u)-d(v)| \leq 1$. The minimum cardinality of such a dominating set is denoted by γ_{e} and is called equitable domination number of G. An equitable dominating set D is minimal, if for any vertex $u \in$ $D, D-\{u\}$ is not an equitable dominating set of G. A subset S of V is called an equitable independent set, if for any $u \in S, v \notin N_{e}(u)$, for all $v \in S-\{u\}$. If If a vertex $u \in V$ be such that $|d(u)-d(v)| \leq 2$, for all $v \in N(u)$ then u is in equitable dominating set. Such vertices are called equitable isolates. An equitable dominating set D is minimal, if for any vertex $u \in D, D-\{u\}$ is not an equitable dominating set of G.

Let \mathcal{F} be a finite set and $F=\left\{\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{n}\right\}$ be a partition of \mathcal{F}. Then the intersection graph $\omega(F)$ is the graph whose vertices are the subsets in F and in which two vertices \mathcal{F}_{i} and \mathcal{F}_{j} are adjacent if and only if $\mathcal{F}_{i} \cap \mathcal{F}_{j} \neq \phi, i \neq j$.

Motivated by the existing definition of complement of an n-sigraph, we extend the notion of minimal equitable dominating graphs to n-sigraphs as follows: The minimal equitable dominating n-sigraph $\operatorname{MED}\left(S_{n}\right)$ of an n-sigraph $S_{n}=(G, \sigma)$ is an n-sigraph whose underlying graph is $\operatorname{MED}(G)$ and the n-tuple of any edge $u v$ is $M E D\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the canonical n-marking of S_{n}. Further, an n-sigraph $S_{n}=(G, \sigma)$ is called minimal equitable dominating n-sigraph, if $S_{n} \cong \operatorname{MED}\left(S_{n}^{\prime}\right)$ for some n-sigraph S_{n}^{\prime}. The following result indicates the limitations of the notion $\operatorname{MED}\left(S_{n}\right)$ as introduced above, since the entire class of i-unbalanced n-sigraphs is forbidden to be minimal equitable dominating n sigraphs.

Theorem 2.1. For any n-sigraph $S_{n}=(G, \sigma)$, its minimal equitable dominating n-sigraph $\operatorname{MED}\left(S_{n}\right)$ is i-balanced.
Proof: Since the n-tuple of any edge $u v$ in $\operatorname{MED}\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the canonical n-marking of S_{n}, by Theorem 1.1, $\operatorname{MED}\left(S_{n}\right)$ is i-balanced.

For any positive integer k, the $k^{\text {th }}$ iterated minimal equitable dominating n-sigraph, $M E D^{k}\left(S_{n}\right)$ of S_{n} is defined as follows:

$$
M E D^{0}\left(S_{n}\right)=S, M E D^{k}\left(S_{n}\right)=M E D\left(M E D^{k-1}\left(S_{n}\right)\right)
$$

K. M. Manjula, C. N. Harshavardhana and R. Kemparaju

Corollary 2.2. For any n-sigraph $S_{n}=(G, \sigma)$ and for any positive integer $k, \operatorname{MED}^{k}\left(S_{n}\right)$ is i balanced.

The following result characterizes n-sigraphs which are minimal equitable dominating n-sigraphs.

Theorem 2.3. An n-sigraph $S_{n}=(G, \sigma)$ is a minimal equitable dominating n-sigraph if, and only if, S_{n} is i-balanced n-sigraph and its underlying graph G is a minimal equitable dominating graph.
Proof: Suppose that S_{n} is i-balanced and G is a minimal equitable dominating graph. Then there exists a graph H such that $M E D(H) \cong G$. Since S_{n} is i-balanced, by Theorem 1.1, there exists a marking ζ of G such that each edge $e=u v$ in S_{n} satisfies $\sigma(u v)=\zeta(u) \zeta(v)$. Now consider the n-sigraph $S_{n}{ }^{\prime}=\left(H, \sigma^{\prime}\right)$, where for any edge e in $H, \sigma^{\prime}(e)$ is the n-marking of the corresponding vertex in G. Then clearly, $\operatorname{MED}\left(S_{n}{ }^{\prime}\right) \cong S_{n}$. Hence S_{n} is a minimal equitable dominating n-sigraph.
Conversely, suppose that $S_{n}=(G, \sigma)$ is a is a minimal equitable dominating n-sigraph. Then there exists an n-sigraph $S_{n}{ }^{\prime}=\left(H, \sigma^{\prime}\right)$ such that $\operatorname{MED}\left(S_{n}{ }^{\prime}\right) \cong S_{n}$. Hence G is the minimal equitable dominating graph of H and by Theorem 2.1, S_{n} is i-balanced.

In [20], the authors characterized graphs for which $\operatorname{MED}(G) \cong \bar{G}$.

Theorem 2.4. (Sumathi \& Soner [20])

For any graph $G=(V, E), \operatorname{MED}(G) \cong \bar{G}$ if and only if G is a complete with p vertices.

We now characterize n-sigraphs whose minimal equitable dominating n-sigraphs and complementary n-sigraphs are switching equivalent.

Theorem 2.5. For any n-sigraph $S_{n}=(G, \sigma), \overline{S_{n}} \sim \operatorname{MED}\left(S_{n}\right)$ if, and only if, G is K_{p}. Proof: Suppose $\overline{S_{n}} \sim \operatorname{MED}\left(S_{n}\right)$. This implies, $\operatorname{MED}(G) \cong \bar{G}$ and hence by Theorem 2.4, G is K_{p}.

Conversely, suppose that G is K_{p}. Then $\operatorname{MED}(G) \cong \bar{G}$ by Thorem 2.4. Now, if S_{n} is an n-sigraph with underlying graph G is K_{p}, by the definition of complementary n sigraph and Theorem 2.1, $\overline{S_{n}}$ and $\operatorname{MED}\left(S_{n}\right)$ are i-balanced and hence, the result follows from Theorem 1.2.

Theorem 2.6. For any two n-sigraphs S_{n} and $S_{n}{ }^{\prime}$ with the same underlying graph, their minimal equitable dominating n-sigraphs are switching equivalent.
Proof: Suppose $S_{n}=(G, \sigma)$ and $S_{n}{ }^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$) be two n-sigraphs with $G \cong G^{\prime}$. By Theorem 2.1, $\operatorname{MED}\left(S_{n}\right)$ and $\operatorname{MED}\left(S_{n}{ }^{\prime}\right)$ are i-balanced and hence, the result follows from Theorem 1.2.

For any $m \in H_{n}$, the m-complement of $a=\left(a_{1}, a_{2}, . ., a_{n}\right)$ is: $a^{m}=a m$. For any $M \subseteq$ H_{n}, and $m \in H_{n}$, the m-complement of M is $M^{m}=\left\{a^{m}: a \in M\right\}$.

Minimal Equitable Dominating Symmetric n-Sigraphs

For any $m \in H_{n}$, the m - complement of an n-sigraph $S_{n}=(G, \sigma)$, written $\left(S_{n}{ }^{m}\right)$, is the same graph but with each edge label $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ replaced by a^{m}.

For an n-sigraph $S_{n}=(G, \sigma)$, the $\operatorname{MED}\left(S_{n}\right)$ is i-balanced. We now examine, the condition under which m-complement of $\operatorname{MED}\left(S_{n}\right)$ is i-balanced, where for any $m \in H_{n}$.

Theorem 2.7. Let $S_{n}=(G, \sigma)$ be an n-sigraph. Then, for any $m \in H_{n}$, if $M E D(G)$ is bipartite then $\left(\operatorname{MED}\left(S_{n}\right)\right)^{m}$ is i-balanced.
Proof: Since, by Theorem 2.1, $\operatorname{MED}\left(S_{n}\right)$ is i-balanced, for each $k, 1 \leq k \leq n$, the number of n-tuples on any cycle C in $\operatorname{MED}\left(S_{n}\right)$ whose $k^{t h}$ co-ordinate are - is even. Also, since $\operatorname{MED}(G)$ is bipartite, all cycles have even length; thus, for each $k, 1 \leq k \leq n$, the number of n-tuples on any cycle C in $\operatorname{MED}\left(S_{n}\right)$ whose $k^{\text {th }}$ co-ordinate are + is also even. This implies that the same thing is true in any m-complement, where for any $m \in H_{n}$. Hence $\left(\operatorname{MED}\left(S_{n}\right)\right)^{t}$ is i-balanced.

Theorem 2.6 provides easy solutions to other n-sigraph switching equivalence relations, which are given in the following results.

Corollary 2.8. For any two n-sigraphs S_{n} and $S_{n}{ }^{\prime}$ with the same underlying graph, $\operatorname{MED}\left(S_{n}\right)$ and $\operatorname{MED}\left(\left(S_{n}{ }^{\prime}\right)^{m}\right)$ are switching equivalent.

Corollary 2.9. For any two n-sigraphs S_{n} and $S_{n}{ }^{\prime}$ with the same underlying graph, $\operatorname{MED}\left(\left(S_{n}\right)^{m}\right)$ and $\operatorname{MED}\left(S_{n}{ }^{\prime}\right)$ are switching equivalent.

Corollary 2.10. For any two n-sigraphs S_{n} and $S_{n}{ }^{\prime}$ with the same underlying graph, $\operatorname{MED}\left(\left(S_{n}\right)^{m}\right)$ and $\operatorname{MED}\left(\left(S_{n}{ }^{\prime}\right)^{m}\right)$ are switching equivalent.

Corollary 2.11. For any two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}{ }^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ with the $G \cong G^{\prime}$ and G, G^{\prime} are bipartite, $\left(\operatorname{MED}\left(S_{n}\right)\right)^{m}$ and $\operatorname{MED}\left(S_{n}{ }^{\prime}\right)$ are switching equivalent.

Corollary 2.12. For any two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}{ }^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ with the $G \cong G^{\prime}$ and G, G^{\prime} are bipartite, $\operatorname{MED}\left(S_{n}\right)$ and $\operatorname{MED}\left(\left(S_{n}{ }^{\prime}\right)^{m}\right)$ are switching equivalent.

Corollary 2.13. For any two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}{ }^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ with the G $\cong G^{\prime}$ and G, G^{\prime} are bipartite, $\left(\operatorname{MED}\left(S_{1}\right)\right)^{m}$ and $\left(\operatorname{MED}\left(S_{2}\right)\right)^{m}$ are switching equivalent.

3. Conclusion

We have introduced a new notion for n-signed graphs called minimal equitable dominating n-sigraph of an n-signed graph. We have proved some results and presented the structural characterization of minimal equitable dominating n-signed graph. There is no structural characterization of minimal equitable dominating graph, but we have obtained the structural characterization of minimal equitable dominating n-signed graph.

Acknowledgments. The authors thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions.
Conflicts of Interest: The authors declare no conflict of interest.
Author's Contributions: All authors equally contributed.

REFERENCES

1. F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
2. V. Lokesha, P.S.K.Reddy and S. Vijay, The triangular line n-sigraph of a symmetric n-sigraph, Advn. Stud. Contemp. Math., 19(1) (2009) 123-129.
3. R.Rangarajan and P.S.K.Reddy, Notions of balance in symmetric n-sigraphs, Proceedings of the Jangjeon Math. Soc., 11(2) (2008) 145-151.
4. R. Rangarajan, P.S.K.Reddy and M.S.Subramanya, Switching Equivalence in Symmetric n-Sigraphs, Adv. Stud. Comtemp. Math., 18(1) (2009) 79-85.
5. R.Rangarajan, P.S.K.Reddy and N.D.Soner, Switching equivalence in symmetric n -sigraphs-II, J. Orissa Math. Sco., 28 (1 \& 2) (2009) 1-12.
6. R.Rangarajan, P.S.K.Reddy and N.D.Soner, $m^{\text {th }}$ Power Symmetric n-Sigraphs, Italian Journal of Pure \& Applied Mathematics, 29(2012) 87-92.
7. E.Sampathkumar, P.S.K.Reddy, and M.S.Subramanya, Jump symmetric n-sigraph, Proceedings of the Jangjeon Math. Soc., 11(1) (2008) 89-95.
8. E.Sampathkumar, P.S.K.Reddy, and M.S.Subramanya, The Line nsigraph of a symmetric n-sigraph, Southeast Asian Bull. Math., 34(5) (2010) 953-958.
9. P.S.K.Reddy and B.Prashanth, Switching equivalence in symmetric nsigraphs-I, Advances and Applications in Discrete Mathematics, 4(1) (2009) 25-32.
10. P.S.K.Reddy, S.Vijay and B.Prashanth, The edge $C_{4} n$-sigraph of a symmetric n sigraph, Int. Journal of Math. Sci. \& Engg. Appls., 3(2) (2009) 21-27.
11. P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-II, Proceedings of the Jangjeon Math. Soc., 13(3) (2010) 305312.
12. P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-III, Int. J. Open Problems in Computer Science and Mathematics, 3(5) (2010) 172-178.
13. P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, Switching equivalence in symmetric n-sigraphs-III, Int. Journal of Math. Sci. \& Engg. Appls., 5(1) (2011) 95101.
14. P.S.K.Reddy, B.Prashanth and Kavita.S.Permi, A Note on Switching in Symmetric nSigraphs, Notes on Number Theory and Discrete Mathematics, 17(3) (2011) 22-25.
15. P.S.K.Reddy, M.C.Geetha and K.R.Rajanna, Switching Equivalence in Symmetric n -Sigraphs-IV, Scientia Magna, 7(3) (2011) 34-38.
16. P.S.K.Reddy, K.M.Nagaraja and M.C.Geetha, The Line n-sigraph of a symmetric n -sigraph-IV, International J. Math. Combin., 1 (2012) 106-112.

Minimal Equitable Dominating Symmetric n-Sigraphs

17. P.S.K.Reddy, M.C.Geetha and K.R.Rajanna, Switching equivalence in symmetric n -sigraphs-V, International J. Math. Combin., 3 (2012) 58-63.
18. P.S.K.Reddy, K.M.Nagaraja and M.C.Geetha, The Line n-sigraph of a symmetric n -sigraph-V, Kyungpook Mathematical Journal, 54(1) (2014) 95-101.
19. P.S.K.Reddy, R.Rajendra and M.C.Geetha, Boundary n-Signed Graphs, Int. Journal of Math. Sci. \&Engg. Appls., 10(2) (2016) 161-168.
20. M.P.Sumathi and N.D.Soner, Minimal equitable dominating graph, International J. of Math. Sci. \& Engg. Appls., 6(4) (2012) 273-278.
